
Catharanthus terpenoid indole alkaloids: biosynthesis
and regulation

Magdi El-Sayed Æ Rob Verpoorte

Received: 29 August 2005 / Accepted: 23 October 2006 / Published online: 10 March 2007
� Springer Science+Business Media B.V. 2007

Abstract Catharanthus roseus is still the only

source for the powerful antitumour drugs vin-

blastine and vincristine. Some other pharmaceu-

tical compounds from this plant, ajmalicine and

serpentine are also of economical importance.

Although C. roseus has been studied extensively

and was subject of numerous publications, a full

characterization of its alkaloid pathway is not yet

achieved. Here we review some of the recent

work done on this plant. Most of the work

focussed on early steps of the pathway, particu-

larly the discovery of the 2-C-methyl-D-erythritol

4-phosphate (MEP)-pathway leading to terpe-

noids. Both mevalonate and MEP pathways are

utilized by plants with apparent cross-talk be-

tween them across different compartments. Many

genes of the early steps in Catharanthus alkaloid

pathway have been cloned and overexpressed to

improve the biosynthesis. Research on the late

steps in the pathway resulted in cloning of several

genes. Enzymes and genes involved in indole

alkaloid biosynthesis and various aspects of their

localization and regulation are discussed. Much

progress has been made at alkaloid regulatory

level. Feeding precursors, growth regulators treat-

ments and metabolic engineering are good tools

to increase productivity of terpenoid indole alka-

loids. But still our knowledge of the late steps in

the Catharanthus alkaloid pathway and the genes

involved is limited.
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Abbreviations
AACT Acetoacetyl-CoA thiolase

ABA Abscisic acid

AS Anthranilate synthase

AVLB Anhydrovinblastine

CMS 4-Cytidyl diphospho-2 C-methyl-D-

erythritol synthase

CPR Cytochrome P450 reductase

CR Cathenamine reductase

DAT Acetyl CoA:deacetylvindoline 17-

O-acetyltransferease

D4H Desacetoxyvindoline 4-hydroxylase

DMAPP Dimethylallyl diphosphate

DXP 1-Deoxy-D-xylulose-5-phosphate

DXR 1-Deoxy-D-xylulose-5-phosphate

reducto isomerase

DXS 1-Deoxy-D-xylulose-5-phosphate

synthase

M. El-Sayed � R. Verpoorte (&)
Department of Pharmacognosy, Section of
Metabolomics, Institute of Biology Leiden, Leiden
University, Leiden, The Netherlands
e-mail: verpoort@chem.leidenuniv.nl

M. El-Sayed
Department of Botany, Aswan Faculty of Science,
South Valley University, Aswan, Egypt

123

Phytochem Rev (2007) 6:277–305

DOI 10.1007/s11101-006-9047-8



GAP Glyceraldehyde-3-phosphate

G10H Geraniol 10-hydroxylase

GPP Geranyl diphosphate

HMG-CoA 3-Hydroxy-3-methylglutaryl-CoA

HMGS 3-Hydroxy-3-methylglutaryl-CoA

synthase

HMGR 3-Hydroxy-3-methylglutaryl-CoA

reductase

IPP Isopentenyl diphosphate

Km Michaelis–Menten constant

LAMT Loganic acid methyltransferase

MCS 2-C-Methyl-D-erythritol

2,4-cyclodiphosphate synthase

MEP 2-C-methyl-D-erythritol

4-phosphate

MVAK Mevalonate kinase

MJ Methyljasmonates

Mr Relative molecular weight

MVA Mevalonic acid

MVAPK 5-Diphosphomevalonate kinase

NMT-SAM Methoxy 2,16-dihydro-16-

hydroxytabersonine

N-methyltransferase

OMT O-Methyltransferase

ORCA Octadecanoid-responsive

Catharanthus AP2/ERF-domain

SAM S-Adenosyl-L-methionine

SGD Strictosidine b-D-glucosidase

SLS Secologanin synthase

STR Strictosidine synthase

T16H Tabersonine 16-hydroxylase

THAS Tetrahydroalstonine synthase

TIA Terpenoid indole alkaloids;

TDC Tryptophan decarboxylase

Introduction

Plant cells are considered to be excellent produc-

ers of a broad variety of chemical compounds.

Many of these compounds are of high economic

value such as various drugs, flavours, dyes,

fragrances and insecticides. These compounds

usually play a role in the interaction of the plant

with its environment, e.g. as toxins to defend

the plant against micro-organisms or various

predators, as messengers, attractants, repellents

or as camouflage (Verpoorte 1998).

Alkaloids are one of the largest classes of

secondary metabolites. They contain a heterocy-

clic nitrogen usually with basic properties that

makes them particularly pharmacologically

active. Among them are the indole alkaloids

which are found mainly in plants belonging to the

families: Apocynaceae, Loganiaceae, Rubiaceae

and Nyssaceae (Verpoorte et al. 1997).

Catharanthus roseus (L.) G. Don (Madagascar

Periwinkle) is one of the most extensively inves-

tigated medicinal plants. The importance of this

plant is due to the presence of two antitumour

alkaloids, vinblastine and vincristine found in the

leaves, and ajmalicine, an alkaloid found in the

roots. All parts of this plant contain a variety of

alkaloids, even seeds that were thought to have

no alkaloids until Jossang et al. (1998) isolated

two binsidole alkaloides from the seeds, vingr-

amine and methylvingramine. Cell suspension

cultures of C. roseus are an alternative means

for the production of economically important

terpenoid indole alkaloids (TIAs). However, the

yields are too low to allow commercial applica-

tion. The more than 100 C. roseus alkaloids that

have been identified share many biosynthetic

steps. The early stages of alkaloid biosynthesis

in C. roseus involve the formation of secologanin

derived from the terpenoid (isoprenoid) biosyn-

thesis and its condensation with tryptamine to

produce the central intermediate strictosidine, the

common precursor for the monoterpenoid indole

alkaloids (Fig. 1).

The terpenoid pathway

Terpenoids are the largest family of natural

products with over 30,000 compounds. They are

known to have many biological and physiological

functions. Formation of terpenoids proceeds via

two different pathways, the classical mevalonate

and the newly discovered 2-C-methyl-D-erythritol

4-phosphate (MEP) pathway leading to isopente-

nyl diphosphate (IPP). In higher plants, the

mevalonate pathway operates mainly in the cyto-

plasm and mitochondria. The MEP pathway

operates in the plastids with a cross-talk between
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the two pathways where at least one metabolite

can be exchanged.

Formation of IPP

The mevalonate pathway

The early steps in the isoprenoid pathway com-

prise the enzymatic conversions involved in the

synthesis of IPP. The mevalonate pathway starts

with the coupling of two molecules of acetyl-CoA

to form acetoacetyl-CoA. This step is catalysed by

the enzyme acetoacetyl-CoA thiolase (AACT).

Condensation of acetoacetyl-CoA with another

molecule of acetyl-CoA to form 3-hydroxy-3-

methylglutaryl-CoA (HMG-COA), is catalysed

by HMG-CoA synthase (HMGS). Reduction of

HMG-CoA by HMG-CoA reductase (HMGR)

leads to the formation of mevalonate. Phosphor-

ylation of mevalonate to 5-diphosphomevalonate

is catalysed by mevalonate kinase (MVAK) and

5-diphosphomevalonate kinase (MVAPK), then

5-diphosphomevalonate is decarboxylated by 5-

diphosphomevalonate decarboxylase to IPP.

Isopentenyl diphosphate is considered as a

building block of isoprenoids. The isomerization

of IPP to form dimethylallyl diphosphate

(DMAPP) is a key step in the biosynthesis of

isoprenoids. This step is catalysed by IPP isom-

erase (E.C. 5.3.3.2; Ramos-Valdivia et al. 1997;

Verpoorte et al. 1997). DMAPP is condensed

with one IPP in a head-to-tail fashion generating

geranyl diphosphate (GPP), the precursor for the

monoterpenes including iridoids such as secolog-

anin (Verpoorte et al. 1997; Contin 1999). The

coupling reaction is catalysed by a prenyltrans-

ferase while the enzymatic cyclization of GPP is

catalysed by a monoterpene synthase, GPP syn-

thase (Chappell 1995).

The mevalonate-independent pathway leading

to the formation of IPP (MEP pathway)

The biosynthesis of IPP, the central precursor of

all isoprenoids, proceeds via two separate path-

ways in plants. The mevalonate pathway leads to

the formation of triterpenes (sterols) and certain

sesquiterpenes (Newman and Chappell 1999;

Lange and Croteau 1999). The second pathway

is mevalonate-independent (MEP pathway) and

leads to the formation of monoterpenes, diterp-

enes, tetraterpenes (carotenoids) and the prenyl

side chains of chlorophyll (Eisenreich et al. 1996,

1997; Arigoni et al. 1997; Rohmer 1999).

The discovery of the MEP pathway for iso-

prenoid biosynthesis was reviewed by Rohmer

(1999), Lichtenthaler (1999), Rohdich et al.

(2001), Rodriguez-Concepcion and Boronat

(2002) and Dubey et al. (2003). The pathway

was first discovered in studies of the biosynthesis

of bacterial hopanoids that are similar to sterols

produced by eukaryotes and act as membrane

stabilizers. As hopanoids are chemically stable

and easily isolated, they are very suited for

labelling experiments using stable isotopes fol-

lowed by NMR to determine the sites of incor-

poration in the molecules. Through the labelling

experiments, it was thought to be trivial to

identify the isoprenoid units resulting from the

mevalonic acid (MVA) route but, the pattern of

the labels was completely different and did not fit

the classical MVA pathway.

Sprenger (1996), in his labelling experiments

on bacteria that utilize only hexoses, and espe-

cially glucose as a carbon source, determined the

origin of isoprenic units of hopanoids as derived

from glucose. The labelling pattern was in accor-

dance with pyruvate as a precursor of a C2 subunit

and a triose phosphate derivative as precursor of

a C3 subunit.

For the MEP pathway, the biosynthetic

sequence leading to the formation of IPP in

plants is still not completely identified (Fig. 2).

The complete pathway has been elucidated,

including the late steps in bacteria (for review

see Rodriguez-Concepcion and Boronat 2002).

The initial step of the pathway involves a

condensation of pyruvate (C2 and C3) with D-

glyceraldehyde 3-phosphate to yield 1-deoxy-D-

xylulose-5-phosphate (DXP). Chahed et al.

(2000) isolated and characterized the cDNA

(crdxs) encoding for 1-deoxy-D-xylulose-5-phos-

phate synthase (DXS) from C. roseus. The

enzyme that catalyses this reaction belongs to a

family of transketolases. In the second step of this

pathway, rearrangement and reduction of DXP to

MEP takes place. The enzyme catalysing this step
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is DXP reducto isomerase (DXR). Grolle et al.

(2000) cloned the gene encoding this enzyme

from the bacterium Zymomonas mobilis. Veau

et al. (2000) reported the cloning and expression

of cDNAs encoding crdxr and crmecs (reducto

isomerase and 2-C-methyl-D-erythritol-2,4-cyc-

lodiphosphate synthase) from C. roseus. The

IPP is formed finally in low rate from isopentenyl

monophosphate via a step catalysed by the

enzyme isopentenyl monophosphate kinase. Con-

tin et al. (1998) proved that the terpenoid moiety

of the TIAs, secologanin is not derived from the

mevalonate pathway but instead from the MEP

pathway using a cell suspension culture of

C. roseus. The late steps are not characterized

yet in C. roseus. 4-Cytidyl diphospho-2 C-methyl-

D-erythritol synthase was first cloned from Ara-

bidopsis thaliana and expressed in Escherichia

coli (Rohdich et al. 2000). Although there are few

radiotracer studies in plants which demonstrated

the possible phophorylation role of 4-diphospho-

cytidyl-2-C-methyl-D-erythritol kinase (CMK) in

the pathway, the complete enzymology and its

molecular analysis is not available in a plant

system. The gene encoding 2-C-methyl-D-erythr-

itol 2,4-cyclodiphosphate synthase has been dem-

onstrated in Arabidopsis but the enzyme was not

fully characterized.

The iridoid pathway

The first steps in the pathway leading to the

formation of secologanin are the formation of

geraniol followed by hydroxylation into 10-

hydroxylgeraniol, catalysed by the cytochrome

P450 enzyme geraniol 10-hydroxylase (G10H). In

the presence of NAD+ or NADP+, 10-hydroxy-

geraniol is oxidized into 10-oxogeranial. The

enzyme responsible for this step is an oxido

reductase (Madyastha and Coscia 1979). 10-

Oxogeraniol is converted to iridodial by

cyclization. NADPH:cytochrome P450 reductase

(CPR) is essential for the G10H catalysed reac-

tion. In the formation of 7-deoxyloganic acid from

iridodial, so far, no enzymes have been described

(Contin 1999). Methylation of loganic acid to

form loganin is catalysed by S-adenosyl-L-

methionine:loganic acid methyltransferase

(LAMT). Finally the cleavage of the cyclopentane

ring of loganin forms the secologanin (Fig. 3).

Conversion of loganin to secologanin is of partic-

ular interest, the enzyme catalysing this reaction

is secologanin synthase (SLS). In C. roseus,

Contin (1999) attempted to identify the enzyme

involved in bioconversion of loganin to secolog-

anin with no success. She reported that the

conversion probably involves a cytochrome P450

enzyme. This enzyme was finally detected and

characterized in a cell suspension culture of

Lonicera japonica (Yamamoto et al. 2000). It is

a membrane-associated enzyme belonging to the

group of cytochrome P450 monooxygenases and

its reaction requires NADPH and oxygen. Irmler

et al. (2000) reported that the activities of

CYP72A1 from C. roseus expressed in E. coli

converts loganin into secologanin and confirmed

it as SLS. This enzyme was previously purified

from C. roseus by Mangold et al. (1994) and

thought to have G10H activity but did not show

any hydroxylase activity with 11 substrates for

cytochrome P450 reactions.

Characterized enzymes involved in the

biosynthetic pathway leading to the formation

of secologanin

AACT (E.C. 2.3.1.9) and HMGS (E.C. 4.1.3.5)

Both AACT and HMGS activities were found to

be present in C. roseus by using an HPLC

method specially developed to determine HMG-

CoA metabolizing enzyme activities. Using this

method, three HMG-CoA catabolizing activities

were discovered in C. roseus suspension cultured

cells in addition to HMGR (Van der Heijden

et al. 1994). These enzymes are instable and

sensitive to high salt concentrations. AACT and

HMGS were partially purified from a cell

suspension culture of C. roseus (Van der Heijden

and Verpoorte 1995).

3-Hydroxy-3-methylglutaryl-CoA reductase

(E.C. 1.1.1.34)

The HMG reductase has been purified from a

number of species besides C. roseus and its

characteristics and regulation mechanisms have

been the subject of extensive reviews (Chappell
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1995; Bach 1995; Stermer et al. 1994; Verpoorte

et al. 1997; Schulte 1998). Overexpression of the

hmgr gene in C. roseus hairy roots resulted in an

increase in alkaloid levels. A clone with high

hybridization signal produced more ajmalicine

and catharanthine than the control, whereas the

clone with low hybridization signal increased the

production of serpentine up to sevenfold (Ayora-

Talavera et al. 2002).

MVAK (E.C. 2.7.1.36) and MVAPK (E.C. 2.7.4.2)

The phosphorylation of MVA to the mono- and

di-phosphate ester (MVAP and MVAPP) has

been extensively studied in C. roseus plants and

cell cultures (Schulte 1998). MVAK from C.

roseus cell cultures was purified to homogeneity

and characterized. The enzyme showed to be

quite stable. It is strongly inhibited by farnesyl

diphosphate. MVAK activity depends on the

presence of the divalent ions, Mg2+ and Mn2+

which are effective in sustaining the activity. It

also has a broad pH optimum between 7 and

10 with a maximum activity around pH 9 (Schulte

et al. 2000). MVAPK from C. roseus was also

purified and characterized (Schulte et al. 1999).

5-Diphosphomevalonate decarboxylase (MVAPP

decarboxylase, E.C. 4.1.1.33)

The MVAPP decarboxylase that forms IPP from

MVAPP has not yet been given much attention

and has only been characterized in a few plant

species (Verpoorte et al. 1997; Contin 1999). The

formation of IPP was reviewed by Ramos-Valdi-

via et al. (1997).
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IPP isomerase (E.C. 5.3.3.2)

Isopentenyl diphosphate isomerase was partially

purified from C. roseus cultures (Ramos-Valdivia

et al. 1998). IPP-isomerase activity was also

determined in 5-day-old C. roseus suspension

cultured cells, treated with Pythium aphanider-

matum elicitor preparation. A slight inhibition of

the enzyme was observed during the first 120 h

after elicitor treatment (Moreno et al. 1996).

Geranyl diphosphate synthase (E.C. 5.1.1.1)

The enzyme GPP synthase is not yet investigated

in C. roseus (Contin 1999).

Geraniol 10-hydroxylase

This enzyme is a cytochrome P450 monooxygen-

ase dependent on NADPH. G10H is regarded as

a potential site for regulatory control in the

biosynthesis of secologanin. Studies by Schiel

et al. (1987) showed that G10H activity is induced

when C. roseus cell cultures are transferred to an

induction medium known to enhance alkaloid

accumulation and that there is a close relationship

between G10H activity and alkaloid accumula-

tion. Also McFarlane et al. (1975) demonstrated

that G10H is feedback inhibited by the TIAs

catharanthine, vinblastine and vindoline. The Ki

of catharanthine inhibition (1 mM) is in the range

of alkaloid concentration in C. roseus (0.3–

1 mM). Madyastha et al. (1976) partially purified

G10H from C. roseus seedlings. Meijer et al.

(1993a) purified G10H from C. roseus suspension

cultured cells in a four-step procedure after

solublization with cholate. The protein showed a

Mr of 56,000 and a Km of 5.5 lM geraniol and

11 lM nerol. Also, Collu et al. (2001) purified this

enzyme from C. roseus cell cultures following the

method developed by Meijer et al. (1993a) with

some modifications.

NADPH:cytochrome P450 reductase

(E.C. 1.6.2.4)

Cytochrome P450 reductase functions in electron

transfer from NADPH and is essential for all

cytochrome P450 monooxygenases. It was puri-

fied from C. roseus plants (Madyastha and Coscia

1979) and from cell cultures (Meijer et al. 1993b).

The protein showed a Mr of 79,000 and the

activity is dependent on NADPH, FAD and FMN

as cofactors. In C. roseus the CPR mRNA level is

enhanced by fungal elicitor treatments (Meijer

et al. 1993a, b, Lopes Cardoso et al.,1997). Like

the yeast and animal CPRs, C. roseus protein

contains a hydrophobic domain close to the

N-terminus which serves as a membrane anchor.

Steady-state mRNA levels observed in C. roseus

plants were higher in flowers and much lower in

leaves and stems while intermediate in the roots.

Cyclase

The dialdehyde (10-oxogeranial/10-oxoneral) is

cyclized to iridodial. The enzyme responsible for

the cyclization has not yet been purified from C.

roseus but was obtained from Rauwolfia serpen-

tina (Uesato et al. 1986, 1987; Verpoorte et al.

1997).

Loganic acid methyltransferase (E.C. 2.1.1.50)

In the formation of 7-deoxyloganic acid from

iridodial, so far no enzymes have been described

(Contin 1999). The 7-hydroxylation to afford

loganic acid must precede its methylation, as

suggested by enzymatic studies with the S-adeno-

syl-L-methionine:LAMT partially purified from

C. roseus seedlings (Madyastha et al. 1973). This

enzyme catalyses the transfer of a methyl group

to loganic acid to form loganin. Contin (1999)

measured the activity of LAMT in C. roseus cells

cultured on three different media and found that

the activity is restricted to the early period of

growth similarly to the results obtained by Guar-

naccia et al. (1974) and Madyastha and Coscia

(1979) in C. roseus seedlings where maximum

activity of the enzyme was recorded just after

germination.

Secologanin synthase (E.C. 1.3.3.9)

Secologanin synthase belongs also to the cyto-

chrome P450 family. This gene was cloned 12

years ago from C. roseus and was first thought to

encode G10H (Vetter et al. 1992) but recently it
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was shown that it encodes the enzyme that

converts loganin to secologanin (Irmler et al.

2000). This cytochrome P450 enzyme accepts only

loganin as substrate with an optimum catalysing

reaction at a pH of 7.5 (Yamamoto et al. 2000).

Enzymes involved in the MEP pathway

leading to the formation of IPP

1-Deoxy-D-xylulose 5-phosphate synthase (E.C.

4.1.3.37)

Bacteria, fungi, yeasts and plants are capable of

synthesizing 1-deoxy-D-xylulose (DX) or its

5-phosphate (DXP) from pyruvate and from

D-glyceraldehyde or from its phosphate (GAP).

The enzymatic activity in this step is thiamine

diphosphate dependent and probably related to

pyruvate dehydrogenase. As the reaction is not

specific, the system can accept acyloins in place of

pyruvate as acetyl donor and also different

aldoses, yielding 1-deoxyketoses with C5, C6 or

C7 skeletons.

The enzyme catalyses the concomitant decar-

boxylation of pyruvate and the condensation of

the resulting (hydroxyethyl) thiamine on free

GAP, yielding deoxyxylulose or its phosphate

(DXP). As free glyceraldehyde is not a usual

cellular metabolite, GAP and DXP are thought to

be the normal substrate and product of the

synthase.

1-Deoxy-D-xylulose 5-phosphate reducto

isomerase (E.C. 1.1.1.267)

The rearrangement of DX or DXP yields 2-C-

methyl-D-erythrose or its 4-phosphate and the

reduction of these products yields 2-C-methyl-D-

erythritol (ME) or its 4-phosphate (MEP; Duvold

et al. 1997a,b, Sagner et al. 1998).

Using E. coli mutants that were auxotrophic to

ME, a gene that complemented in these mutants

the region coding for IPP biosynthesis was cloned

and led to the identification of the enzyme

responsible for the conversion of DXP into

MEP (Takahashi et al. 1998). This reducto-

isomerase enzyme is NADPH-dependent and

requires Mn2+ as cofactor. It catalyses two con-

secutive steps: the rearrangement of DXP into

2-C-methyl-D-erythrose and the reduction of this

aldose to MEP. The free aldose phosphate was

not detected and the presence of the 5-phosphate

group on DXP was required for the enzymatic

conversion.

Isopentenyl monophosphate kinase (E.C. 2.7.1.)

Lange and Croteau (1999) reported the cloning of

the gene encoding IPK from peppermint and E.

coli. This kinase catalyses the phosphorylation of

isopentenyl monophosphate as the last step of the

biosynthetic sequence to IPP. This enzyme

belongs to a conserved class of the GHMP family

of kinases that includes galactokinase, homoser-

ine kinase, MVAK and phosphomevalonate

kinase. This enzyme was thought to catalyse the

last step in the MEP pathway, however Rohdich

et al. (2000) showed that the overexpressed CMK

protein from tomato does not have any IPK

activity, even if very high concentrations of

recombinant enzyme were used. The detected

IPK activity could not be metabolically relevant

and cannot confirm the final steps leading to IPP

synthesis.

Localization of the enzymes involved in the

pathways leading to the formation of secologanin

In the mevalonate pathway, the enzymes are

localized in the cytosol and produce the precursor

of triterpenes and sesquiterpenes. Nothing has

been reported on the localization of AACT/

HMGS enzymes in C. roseus although they were

purified from a cell suspension cultures (Van der

Heijden et al. 1994; Van der Heijden and

Verpoorte 1995). The radish AACT and HMGS

have been reported as membrane-associated

enzymes (Weber and Bach 1994; Bach et al.

1994). It has been suggested that HMGR might

be located in mitochondria and plastids of plants

(Gary 1987; Stermer et al. 1994). The regulated

degradation of HMGR has been indicated to be

completely localized in the endoplasmic reticu-

lum in yeast (Hampton and Rine 1994). Evidence

that HMGR is located within endoplasmic retic-

ulum as well as in spherical, vesicular structures
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derived from endoplasmic reticulum has been

recently given (Leivar et al. 2005).

The plant enzymes MVAK and MVAPK were

presumed to be predominantly cytosolic but have

been proven to be present in plastids as well

(McKaskill and Croteau 1995; Albrecht and

Sandmann 1994). The subcellular localization of

MVAK and MVAPK was studied in suspension

cultured cells of C. roseus and it was shown that

most of the activity of both enzymes was located

in the cytosolic fraction. MVAK activity was also

recovered from an organellar and microsomal

fraction. MVAPK activity was detected in the

organelle fraction (Schulte et al. 1999, 2000).

The localization of IPP isomerase in C. roseus

has not been determined yet but in Castor beans,

a mitochondrial and proplastidial IPP isomerase

have been detected (Green et al. 1975). In

glandular trichomes of peppermint, it was found

that the cytoplasmic MVA pathway was blocked

at the level of HMGR and that the IPP utilized

for both plastidial monoterpene and cytosolic

sesquiterpene biosynthesis is synthesized exclu-

sively in the plastids. A connection of the pathway

was proposed at the level of IPP that requires

translocation of IPP to the different compart-

ments and the presence of an isoform of IPP

isomerase in each compartment (McKaskill and

Croteau 1995). Ramos-Valdivia et al. (1997)

extensively reviewed the IPP isomerase.

In Lithospermum erythrorhizon, the enzyme

GPP synthase involved in the biosynthesis of

naphthoquinones was found to be present in the

cytosol (Sommer et al. 1995).

The enzyme G10H is associated with (pro)vac-

uolar membranes (Madyastha et al. 1977) rather

than with endoplasmic reticulum where many

P450s are found (Nebert 1979). Collu (1999),

studied the localization of G10H in C. roseus cell

suspension cultures and confirmed that this

enzyme is localized in vacuolar membranes. The

CPR catalysing cytochrome P450 monooxygenase

reactions is a membrane-bound flavoprotein,

closely linked to the P450 protein. The expression

of the three identified C. roseus MEP pathway

genes and the G10H genes was found to be in

internal phloem parenchyma, i.e. in cells different

than the other known alkaloid biosynthesis

related genes (Burlat et al. 2004).

Localization of the non-mevalonate pathway

leading to the formation of IPP

The biosynthesis of mono-, di- and tetraterpenoids

in plants seems to occur in plastids, where the

MEP pathway is localized (Rohmer 1999; Lange

and Croteau 1999). In plastids, the DXP pathway

operates to supply IPP for the synthesis of mon-

oterpenes, diterpenes and carotenoids. Table 1

summarizes the information about the known

enzymes involved in TIA biosynthesis in C. roseus.

Genes-encoding enzymes involved in the
biosynthesis of secologanin

A cDNA clone for radish AACT has been cloned

by complementation in yeast (Vollack and Bach

1995). Using the radish cDNA as a probe to

screen an A. thaliana cDNA library, four positive

clones have been isolated of which three were

identical and the fourth shown to be an antisense

(Piñas et al. 1997). The presence of antisense

mRNA could indicate a regulatory mechanism of

controlling translation of AACT mRNA.

A cDNA encoding the A. thaliana HMGS

has been cloned (Montamat et al. 1995) and

expressed in E. coli (Diez et al. 1997). In addition

to the A. thaliana HMGS gene, also the HMGS

gene has been cloned from Schizosaccharomyces

pombe (Katayama et al. 1995).

Plants have a small gene-family of HMGR

isoenzymes that are differentially expressed and

respond to a variety of developmental and envi-

ronmental signals (Stermer et al. 1994; Enjuto

et al. 1994; Weissenborn et al. 1995; Korth et al.

1997). HMGR genes have been well studied in

Solanaceae species. Four HMGR genes have been

isolated from tomato. One of them, the hmg1

gene has been found to be involved in aspects

related to primary metabolism like sterol biosyn-

thesis and cell growth. The activation pattern of

the second HMGR gene hmg2 by wounding and

elicitation has suggested a role in the plant’s

defence (Weissenborn et al. 1995). Also potato,

has at least three HMGR genes (Stermer et al.

1994). A C. roseus hmg cDNA has been cloned

(Maldonada-Mendosa et al. 1992). In C. roseus

cell suspensions, methyl jasmonate has been

286 Phytochem Rev (2007) 6:277–305

123



shown to be able to increase HMGR mRNA

levels after a transient suppression (Maldonada-

Mendosa et al. 1994).

The gene of deoxyxylulose 5-phosphate syn-

thase has been isolated from E. coli (Sprenger

et al. 1997; Lois et al. 1998) and cloned from

higher plants, Mentha · piperita (Lange et al.

1998) and C. roseus (Chahed et al. 2000; Veau

et al. 2000). The gene encoding the DXR enzyme

was cloned from higher plants such as peppermint

(Lange and Croteau 1999), A. thaliana (Lange

and Croteau 1999; Schwender et al. 1999) and C.

roseus (Veau et al. 2000).

Molecular cloning of G10H has been previously

attempted using several different approaches.

Differential screening of a C. roseus cDNA library

resulted in the isolation of two highly homologous

cytochrome P450 cDNAs and their corresponding

mRNAs were induced in alkaloid production when

compared to normal growth medium (Vetter et al.

1992). Measuring the expression of the gene in

different parts of the plant showed that mRNA

levels were highest in the flowers. Attempts to

clone the G10H gene by immunoscreening of a C.

roseus cDNA library were not successful because

the antibodies raised against the purified G10H

protein were not sufficiently specific (Meijer et al.

1993a). Multiple cDNAs encoding P450s from A.

thaliana were isolated by employing a PCR strat-

egy with degenerate oligonucleotide primers de-

signed on amino acid sequences conserved

between plant cytochrome P450s (Mizutani et al.

1998). The gene was cloned by Collu et al. (2001)

and expressed in C. roseus and yeast cells. It is

Table 1 Enzymes involved in biosynthesis of indole alkaloids of C. roseus

Enzyme Abbreviation Cofactors Product Localization

Anthranilate synthase AS Mg2+ Anthranilate Plastid
Tryptophan decarboxylase TDC PP, PQQ Tryptamine Cytosol
Isopentenyl diphosphate

isomerase
IPP

isomerase
Mg2+, Mn2+ 3,3-Dimethylallyl

diphosphate
Plastid

Geraniol 10-hydroxylase G10H Haeme 10-Hydroxygeraniol Provacuolar
membrane

NAPDH:cytochrome
P450 reductase

CPR NADPH,
FAD,
FMN

– Provacuolar
membrane

SAM:loganic acid
methyltransferease

LAMT SAM Loganin –

Secologanin synthase SLS NADPH Secologanin –
Strictosidine synthase STR – Strictosidine Vacuole
Strictosidine b-glucosidase SGD – [Cathenamine] Endoplasmic

reticulum
Cathenamine reductase CR NADPH Ajmalicine –
Geissoschizine dehydrogenase – NADP+ 4,21-Dehydrogeis-

soschizine
–

Tetrahydroalstonine synthase THAS NADPH Tetrahydroalstonine –
Tabersonine 16-hydroxylase T16H Haeme,

NADPH
16-Hydroxytabersonine Endoplasmic

reticulum
11-Hydroxytabersonine

O-methyltransferase
OMT – 16-Methoxytabersonine –

SAM:methoxy 2,16-dihydro-16-
hydroxytabersonine
N-methyltransferase

NMT SAM Desacetoxyvindoline Thylakoid
membranes

Desacetoxyvindoline
17-hydroxylase

D4H 2- Oxoglutarate,
Fe2+, ascorbate

Desacetylvindoline

Cytoplasm
Acetyl CoA:deacetylvindoline

17-O-acetyltransferase
DAT Acetyl CoA Vindoline Cytoplasm

Acetyl CoA:minovincinine-O-
acetyltransferase

MAT Acetyl CoA Echitovenine Cytoplasm

Anhydrovinblastine synthase AVLB
synthase

– Anhydrovinblastine Vacuole
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strongly induced by methyljasmonate (MJ). Trans-

genic C. roseus cells showed that G10H activity is

correlated to the ability of the cells to accumulate

TIAs, although the increased G10H is not the only

requirement for increased alkaloid accumulation

(Collu et al. 2002). This gene was classified as a new

member of the CYP76B plant P450 family.

Cytochrome P450 reductase is cloned from C.

roseus cell cultures by Meijer et al. (1993b).

Immunoscreening of a C. roseus cDNA expression

library resulted in the isolation of a partial

NADPH:CPR clone. The clone was identified on

the basis of sequence homology with CPRs from

yeast and animals. The gene is encoded by a single

copy and the protein consists of 714 amino acids.

The indole pathway

Biosynthesis of tryptophan

Tryptophan is an aromatic amino acid derived

from chorismate via anthranilate. Chorismate

originates from the shikimate pathway (Fig. 4).

L-Tryptophan is formed through a biosynthetic

pathway consisting of five enzymatically con-

trolled steps (Poulsen and Verpoorte 1991;

Verpoorte et al. 1997; Bongaerts 1998; Whitmer

1999). The first step is formation of anthranilate

from chorismate. This step is catalysed by the

enzyme anthranilate synthase (AS, E.C. 4.1.3.27).

The second step is formation of N-(5-phosphori-

bosyl) anthranilate and this step is catalysed by

the enzyme phosphoribosyl diphosphate (PR)-

anthranilate transferase (E.C. 4.1.1.48). The third

step is formation of 1-(O-carboxyphenylamino)-

1-deoxyribulose phosphate. This step is catalysed

by the enzyme PR-anthranilate isomerase (E.C.

5.3.1.24). The following step is formation of

indole-3-glycerol phosphate. This step is catalysed

by the enzyme indole-3-glycerol phosphate syn-

thase (E.C. 4.1.1.48). The next step is formation

of indole which is catalysed by the enzyme

tryptophan synthase a (E.C. 4.2.1.20). The last

step is formation of L-tryptophan which is catal-

ysed by the enzyme tryptophan synthase b (E.C.

4.2.1.20). This enzyme was detected in the prote-

omics approach as being induced when alkaloid

production is induced (Jacobs et al. 2005).

Enzymes involved in the biosynthesis

of L-Tryptophan

Anthranilate synthase (E.C. 4.13.27)

Anthranilate synthase was first isolated and puri-

fied to apparent homogeneity from C. roseus
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Fig. 4 Biosynthesis of L-tryptophan through the choris-
mate pathway. 1 anthranilate synthase, 2 phosphoribosyl
diphosphate (PR) anthranilate transferase, 3 PR-anthra-

nilate isomerase, 4 indole-3-glycerol phosphate synthase, 5
tryptophan synthase a, 6 tryptophan synthase b
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(Poulsen et al. 1993). It is a tetramer, consisting of

two large and two small subunits. The large

a-subunit is responsible for the conversion of

chorismate into anthranilate while the smaller

b-subunits are responsible for the generation of

the substrate NH3 from glutamine (Verpoorte

et al. 1997). So far, none of the enzymes leading to

tryptophan after AS has been studied in C. roseus

(Moreno et al. 1995; Verpoorte et al. 1997).

Only a time course of tryptophan synthase

(E.C. 4.2.1.20) activity during the growth of

suspension cultured and immobilized cells of

C. roseus has been determined (Facchini and

DiCosmo 1991). Lower tryptophan synthase

activity was present in immobilized cells than in

suspension cultured cells. Using a proteomics

approach, Jacobs (Jacobs 2003; Jacobs et al. 2005)

identified the b-subunit tryptophan synthase in

C. roseus cell suspension cultures which was

detected during a short time of growth period and

seemed to be correlated with alkaloid production.

Bongaerts (1998) reported the isolation and

characterization of a full-length C. roseus cDNA

encoding a functional AS a subunit. He found

that AS activity is highest in roots compared with

other organs of C. roseus and correlated well with

the abundance of AS a transcripts in this organ.

Expressing an AS a subunit insensitive to ajmal-

icine feedback in C. roseus hairy roots increases

the production of tryptophan, tryptamine and

lochnericine (Hughes et al. 2004a, b).

Biosynthesis of tryptamine

Tryptophan decarboxylase (E.C. 4.1.1.28)

Tryptamine is derived from primary metabolism

by a single enzymatic conversion of the amino

acid L-tryptophan, catalysed by tryptophan decar-

boxylase (TDC, E.C. 4.1.1.28). This enzyme was

purified first by Noe and Berlin (1984), later this

protein was extensively characterized (Fernandez

et al. 1989; Pennings et al. 1989a, b). The enzyme

is a soluble protein consisting of two identical

subunits containing two molecules of pyridoxal

phosphate (Pennings et al. 1989a). It was ob-

served that TDC activity can be induced when

suspension cultures of C. roseus are transferred

from growth medium to alkaloid induction

medium that contains a high concentration of

sugar and low levels of hormones, nitrogen and

phosphate (Knobloch et al. 1981). This enzyme is

located on the interface between primary and

secondary metabolism. It is considered a putative

site for regulatory control of TIAs. However,

generally there is no clear correlation between

TDC activity and TIA biosynthesis in cell cultures

of C. roseus (Knobloch and Berlin 1983; Merillon

et al. 1986; Eilert et al. 1987; Facchini and

DiCosmo 1991; Whitmer 1999).

Localization of TDC was shown to be in the

cytosol (De Luca and Cutler 1987; Stevens et al.

1993). The expression of the tdc gene was

restricted to the upper epidermis of cotyledons

in C. roseus (Vasquez-Flota et al. 2000).

Tryptophan decarboxylase cDNA has been

cloned from C. roseus (De Luca et al. 1989). The

tdc gene was found to occur as a single copy in the

C. roseus genome (Goddijn 1992). Expression of

tdc appeared to be highly regulated at the tran-

scriptional level. In cell suspension cultures tdc

mRNA levels were shown to be downregulated by

auxins and induced by fungal elicitors (Goddijn

et al. 1992; Pasquali et al. 1992). The specific

mRNAs encoding TDC enzyme activity, appear to

be present in low quantities in developing seedlings

if compared with the high levels of transcripts that

occur in elicitor-induced cell suspension cultures of

C. roseus by the fungus P. aphanidermatum. When

tdc upstream sequences from –1,818 to +198

relative to the transcriptional start site were anal-

ysed to identify cis-acting elements that determine

basal expression or respond to elicitor, it was found

that there were three functional regions in the –160

promoter. The region between –160 and –99 was

shown to act as the main transcriptional enhancer

while the other two elements (between –99 to –87

and between –87 to –37) were found to be not

redundant in the tdc promoter (Ouwerkerk and

Memelink 1999). As TDC seems to represent an

important site for regulatory control of alkaloid

production, it was examined whether overexpres-

sion of tdc affects alkaloid accumulation (Goddijn

1992). The TDC cDNA driven by the strong

Cauliflower Mosaic Virus 35S promoter was intro-

duced into C. roseus by means of an oncogenic

Agrobacterium tumefaciens strain. Overexpression
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appeared not to result in an increased alkaloid

accumulation but only enhanced tryptamine levels

(Goddijn et al. 1995; Verpoorte et al. 1998).

Expressing tdc cDNA from C. roseus in a Nicotiana

tabacum cell suspension culture (Hallard et al.

1997), resulted in the formation of tryptamine

(about 10 lg/g fresh weight). This level of trypt-

amine is similar to that found in leaves of tdc

transgenic tobacco plants (ranging from 18 to

66 lg/g FW, Lopes Cardoso 1995).

Biosynthesis of strictosidine

Strictosidine is the central intermediate in the

biosynthesis of many alkaloids. It is formed by

coupling of the iridoid glycoside secologanin and

tryptamine. The enzyme condensing both seco-

loganin and tryptamine is strictosidine synthase

(STR, E.C. 4.3.3.2, Stöckigt 1980; Pennings et al.

1989c; Kutchan 1993; Verpoorte et al. 1997).

Strictosidine synthase (E.C. 4.3.3.2)

The purification of STR from C. roseus was first

described by Treimer and Zenk (1979) and Mizu-

kami et al. (1979) with an estimated molecular

weight between 34 and 38 kDa. There are seven

STR isoforms of which four were characterized by

Zenk’s group. Those four isoforms differ in pI (4.3–

4.8) and Km value for tryptamine (from 0.9 to

6.6 mM) where the activity was inhibited at high

levels. Also, De Waal et al. (1995), purified and

characterized this enzyme from C. roseus cell

suspension cultures. In that study, four out of six

isoforms were purified to homogeneity while two

others were nearly homogeneous. The isoforms

have a broad pH range (6–7.5) and all of them have

similar kinetics. No inhibition could be observed for

up to 5 mM tryptamine. The Km value determined

for all isoforms is around 8.2–9.4 which is higher

than that reported by Zenk’s group.

Recently, Jacobs (2003) and Jacobs et al. (2005)

detected seven isoforms of STR in C. roseus cell

suspension cultures by western blotting and two-

dimensional electrophoresis. Expression of those

isoforms varies upon elicitation with P. aphanid-

ermatum.

Strictosidine synthase activity could not be

inhibited by the end product alkaloids: vindoline,

catharanthine and ajmalicine (Mizukami et al.

1979).

Early studies on localization of STR indicated

that it is a cytosolic protein (Deus-Neumann and

Zenk 1984; De Luca and Cutler 1987). But,

McKnight et al. (1991) clearly demonstrated that

STR protein is located in the vacuoles of C.

roseus cells and it was further confirmed that STR

activity is located in this compartment (Stevens

et al. 1993).

A partial str cDNA clone was isolated from

C. roseus by McKnight et al. (1990) but the

complete genomic sequence for STR from C.

roseus was reported by Pasquali et al. (1992). It is

encoded by a single gene. Overexpression of the str

gene in C. roseus resulted in a number of cases in an

increase in alkaloid biosynthesis (Canel et al. 1998;

Whitmer 1999) but this gradually decreased upon

subculturing despite a high level of STR activity.

Cellular investigation showed that tdc and str1

mRNAs were present in the epidermis of stems,

leaves, flower buds and appeared in most proto-

derm and cortical cells of the apical meristem of

root tips. The mRNAs of genes-encoding

enzymes involved in vindoline biosynthesis are

associated with laticifer and idioblast cells of the

shoots which is clearly different from TDC and

STR localization (St-Pierre et al. 1999).

Biosynthesis of indole alkaloids

As strictosidine is considered to be a central

intermediate in the biosynthetic pathway of

monoterpenoid indole alkaloids in C. roseus,

somewhere beyond this stage in the biosynthesis,

routes towards the different specific end products

are thought to diverge. Strictosidine-b-D-glucosi-

dase (SGD) might be the enzyme playing an

important role in steering the monoterpenoid

indole alkaloid biosynthesis in a specific direction.

Strictosidine-b-D-glucosidase (E.C. 3.2.1.105)

The enzyme SGD was first described by Scott

et al. (1977). It was thought that this enzyme was

present as a large enzyme complex, so-called

ajmalicine synthase, capable to form ajmalicine

from tryptamine and secologanin. Hemscheidt

and Zenk (1980) reported the presence of two
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specific b-glucosidases from C. roseus and both

accepted strictosidine as substrate. A partial

purification scheme for SGD has been presented

by Stevens (1994) using C. roseus and Tabernae-

montana divaricata cell cultures as source for the

SGD enzyme. Luijendijk et al. (1998) purified

the SGD enzyme to apparent homogeneity

from C. roseus cell suspension cultures. It was

reported that SGD has a very high molecular

mass but under denaturing conditions a molecu-

lar mass of 63 kDa is found suggesting that the

native enzyme is occurring as an aggregate where

many subunits are bound. Kinetic parameters

showed that it has a strong affinity for strictosi-

dine as substrate. It shows a remarkable stability

towards proteases as it plays a role in plant’s

defence.

Subcellular localization studies showed that

SGD is most likely associated with the endoplas-

mic reticulum and this is consistent with the

presence of a putative signal sequence for target-

ing of the protein to the endoplasmic reticulum

(Geerlings et al. 2000).

Geerlings et al. (2000) cloned the gene encod-

ing this enzyme from C. roseus cell suspension

cultures. A full-length clone gave rise to SGD

activity when expressed in yeast. SGD is encoded

by single copy gene and showed up to 60%

homology at the amino acid level to other

b-glucosidases from plants.

Biosynthesis of ajmalicine, serpentine

and tetrahydroalstonine

The removal of the glucose moiety of strictosidine

by SGD leads to an unstable highly reactive

aglucon which was thought to be converted into

4,21-dehydrogeissoschizine. The latter was be-

lieved to be converted by cathenamine synthase

to cathenamine (Rüffer et al. 1979). However,

following the conversion of strictosidine by C.

roseus purified glucosidase by 1H-NMR did not

show any 4,21-dehydrogeissoschizine. The carbi-

nolamine was the intermediate rather than 4,21-

dehydrogeissoschizine. Apparently the formation

of cathenamine from strictosidine does not need

cathenamine synthase but only the glucosidase

(Stevens 1994).

Cathenamine is reduced to form ajmalicine

(Fig. 5). There are two different cathenamine

reductases (CRs), one converts cathenamine into

ajmalicine and the other converts the iminium

form of cathenamine into tetrahydroalstonine

(Hemscheidt and Zenk 1980). Ajmalicine is

converted into serpentine by basic peroxidase

isolated from C. roseus vacuoles (Blom et al.

1991). Sierra (1991) found a close correlation

between the peroxidase activity and serpentine

accumulation. Light grown cell cultures had a 20-

fold higher vacuolar peroxidase activity compared

to those of dark-grown cells and the accumulation

of serpentine in light grown cells was higher.

Enzymes involved in the biosynthesis of
ajmalicine, serpentine and tetrahydroalstonine

pathways

CR and tetrahydroalstonine synthase

The reduction of cathenamine to form ajmalicine

is catalysed by the enzyme CR. Early studies by

Hemscheidt and Zenk (1985) described this

enzyme which used cathenamine as a substrate

and NADPH as cofactor resulting in the formation

of ajmalicine and 19-epi-ajmalicine. Tetrahydro-

alstonine synthase (THAS) from C. roseus used

the iminium form of cathenamine as substrate and

NADPH to form tetrahydroalstonine (Hemsc-

heidt and Zenk 1985). This enzyme showed a Km

of 62 lM for this substrate and the enzyme

molecular mass was estimated to be 81 kDa. Both

CR and THAS were detected in low levels in C.

roseus cell cultures (Luijendijk 1995).

Localization of the enzymes involved in

ajmalicine, serpentine and tetrahydroalstonine
pathways

The subcellular localization of the enzymes

involved in the biosynthesis of ajmalicine and

tetrahydroalstonine in C. roseus cell cultures was

studied by Luijendijk (1995). Assays after subcel-

lular fractionation suggested a vacuolar localiza-

tion of THAS. The CR activity was mostly below

the detection limit making it impossible to draw

any conclusions.
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Ajmalicine is channelled across the plasma

membrane until it is trapped in a low-pH vacuole

by an ion-trap mechanism. The oxidation of

ajmalicine to serpentine was shown to be catal-

ysed by a vacuolar peroxidase (Blom et al. 1991).

Catharanthine pathway

The information on catharanthine biosynthesis is

very limited. Battersby and Hall (1969) reported

that geissoschizine fed to C. roseus plants was

incorporated into catharanthine. Brown et al.

(1971) suggested that geissoschizine could be

converted into stemmadenine or akuammicine.

Feeding stemmadenine to C. roseus cell suspen-

sion cultures resulted in the formation of catha-

ranthine and tabersonine in few hours (El-Sayed

et al. 2004). Condylocarpine was also formed

after feeding as an oxidation product but not as

an intermediate in the pathway.

Enzymes and genes involved in the catharan-

thine pathway have not been isolated or cloned yet.

Vindoline pathway

It has been established that tabersonine is trans-

formed into vindoline by a sequence of six

steps (Fig. 6). These steps include: aromatic

hydroxylation, O-methylation, hydration of the

2,3-double bond, N(1)-methylation, hydroxylation
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at position 4 and 4-O-acetylation (Balsevich et al.

1986; De Luca et al. 1986). The first reaction is

catalysed by tabersonine 16-hydroxylase (T16H)

yielding 16-hydroxytabersonine. The second step is

catalysed by O-methyltransferase (OMT) resulting

in the formation of 16-methoxytabersonine. De

Luca et al. (1987) established that the third step in

vindoline biosynthesis is catalysed by an unidenti-

fied hydroxylase to form 16-methoxy–2,3-dihydro-

3-hydroxytabersonine. The subsequent step is

N-methylation of 16-methoxy-2,3-dihydro-3-hy-

droxytabersonine by N-methyltransferase (NMT)

forming desacetoxyvindoline. The latter is hy-

droxylized by desacetoxyvindoline-4-hydroxylase

(D4H) into deacetylvindoline. The last step in the

biosynthesis of vindoline is acetylation of deace-

tylvindoline by deacetylvindoline-4-O-acetyltrans-

ferase (DAT) to form vindoline.

Enzymes involved in the biosynthesis of vindoline

T16H and OMT

Tabersonine 16-hydroxylase and OMT catalyse

the first two steps in the vindoline biosynthesis

pathway. Characterization of both enzymes was

reported by St-Pierre and De Luca (1995). T16H

was identified as a membrane-bound cytochrome

P450-dependent enzyme with low activity in

etiolated seedlings but strongly induced activity

by light. OMT used 16-hydroxytabersonine as a

natural substrate. These enzymes were recently

reported to be localized in leaf epidermal cells,

identifying these cells as the major site of vind-

oline precursor biosynthesis (Murata and De

Luca 2005).

N-Methyltransferase

This enzyme has been partially purified by high-

performance anion exchange chromatography on

a mono-Q column and has an apparent Mr of

60,000 (Dethier and De Luca 1993). The enzyme

has a high substrate specificity where the reduced

2,16 double bond in the tabersonine skeleton is

essential.

Desacetoxyvindoline-4-hydroxylase

The hydroxylation of desacetoxyvindoline is catal-

ysed by a 2-oxoglutarate-dependent dioxygenase

D4H. This enzyme was purified to homogeneity
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and characterized by De Carolis et al. (1990) and

De Carolis and De Luca (1993). It requires alkaloid

substrate, 2-oxoglutarate, ascorbate, ferrous ions

and molecular oxygen for the activity. Exposure of

the etiolated seedlings to light or red-light induced

the activity of the enzyme (Vasquez-Flota et al.

2000). MJ increased the activity of D4H in

etiolated seedlings of C. roseus in light conditions

but not in the absence of light (Vasquez-Flota and

De Luca 1998).

Deacetylvindoline-4-O-acetyltransferase

Acetyl coenzyme A:DAT catalyses the biosyn-

thesis of vindoline from acetyl coenzyme A and

deacetylvindoline. The purified enzyme is strongly

inhibited by tabersonine and coenzyme A (50%

inhibition at 45 and 37 lM, respectively) and

weakly inhibited by tryptamine, secologanin and

vindoline (Power et al. 1990). The original puri-

fication of DAT led to an incorrect conclusion that

the enzyme consists of two subunits with molec-

ular weight of 33 and 21 kDa. The isolated dat

gene encodes a 50 kDa polypeptide suggesting

that the protein was cleaved during purification.

Genes-encoding enzymes involved

in the vindoline pathway

A T16H cDNA was cloned from C. roseus cell

suspension cultures by Schröder et al. (1999) and

expressed in E. coli. The protein (CYP71D12)

showed 47–52% identity with the other members

of the CYP71D subfamily with unknown func-

tions.

Vasquez-Flota et al. (1997) reported on the

cloning of D4H gene from C. roseus. Three

oligopeptides were isolated from the tryptic

digest of the purified protein and microse-

quenced. One oligopeptide showed significant

homology to hyoscyamine 6-b-hydroxylase. The

three clones were confirmed to be authentic d4h

clones as the heterologous expression of the

recombinant protein showed D4H activity. South-

ern blot analysis suggested that the d4h is present

as a single copy-gene. Hydroxylation activity and

RNA blot hybridization studies showed that the

enzyme activity followed closely the levels of d4h

transcripts, occurring predominantly in young

leaves and much lower in stems and fruits.

Etiolated seedlings had undetectable activity but

rapid increase of enzyme activity of D4H was

shown after exposure to light.

The dat gene was cloned by St-Pierre et al.

(1998) from C. roseus leaf extract. The genomic

clone encoded a 50 kDa polypeptide. Cleavage of

DAT protein to yield a heterodimer appears to be

an artefact of the protein purification procedure.

The study showed that the induced dat mRNA,

protein accumulation and the enzyme activity

occurred in leaves and cotyledons of light-treated

seedlings. The southern blot of genomic DNA

isolated from C. roseus indicated that the dat

occurs as a single copy-gene.

Localization of the enzymes involved
in the vindoline biosynthesis pathway

Tabersonine 16-hydroxylase is a cytochrome

P450-dependent monooxygenase associated with

the external face of the endoplasmic reticulum

while OMT is believed to occur in the cytosol (St-

Pierre and De Luca 1995). NMT is associated

with the chloroplast thylakoids (De Luca 1993).

D4H and DAT are cytosolic enzymes (St-Pierre

et al. 1998; Vasquez-Flota et al. 1997). St-Pierre

et al. (1999) reported that D4H and DAT

mRNAs were associated with the laticifer and

idioblast cells of the leaves, stems and flower

buds. These results suggest that the late steps of

vindoline biosynthesis occur in a specific tissue,

explaining that the attempts to produce vindoline

by cell culture technology have failed so far.

Biosynthesis of bisindole alkaloids

The bisindole alkaloids vinblastine and vincristine

are of great interest. They are synthesized from

the coupling of the monomeric alkaloids catha-

ranthine and vindoline. The product resulting

from the coupling is a-3¢,4¢-anhydrovinblastine

which is converted into vinblastine which is

further converted into vincristine (for review,

see Verpoorte et al. 1997). The coupling process

is catalysed by the enzyme anhydrovinblastine
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synthase (AVLBS). These dimeric alkaloids are

used as antitumour agents and produced in trace

amounts (0.003% dry weight). The natural high

abundance of vindoline and catharanthine in C.

roseus plants led to the establishment of a

semisynthetic process for coupling the monomers

either chemically (Langlois et al. 1976; Kutney

et al. 1976) or enzymatically using horseradish

peroxidase (Goodbody et al. 1988).

The basic peroxidase enzyme catalysing

the dimerization process

The search of the enzyme responsible for the

dimerization reaction using crude enzyme ex-

tracts failed to detect any significant dimerization

activity. This was referred to the presence of

enzyme inhibitors released from the different

cellular compartments during homogenization

(Sottomayor et al. 1996). After purification of

the protein extracts, dimerization was detected in

the fractions containing peroxidase activity and

dependent on the presence of H2O2, this enzyme

was identified as AVLBS (Sottomayor et al.

1998). Coupling vindoline with catharanthine by

a peroxidase into anhydrovinblastine which is a

reduction product from a highly instable dihyd-

ropyridinium, an iminium, is the true precursor to

the other bisindole alkaloids vinblastine, vincris-

tine and leurosine (Fig. 1). The purified protein

showed a specific activity of 1.8 nkat/mg. Molec-

ular weight was estimated to be 45.4 kDa and the

pI of the protein around 10.7. The enzyme was a

high spin ferric haem protein belonging to the

class III peroxidase family.

The localization of the enzyme has been

reported to occur in the vacuole associated to

specific spots of the internal face of the tonoplast

(Sottomayor et al. 1996).

Gene encoding basic peroxidase

Beginning with purified CRPRX1 (basic peroxi-

dase) protein, the polypeptide N-terminal region

was sequenced. By this process 11 N-terminal

amino acids were identified. Further molecular

strategies failed to give more cloning information

results. A PCR strategy followed by screening of

a cDNA library prepared from C. roseus leaf

tissue enabled the preparation of a full-length

cDNA clone which considered to be CrPrx1

cDNA (Hilliou et al. 2002).

Regulation of TIA biosynthesis

Regulation of TIAs can be controlled either by

developmental or exogenous signals. Light is

thought to have an effect on enzyme induction

and activation. Stimulation of serpentine accu-

mulation in cells and tissue cultures and oxidation

of ajmalicine depends on light (Loyola-Vargas

et al. 1992). Part of the vindoline biosynthetic

pathway is also regulated by light (St-Pierre and

De Luca 1995). In C. roseus callus cultures, Zhao

et al. (2001a) found that light significantly influ-

enced the biosynthesis of vindoline. In the same

study, the group confirmed that stimulation of

plastidial basic and acidic peroxidases by light led

to induction of serpentine accumulation. Shanks

and Bhadra (1997) established a light-adapted

C. roseus hairy root culture that exhibited green

pigmentation but with lower tabersonine, hör-

hammericine and lochnericine levels and an

increase in specific yields of ajmalicine and

serpentine compared to dark-grown cultures.

Application of various exogenous chemicals

can improve the alkaloid production of C. roseus.

Betaine, malic acid, tetramethyl ammonium bro-

mide and rare elements increased the yields of

ajmalicine and catharanthine in cell cultures

about five- to sixfold (Zhao et al. 2000a, b).

Zheng and Wu (2004) found that treating

C. roseus cell suspension cultures with cadmium

resulted in enhancement of ajmalicine content as

well as TDC enzyme activity. The use of oxygen-

ase inhibitors in hairy root cultures inhibited the

accumulation of lochnericine and hörhammeri-

cine suggesting that these chemicals influenced

the cytochrome P450 enzymes that may be

responsible for the formation of these alkaloids

(Morgan and Shanks 1999). G10H, a cytochrome

P450 enzyme activity increased by addition of

phenobarbital and decreased by ketoconazole

(Contin et al. 1999).

Increasing the substrate supply via precursor

feeding overcomes the rate-limiting steps in
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the production of alkaloids. Particularly the ter-

penoid pathway seems rate limiting for alkaloid

production and feeding with secologanin or loga-

nin has proven to be an efficient way to improve

accumulation of alkaloids (Moreno et al. 1993;

Whitmer et al. 1998 and Contin 1999). Feeding

both tryptamine and loganin to transgenic cell

cultures resulted in very high production levels

(Whitmer et al. 1998). Feeding either geraniol, 10-

hydroxygeraniol or loganin to a C. roseus hairy

root culture resulted in significant increases in the

accumulation of tabersonine (Morgan and Shanks

2000). But addition of tryptophan or tryptamine

separately had no effect. It seems that a part of the

pathway is present in the plant cell cultures. These

enzymes do have a considerable capacity for

alkaloid production. The flux is thus determined

in an early phase of the pathway. Particularly the

terpenoid part of the pathway seems limiting for

the alkaloid production.

Plant growth regulators

The role of growth hormones in regulation of

C. roseus indole alkaloids has been extensively

studied (for review see Moreno et al. 1995 and

Verpoorte et al. 1997). They affect both culture

growth and secondary metabolite production.

Auxins negatively influence alkaloid biosynthesis

at all levels. Subculturing cells on an auxin-free

medium, results in increased Tdc and Str mRNA

levels, while addition of auxins rapidly decreases

the Tdc mRNA level. 2,4-D strongly inhibits

alkaloid production essentially during the growth

phase (Arvy et al. 1994). Cytokinins are very

important growth regulators which regulate many

aspects of plant growth and differentiation. Addi-

tion of zeatin to an auxin-free C. roseus cell

cultures resulted in an increase in alkaloid accu-

mulation (Decendit et al. 1992). Zeatin enhanced

the activity of G10H and the bioconversion of

secologanin to ajmalicine in C. roseus cultures

(Decendit et al. 1993). Exogenously applied

cytokinins to untransformed C. roseus callus or

cell suspension cultures increased the content of

ajmalicine and serpentine (Garnier et al. 1996;

Yahia et al. 1998).

Abscisic acid (ABA) regulates various aspects

of plant growth and development including seed

maturation and dormancy, as well as adaptation

to abiotic environmental stresses (Davies and

Jones 1991; Beaudoin et al. 2000). Smith et al.

(1987) reported that ABA stimulated accumula-

tion of catharanthine and vindoline in C. roseus.

Treatment of precursors fed C. roseus cells with

ABA did not induce the accumulation of alka-

loids but it delayed the catabolism of strictosidine

(El-Sayed and Verpoorte 2002).

Jasmonate

Jasmonic acid or MJ are used as exogenous signal

transduction compounds (reviewed by Reymond

and Farmer 1998). Addition of jasmonic acid to

C. roseus hairy root cultures increased the yield of

alkaloids (Rijhwani and Shanks 1998).

Treatment of C. roseus seedlings with MJ

resulted in doubling of alkaloid accumulation

(Aerts et al. 1994). Upon feeding precursors to

C. roseus cell cultures and treating with MJ,

strictosidine and ajmalicine accumulation was

increased (El-Sayed and Verpoorte 2002). Octa-

decanoid-responsive Catharanthus AP2/ERF-do-

main (ORCA) transcription factors have been

shown to regulate the JA-responsive activation of

several TIA biosynthetic genes (Van der Fits and

Memelink 2000; Memelink et al. 2001). ORCA2, a

transcription factor of AP2/ERF domain transac-

tivated str promoter activity by sequence-specific

binding to the JERE (Menke et al. 1999).

ORCA3, a novel jasmonate-responsive AP2-

domain transcriptive factor was isolated from C.

roseus by T-DNA tagging (Van der Fits and

Memelink 2000). It is similar to ORCA2 in the

AP2/ERF DNA-binding domain. Also expression

of the gene was induced by MJ with similar

kinetics as ORCA2. The ORCA3 protein binds to

the promoter regions of the TIA biosynthetic

genes str, tdc and cpr, the CPR (Van der Fits and

Memelink 2001). Overexpression of ORCA3,

resulted in induction of expression of many

secondary and primary metabolite biosynthetic

genes, though TIAs production increased only

upon feeding loganin to the ORCA3 overexpress-

ing cells (Van der Fits and Memelink 2000). Again

this shows the important role of the iridoid path-

way for determining the final alkaloid levels.
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Salicylic acid

Salicylic acid has been shown to be an important

compound in the defence system of plants.

However, addition of SA to C. roseus, either

seedlings (Aerts et al. 1996) or cell cultures

(El-Sayed and Verpoorte 2002) did not affect

the yield of alkaloids. A weak inducing effect on

Str and Tdc steady-state mRNA levels was

observed in C. roseus after addition of 0.1 mM

SA (Pasquali 1994).

Fungal elicitation

The biosynthesis of TIAs can be stimulated by

addition of exogenous elicitors such as fungal

preparations. Many studies reveal that fungal

elicitors profoundly affect regulation of indole

alkaloid biosynthesis (for review see Verpoorte

et al. 1997). In the past 20 years, plant microbe

interactions and plant defence responses have

been studied extensively. Pathogen recognition at

the cell surface or in the cytosol initiates various

cellular signalling processes that activate multi-

component plant defence responses, such as

oxidative burst defence gene activation and

accumulation of defence-related compounds (Me-

hdy 1994; Chandra et al. 1997; Scheel 1998).

Menke et al. (1999) reported induction of the tdc

and str genes in C. roseus cells by fungal elicitors

suggesting that the octadecanoid pathway may be

involved in fungal elicitor-induced indole alkaloid

production. In C. roseus, Moreno et al. (1996)

measured activities of some enzymes involved in

secondary metabolism before and after fungal

elicitation and found that TDC activity is highly

induced while G10H and IPP-isomerase activities

are slightly decreased by elicitation. Although the

strong and rapidly stimulating effect of fungal

elicitors on plant secondary metabolite accumu-

lation attracts considerable attention, contradic-

tory results are sometimes observed. Great efforts

are being made to investigate the mechanism of

fungal elicitors at physiological and molecular

levels. The mechanism of elicitation in plants is

based on elicitor–receptor interaction after which

a rapid array of biochemical responses occur

(Radman et al. 2003). Figure 7 shows the possible

elicitor mechanism of action. The mechanism

includes: (1) binding of the elicitor to plasma

membrane receptor. (2) Changes in Ca2+ influx to

the cytoplasm from extracellular and intracellular

pools. (3) Changes in the protein phosphorylation

patterns and protein kinase activation. (4) De-

crease of pH of the cytoplasm and activation of

NADPH oxidases. (5) Changes in cell wall

structure (lignification) through generating reac-

tive oxygen species. (6) Synthesis of jasmonic acid

and salicylic acid as secondary messengers. (7)

Accumulation of defence-related proteins. (8)

Synthesis of plant defence molecules such as

phytoalexins. (9) Systemic acquired resistance.

Zhao et al. (2001c) screened 12 fungal elicitors

to improve indole alkaloid production in C.

roseus cell suspension cultures. Different kinds

of alkaloids are induced by different fungal

elicitors and different elicitor dosages. Combina-

tion of abiotic and biotic elicitors added to C.

roseus cell suspension cultures resulted in

improvement of TIA production. Ajmalicine

and catharanthine are induced by addition of

tetramethyl ammonium bromide and Aspergillus

niger homogenate (Zhao et al. 2001b).

Metabolic engineering

Recently a number of examples of plant trans-

formation were addressed (for review, see Ver-

poorte et al. 2000, 2002; Verpoorte and

Alfermann 2000). Single or multiple steps of the

pathway can be introduced in the plant genome to

improve productivity of secondary metabolites.

C. roseus is a model from which genes encoding

key enzymes (TDC, STR and G10H) involved in

TIAs were overexpressed in different plants.

Strictosidine production, the central intermediate

in the TIA pathway can be achieved in tobacco

expressing Catharanthus tdc and str genes upon

feeding secologanin (Hallard et al. 1997). Expres-

sion of those genes in Morinda citrifolia cells also

resulted in strictosidine formation when the cells

were fed with tryptamine and secologanin (Hal-

lard 2000). Hairy roots of Weigela ‘styriaca’

expressing str and tdc cDNAs from C. roseus

are able to produce tryptamine and ajmalicine

(Hallard 2000). In C. roseus, overexpression of
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the gene encoding the enzyme STR resulted in

some cases in an increase in alkaloid biosynthesis.

Although those transgenic cell lines of C. roseus

overexpressing tdc and str lost their capacity to

produce high levels of alkaloids after 2 years

subculturing, the enzymes of both transgenes

remained high (Whitmer 1999). Feeding such cell

cultures with loganin increased alkaloid produc-

tion considerably, by adding also tryptamine, high

levels (ca 400 mg/l) of alkaloids could be obtained

(Whitmer et al. 2002a,b). Overexpressing AS in

hairy roots resulted in an increased level of

tryptophane and tryptamine, but no increase of

the major alkaloids. Again confirming the limiting

role of the iridoid pathway (Hughes et al. 2004a).

In combination with TDC a similar result was

obtained, whereas overexpression of TDC alone

gave an increase in serpentine (Hughes et al.

2004b).

Conclusions

There are over 100 indole alkaloids produced by

C. roseus but the biosynthetic pathway to these

alkaloids is not fully characterized yet. Recently,

much progress was achieved in the terpenoid

pathway especially the discovery of the MEP

pathway leading to the isoprenoid formation. It

was confirmed that in C. roseus, secologanin is

derived from this pathway and the enzyme

converting loganin to secologanin was character-

ized. Although the MEP pathway was given much

attention in microbes, in C. roseus so far only

three early steps in the pathway including

enzymes and gene cloning were reported. In the

last few years, the majority of work done in

C. roseus focussed on the regulation of alkaloid

production via many different applications such

as feeding precursors, elicitation or metabolic

engineering. Jasmonate is a well-established gen-

eral inducer of a large number of genes in the

pathway resulting in an improved alkaloid pro-

duction. Overexpression of biosynthetic genes in

C. roseus has so far failed to significantly increase

sustainable production of the desired alkaloids.

Joining expression of regulatory genes together

with those controlling limiting steps that are not

upregulated by the regulatory genes in the path-

way may be of interest to overcome these

problems. Still several parts of the pathway need

to be elucidated at the level of intermediates.

Fig. 7 Elicitor action mechanism in plant cell
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Proteomics and metabolomics approaches may be

useful to identify the genes and enzymes involved.

However, one need to consider also the involve-

ment of transport in the regulation of the

biosynthesis as different parts of the pathway

are present in different cellular compartments

and even different cells.
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