
Abstract Heterologous expression of plant P450

proteins is critical for functional definitions of

their enzymatic activities as well as for producing

natural products whose biosyntheses involve

P450s. Over the past decade and a half, several

expression systems, using bacterial, yeast and in-

sect cells, have been utilized successfully for

expression of P450s from different plant species.

Extensive optimizations in each system have fo-

cused on the improvement of expression levels,

and the enhancement of the redox environment

for catalytic activity. In this review, we discuss the

strengths and limitations of each system, as well

as recent developments and applications of each

system. We also discuss the principles behind

Nanodisc technology, which utilizes an amphi-

pathic ‘‘membrane scaffold protein’’ (MSP) to

stabilize the soluble membrane protein-contain-

ing nanometer diameter phospholipid bilayers,

and its potential applications in plant P450

research.
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Introduction

Cytochrome P450 monooxygenases (P450s) are

nearly ubiquitous in that they exist in all

eukaryotes and many bacterial species (Feyerei-

sen 1999; Nelson 1999; Werck-Reichhart et al.

2002; Kelly et al. 2003; Guengerich 2005). There

is an ever-increasing interest in using these pro-

teins to synthesize many types of natural products

for human health and other industrial uses since

many of these chemistries are beyond the reach of

simple synthetic procedures and current extrac-

tion methods. Of particular interest are the plant

P450s responsible for the in vivo synthesis of

complex secondary metabolites historically iso-

lated from tropical species that are becoming

increasingly rarer. Examples of the array of these

plant-derived compounds include taxoids that

have antimitotic activity (paclitaxel), terpenoid

indole alkaloids that have antineoplastic activities

(vincristine and vinblastine), antihypertensive

activities (reserpine and ajmalicine) and anti-ar-

rhytmic activities (ajmaline), as well as phenolic

compounds that serve as antioxidants (caffeic

acid and its derivatives) and antimicrobial, anti-

proliferative and antidepressive compounds

(Morant et al. 2003).

Except for the most abundant plant P450s, it is

unfeasible to biochemically purify enough of

these proteins for functional characterization

due to their low abundance and cell-specific
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expression patterns. And, for plants nearing

extinction, purification is totally impossible

(Schuler 1996; Dixon 1999; Morant et al. 2003).

The interest in producing plant-derived com-

pounds in large quantities has focused research

efforts on expressing plant P450s in a variety of

heterologous expression systems. In addition to

their uses in metabolic engineering of natural

plant products, heterologous cDNA-expression

systems have become increasingly essential to the

process of identifying physiological substrates for

proteins in the P450 superfamily in most species.

But, due to their requirements for redox partners,

such as NADPH P450 reductase and cytochrome

b5/cytochrome b5 reductase for the Class II

ER-localized P450s and ferredoxin/ferredoxin

reductase (or putaredoxin/putaredoxin reductase)

for the Class I soluble P450s, heterologous

expression of P450s by themselves normally

results in no activity or very low activity if

endogenous redox partners interface poorly with

the heterologously expressed P450. As a conse-

quence, individual heterologously expressed P450

proteins are either purified and reconstituted with

their respective electron transfer partners or, they

are co-expressed with appropriate redox partners.

While co-expression obviates the need for

extensive reconstitution, the yield of individual

P450 proteins may be compromised by the limited

translational potential of most heterologous

expression systems. With clear knowledge about

the expression conditions attenuating production

of all components needed for activity determina-

tions, optimal P450 catalytic activities are readily

attainable.

Heterologous expression of the first functional

mammalian P450 was reported more than two

decades ago in Oeda et al. (1985) analyzing the

activity of the rat CYP1A1 mediating aryl

hydrocarbon hydroxylation of benzopyrene. Since

that time, several commonly used expression

systems have been developed for P450 expression

in bacteria, yeast, insect cells and mammalian

cells (Gonzalez and Korzekwa 1995). While

mammalian cell systems are particularly useful to

express mammalian P450s for drug and carcino-

genesis research, the other three systems have all

been widely used for expression of plant P450s

with the yeast expression system being the most

frequently used. Several factors that need to be

considered when choosing among these systems

for plant P450 expression include their expense,

ease of use, codon preferences, post-translational

modifications and membrane insertion mecha-

nisms. Choices for individual P450s may vary

depending on their compatibility with host cellu-

lar functions, protein stability and coupling effi-

ciency with endogenous and/or overexpressed

redox partners. Comparisons of the different

heterologous expression systems for plant P450s,

as well as a complete summary of all heterolo-

gously expressed plant P450s have been reviewed

recently (Schuler and Werck-Reichhart 2003). All

heterologously expressed Arabidopsis P450s are

listed in Table 1. Other plant P450s expressed

since this 2003 review are listed in Table 2.

While plant P450s expressed in bacterial sys-

tems normally need to be purified and reconsti-

tuted for activity assays, the microsomal

P450–P450 reductase complexes expressed in

eukaryotic systems can be readily assembled in

micron-sized liposomes derived from subfrac-

tionated natural cellular membranes obtained

from systems co-expressing both components.

These liposomes allow heterologous P450s to

effectively couple with endogenous or co-ex-

pressed P450 reductases but, due to their con-

strained micrometer-scale nature, some portion

of the membrane proteins embedded within them

remain sequestered in the solvent-inaccessible

interior (Angrand et al. 1997). A recently devel-

oped membrane scaffold system that incorporates

membrane proteins into stable soluble nanome-

ter-scale structures (designated Nanodiscs) elim-

inates this limitation by inserting integral

membrane proteins into lipid bilayers that are

solvent-accessible on both surfaces (Bayburt

et al. 1998; Bayburt and Sligar 2003; Civjan et al.

2003; Duan et al. 2004). Integral membrane pro-

teins incorporated in this system are amenable to

standard fractionation and protein display tech-

nologies that are typically applied to soluble

proteins. Plant P450s assembled in this system are

suitable for analysis of substrate binding in

high-throughput formats and at lower protein

concentrations than currently used in standard

spectrophotometric substrate binding assays.

When assembled with appropriate redox partners,
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Table 1 Functionally expressed Arabidopsis P450s

P450 Expression system Vector/Host cells References

CYP71A19 Insect pFastbac1/Sf9 Annamalai and Schuler (unpublished)
CYP71A20 Insect pFastbac1/Sf9 Annamalai and Schuler (unpublished)
CYP73A5 Insect pVL1392/Sf21 Mitzutani et al. (1997)

Insect pFastbac1/Sf9 Duan et al. (2004)
CYP74A1 E. coli pQE30/M15 Laudert et al. (1996)
CYP74B2 E. coli pGEX/unknow Bate and Rothstein (1998)
CYP75B1 Yeast pYES2/INVSc1 Schoenohm et al. (2000)
CYP79A2 E. coli pSp19g10L/JM109 Wittstock and Halkier (2000)
CYP79B2 E. coli pCWori+/ Hull et al. (2000)

E. coli pSP1910L/C43 Mikkelsen et al. (2000)
CYP79B3 E. coli pCWori+/DH5a Hull et al. (2000)
CYP79F1 E. coli pSp19g10L/JM109 Hansen et al. (2001)

E. coli pSp19g10L/C43 Hansen et al. (2001)
CYP79F2 Yeast pYeDP60/WR Chen et al. (2003)

Yeast pYeDP60/WAT11 Chen et al. (2003)
CYP83A1 Yeast pYeDP60/WAT11 Bak and Feyereisen (2001)
CYP83B1 Yeast pYeDP60/WAT11 Bak et al. (2001), Bak and Feyereisen (2001)
CYP84A1 Yeast pYeDP60/WAT11 Humphreys et al. (1999)
CYP85A1 Yeast pYeDP60/WAT11 Shimada et al. (2001)
CYP85A2 Yeast pYeDP60/WAT11 Kim et al. (2005), Nomura et al. (2005),

Shimada et al. (2003)
CYP86A1 Yeast pYeDP60/WR Benveniste et al. (1998)

Insect pFastbac1/Sf9 Duan and Schuler (2005)
CYP86A2 Insect pFastbac1/Sf9 Duan and Schuler (2005)

Yeast pYeDP60/WAT11 Benveniste et al. (2006)
CYP86A4 Insect pFastbac1/Sf9 Duan and Schuler (2005)
CYP86A7 Insect pFastbac1/Sf9 Duan and Schuler (2005)
CYP86A8 Yeast pYeDP60/WAT11 Wellesen et al. (2001)

Insect pFastbac1/Sf9 Duan and Schuler (2005)
CYP88A3 Yeast pYeDP60/WAT1 Helliwell et al. (2001)

Yeast pYeDP60/WAT21 Helliwell et al. (2001)
CYP88A4 Yeast pYeDP60/WAT11 Helliwell et al. (2001)

Yeast pYeDP60/WAT21 Helliwell et al. (2001)
CYP89A5 Insect pFastbac1/Sf9 Ali and Schuler (unpublished)
CYP90B1 E. coli pCWori+/JM109 Asami et al. (2001, Fujita et al. (2006)
CYP94B1 yeast pYeDP60/WAT11 Benveniste et al. (2006)

Insect pFastbac1/Sf9 Civjan et al. (unpublished)
CYP94B2 Yeast pYeDP60/WAT11 Benveniste et al. (2006)
CYP94B3 Yeast pYeDP60/WAT11 Benveniste et al. (2006)
CYP94C1 Yeast pYeDP60/WAT11 Benveniste et al. (2006)

Insect pFastbac1/Sf9 Civjan et al. (unpublished)
CYP96A1 Yeast pYeDP60/WAT11 Benveniste et al. (2006)
CYP96A2 Yeast pYeDP60/WAT11 Benveniste et al. (2006)
CYP96A3 Yeast pYeDP60/WAT11 Benveniste et al. (2006)
CYP96A4 Yeast pYeDP60/WAT11 Benveniste et al. (2006)
CYP96A9 Insect pFastbac1/Sf9 Palacio et al. (unpublished)
CYP96A10 Insect pFastbac1/Sf9 Palacio et al. (unpublished)
CYP97B3 Yeast pYeDP60/WAT11 Benveniste et al. (2006)
CYP98A3 Yeast pYeDP60/WAT11 Schoch et al. (2001)

E. coli pCWori/DH5a Rupasinghe and Schuler (unpublished)
CYP701A3 Yeast pYe22/G1315 Helliwell et al. (1999)
CYP704A2 Yeast pYeDP60/WAT11 Benveniste et al. (2006)
CYP707A1–A4 Yeast pYeDP60/WAT11 Kushiro et al. (2004)

Insect pFastbac1/Sf9 Saito et al. (2004)
CYP709C1 Yeast pYeDP60/WAT11 Kandel et al. (2005)
CYP710A1 Insect pFastbac1/Sf9 Morikawa et al. (2006)
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this system is also suitable for analysis of sub-

strate metabolism and NADPH consumption

rates (Duan et al. 2004).

In this review, we highlight some of the dif-

ferences and similarities between the available

heterologous expression systems and summarize

the recent applications of these systems to func-

tional characterizations of plant P450 activities.

We also review background relevant to this

Nanodisc technology and discuss its potential

application in plant P450 characterizations.

Yeast expression

Yeast (Saccharomyces cereviseae) represents the

first system reported to successfully express

mammalian (Oeda et al. 1985; Sakaki et al. 1985)

and plant (Urban et al. 1994) P450 proteins. Due

to several subsequent studies optimizing param-

eters for P450 expression, it has now become the

system most frequently used for functional

expression of plant P450s with almost two-thirds

of all heterologously expressed Arabidopsis P450s

expressed in yeast (Table 1); some have also been

expressed in E. coli and insect systems (Table 1).

Clear advantages of the yeast system for P450

expression include the lower costs of culture

media, rapid growth, reasonable expression levels

of correctly configured heme-containing P450s (as

defined by carbon monoxide (CO) difference

spectra (Omura and Sato 1964)) and the avail-

ability of strains over-expressing the appropriate

P450 reductases needed for catalytic activity as-

says. Most importantly, many studies have now

described the parameters needed to optimize this

system for plant P450 expression and catalytic

activity.

In one of the first reports describing this sys-

tem, an engineered pYeDP60 yeast expression

vector that uses a galactose-inducible GAL10-

CYC1 hybrid promoter for expression of plant

P450 cDNAs was coupled with endogenous or

overexpressed yeast P450 reductase (Urban et al.

1994). In later studies, a WAT11 strain, which

overexpresses Arabidopsis NADPH-dependent

P450 reductase ATR1, and a WAT21 strain,

which overexpresses Arabidopsis ATR2, were

constructed to overcome coupling deficiencies

with the endogenous S. cerevisiae P450 reductase.

In each of these strains, the chromosomally inte-

grated Arabidopsis P450 reductase provides the

redox environment that is optimal for plant P450

activities. Transformations of P450-pYeDP

expression plasmids (Pompon et al. 1996) into

these strains has allowed for the assembly of

compatible P450–P450 reductase complexes and

subsequent activity determinations.

Subsequent studies focused on optimizing the

yeast expression system by altering codons (often

GC-rich sequences) that frequently impair gene

expression in recombinant yeast (Batard et al.

2000; Hehn et al. 2002). The modus operandi of

the translation machinery and higher frequency of

codons designated as rare in yeast codon fre-

quency charts near the 5¢ of plant cDNAs has

made it possible to limit codon reengineering of

P450 and P450 reductase cDNAs for improved

protein expression to the first third of each ORF

(Batard et al. 2000) and does not entail complete

reengineering of the full-length sequences.

Examples where this strategy has successfully

improved protein expression in yeast include

several monocot P450s (e.g., maize CYP73A17,

wheat CYP86A5) and P450 reductase (e.g., wheat

TAR1) that have strong biases in GC-rich codons

and some dicot P450s that have clusters of low

usage codons close to their translation start sites

(e.g., Helianthus tuberosus (Jerusalem artichoke)

CYP73A1). Another example includes a monocot

Table 1 continued

P450 Expression system Vector/Host cells References

CYP710A2 Insect pFastbac1/Sf9 Morikawa et al. (2006)
CYP711A1 Yeast pYeDP60/WAT11 Benveniste et al. (2006)
CYP734A1 Yeast pYeDP60/WAT11 Turk et al. (2003)
CYP735A1 Yeast pYES2/YPH499 Takei et al. (2004)
CYP735A2 Yeast pYES2/YPH499 Takei et al. (2004)
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P450 (e.g., wheat CYP86A5) where expression

was further improved by altering clusters of low

usage codons in its more central coding sequences

(Hehn et al. 2002). Later studies focused on

improving P450 expression in yeast for structural

studies and created a water-soluble form of the H.

tuberosus CYP73A1 (t-cinnamic acid hydroxy-

lase) by replacing its N-terminal sequence with a

25-amino acid amphipathic peptitergent sequence

(PD1) (Schoch et al. 2003) initially designed for

the solubilization of intrinsic membrane proteins

(Schafmeister et al. 1993). This PD1–CYP73A1

fusion protein expressed at high levels in yeast

and was subsequently used for NMR-based

analysis of substrate positioning in its active site

(Schoch et al. 2003).

And, for the successful expression in yeast of

P450s that are highly conserved across many

kingdoms, (e.g., CYP51 family (Nelson et al.

2004)), endogenous yeast orthologues capable of

interfering with expression and activity assays

were eliminated by creating gene disruption

strains. Use of these engineered strains, such as

ERG11 disrupted in its endogenous CYP51 sterol

Table 2 Heterologously expressed plant P450sa

Species P450 Expression
system

References

Ammi majus L CYP73A41 Yeast Hubner et al. (2003)
Artemisia annua L. CYP71Av1 Yeast Teoh et al. (2006)
Coptis japonica CYP719 Yeast Ikezawa et al. (2003)

CYP80B2 Yeast Ikezawa et al. (2003)
Glycine max (soybean) CYP71D8 Yeast Shibuya et al. (2006)

CYP82A2 Yeast Shibuya et al. (2006)
CYP82A3 Yeast Shibuya et al. (2006)
CYP82A4 Yeast Shibuya et al. (2006)
CYP93E1 Yeast Shibuya et al. (2006)

Medicago truncatula CYP81E7 Yeast Liu et al. (2003)
CYP81E9 Yeast Liu et al. (2003)

Pinus taeda (loblolly pine) CYP720B1 Yeast Ro et al. (2005)
CYP720B2 Yeast Ro et al. (2005)
CYP750A1 Yeast Ro et al. (2005)
CYP704C1 Yeast Ro et al. (2005)

Parsley CYP73A10 Yeast Koopmann et al. (1999)
Pea CYP88A6 Yeast Davidson et al. (2003)

CYP88A7 Yeast Davidson et al. (2003)
CYP701A10 Yeast Davidson et al. (2003)

Petunia CYP76A4 Yeast Tamaki et al. (2005)
CYP92B1 Yeast Petkova-Andonova

et al. (2002)
Potato CYP51G1-Sc Yeast O’Brien et al. (2005)
Rice CYP714D1 Yeast Zhu et al. (2006)

CYP74A (OsAOS) Yeast Ha et al. (2002)
CYP74C E. coli Kuroda et al. (2005)

Picea sitchensis (Sitka spruce) CYP716B1 Yeast Ro et al. (2005)
CYP716B2 Yeast Ro et al. (2005)

Sinapis alba CYP79B1 E. coli Naur et al. (2003)
Taxus Taxoid 2a-hydroxylase Yeast Chau et al. (2004)

CYP725A-like taxoid 7b-hydroxylase Yeast Chau and Croteau (2004)
CYP725A3 Yeast Jennewein et al. (2003)
CYP725A-like Taxadiene 5-alpha hydroxylase Yeast/Insect Jennewein et al. (2004)

Tomato CYP85A1 Yeast Bishop et al. (1999)
CYP85A3 Yeast Nomura et al. (2005)
CTP710A11 Insect Morikawa et al. (2006)

Wheat CYP71C6v1 Yeast Xiang et al. (2005, 2006)
CYP709C1 Yeast Kandel et al. (2005)

a Functionally expressed plant P450s previously summarized in Schuler and Werck-Reichhart (2003) are not listed here
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demethylase gene, has allowed for optimization

of the wheat CYP51 obtusifoliol 14a-demethylase

differentiation of its activity from its mammalian

and yeast counterparts (Cabello-Hurtado et al.

1999). In this study, five-fold increases in expres-

sion resulted in wheat CYP51 levels that are as

high as 1.5% of the total microsomal protein

making it evident that the nature of the N-ter-

minal anchor can significantly influence expres-

sion levels, folding and/or stability of

heterologously expressed P450s in yeast. Inter-

estingly, replacement of the N-terminal signal

sequence on the wheat CYP51 with the N-termi-

nal signal of the endogenous yeast CYP51, which

should theoretically improve expression in yeast,

significantly reduced the levels of functional

wheat CYP51 in yeast microsomes and in con-

trast, replacement with the N-terminal signal of

sorghum CYP51 allowed for the high level func-

tional expression.

More recent attempts at optimizing the yeast

P450 expression system have focused on improv-

ing its use in whole cell biocatalyst systems (Jiang

and Morgan 2004). In these studies, which rep-

resent modifications on the protocols of Pompon

et al. (1996), expression of Arabidopsis ferulate 5-

hydroxylase (F5H, CYP84A1) activity was en-

hanced 2.6-fold by improving growth conditions

using modified two-stage growth and induction

protocols and another 30% by adding heme

precursors such as d-aminolevulinic acid (ALA)

(Jiang and Morgan 2004).

Several other vectors and strains have been

used for the expression of plant P450s in yeast.

Example of these include Arabidopsis CYP701A3

(ent-kaurene oxidase) that was expressed in the

G1315 yeast strain with the pYe22 expression

vector originally designed for expression of Rhi-

zopus oryzae glucose amylase in yeast (Helliwell

et al. 1999). Although the efficiency of this vector/

strain system for the expression of CYP701A3

was not discussed in detail in this study, the fact

that subsequent work by this group switched to

use of the previously described pYeDP60/

WAT11/WAT21 vector/strain system suggests

that the pYEDP60 vector is better for expression

(Helliwell et al. 2001). Another example is Ara-

bidopsis CYP75B1 (flavonoid 3¢-hydroxylase,

F3¢H) that was expressed in the pYES2/INVSc1

vector/strain system (Schoenbohm et al. 2000).

One distinct advantage of this vector is that it is

commercially available and already suitable for

the TOPO-GatewayTM technology (Invitrogen)

that greatly facilitates subcloning of individual

cDNAs. It is likely that the more commonly used

pYeDP60 vector will also be engineered into

Gateway destination vectors in the near future.

The ease of working with this S. cerevisiae

system has recently been exploited to allow

reconstitution of a significant part of the pathway

for the diterpenoid taxol in yeast (DeJong et al.

2006). Expression of eight recombinant proteins

representing four distinct enzyme targets

(including P450s, diterpene cyclases, acyl trans-

ferases, prenyltransferases) was capable of gen-

erating taxadiene and small amounts of taxadien-

5a-ol with taxadiene 5a-hydroxylase being the

rate-limiting P450 that reduces levels of this final

taxadien-5a-ol product. Pathway restrictions

encountered in the expression of the first P450

(10b-hydroxylase) in this pathway were overcome

by expression of the homologous Taxus P450

reductase and resulted in seven-fold increases in

activity compared to expression in the presence of

the endogenous yeast P450 reductase (Jennewein

et al. 2005).

Besides S. cerevisiae, the yeast Pichia pastoris

has also been used for functional expression of a

number of plant P450s. P. pastoris is an especially

interesting system for expression of P450s for

structural analysis since it utilizes a defined min-

imal medium for growth and a strong methanol-

inducible alcohol oxidase (AOX1) promoter for

expression of heterologous proteins up to several

grams per liter of culture (Rosenfeld 1999). Be-

cause previous attempts to express the cassava

(Manihot esculenta Crantz) CYP79D1 and

CYP79D2 in E. coli had been unsuccessful, these

P450s were expressed in P. pastoris system where

they accumulated at levels equivalent to those

obtained in S. cerevisiae for other P450s (Ander-

sen et al. 2000; Anderson and Moller 2002).

Sequencing of the P. pastoris-expressed

CYP79D1 protein obtained in these studies indi-

cated that its asparagine residues had been gly-

cosylated during expression process. It is not yet

known whether these post-translational modifi-

cations occur on this P450 in its native cassava
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but, importantly, they do not interfere with

CYP79D1’s capacity to generate oximes.

Insect cell expression

Another eukaryotic expression system, the bacu-

lovirus-infected insect cell culture system, has

fewer problems with codon usage and more lim-

ited post-translational modifications that might

detrimentally affect expression and functionality

of P450s and P450 reductases. For P450s, this

system also has the distinct advantage that sub-

strate binding and activities can be measured in

both cell lysates and microsomal preparations

without the need for further purification. Al-

though used less frequently than the yeast system

for plant P450 expression, this system has been

wildly used for expression of many mammalian

and insect P450s, and, in several plant cases, such

as Taxus baccata (yew) taxol hydroxylases (Jen-

newein et al. 2001, 2004), Berberis stolonifera

(barberry) berbamunine synthase (CYP80A1)

(Kraus and Kutchan 1995; Kutchan 1996), and

more recently, Arabidopsis and tomato sterol C-

22 desaturases (CYP710As) (Morikawa et al.

2006), it has represented the best alternative to

yeast expression for P450s that are not stably

expressed in lower eukaryotic systems.

Disadvantages that are usually cited for this

system include the facts that insect cell culture

medium is relatively expensive, that construction

of recombinant viruses can be relatively labor-

intensive and time-consuming and that batch-to-

batch variations in heterologous expression are

sometimes significant. Another disadvantage

occasionally cited is that the endogenous P450

reductase levels in baculovirus host cell lines, such

as Sf9 and Tn5 cells, are normally insufficient for

overexpression of P450 catalytic activities. This

last disadvantage can be overcome by purifying

and reconstituting heterologously expressed plant

P450s with purified vertebrate and plant P450

reductases (Kraus and Kutchan 1995; Mizutani

et al. 1997). Sometimes, as in the case of Berberis

CYP80A1, the proportions of various products

(e.g., the R,S and R,R stereoisomers of N-meth-

ylcoclaurine corresponding to berbamunine and

guattegaumerine, respectively) have varied

depending on the source of the P450 reductase

with the homologous Berberis P450 reductase

producing higher amounts of berbamunine than

that obtained with heterologous insect Spodop-

tera frugiperda P450 reductase (Kutchan 1996).

This disadvantage can also be circumvented and

even turned to a researcher’s advantage by co-

expressing P450s with increasing amounts of P450

reductases and other electron transfer partners

that couple well with the plant monooxygenases

(e.g., E. californica P450 reductase, Pauli and

Kutchan 1998; Taxus P450 reductase, Jennewein

et al. 2001, 2005; Musca domestica P450 reduc-

tase, Duan et al. 2004) and produce the desired

ratios of stereoisomers. For some P450 activities,

the highest P450 activities have been obtained

when P450s are expressed along with their

homologous P450 reductases as exemplified by

the efficient coupling of Taxus 10b-hydroxylase

with Taxus P450 reductase (Jennewein et al.

2001, 2005).

With purification and reconstitution problems

eliminated by use of the insect cell expression

system, challenges still exist in carefully optimiz-

ing co-expression parameters. Infection of insect

cell culture with too much recombinant P450

virus results in insufficient electron transfer to the

P450 under analysis and, vice versa, infection with

too much recombinant P450 reductase virus re-

sults in low P450 activities due to overexpression

of P450 reductase and underexpression of the

desired P450. To better describe the expression

optimizations needed for functional analysis of

P450 activities, Duan et al. (2004) tested a variety

of co-expression conditions for Arabidopsis

CYP73A5. With translation capacities limited in

Sf9 cells (just as they are in other expression

systems), variations in the multiplicity of infection

(MOI) values ranging from 1 to 5 for the re-

combinant P450 virus produced approximately

equal levels of P450 when expressed alone. But,

at higher levels of recombinant virus, P450

expression decreased significantly due to limita-

tions in the transcription and translation capaci-

ties of these cells. When co-expressed with insect

P450 reductase at MOI ratios above 1:0.2

(P450:P450 reductase), the yield of P450 protein

progressively decreased as the yield of P450

reductase increased with ratios of 1:1 and 1:2
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producing the highest levels of t-cinnamic acid

hydroxylase activity (Duan et al. 2004). Sub-

sequent analysis on a number of Arabidopsis

P450s (e.g., CYP71A19, CYP71A20, five

CYP86A subfamily members, CYP89A5,

CYP94B1, CYP94C1, CYP96A9 and CYP96A10)

in this system has indicated that nearly all are

expressed at significant levels at MOI values in

the range of 0.5–5. The only exceptions are

CYP71A19 and CYP71A20 that express well at

MOI values of 6–10. As a consequence of these

and other optimizations, most Arabidopsis P450s

are now co-expressed with insect P450 reductase

at a fixed MOI ratio of 1:0.5. Monitoring of the

integrity of P450 catalytic sites in this insect sys-

tem using CO difference spectra (Omura and

Sato 1964) has indicated that at least two of the

Arabidopsis P450s (e.g., CYP71A19 and

CYP71A20) are not stably folded unless co-ex-

pressed with a compatible P450 reductase. In its

absence, CO difference peaks for incorrectly

configured proteins occur at 420 nm rather than

the desired 450 nm.

The insect system has also been used to heter-

ologously express Arabidopsis ATR1 and ATR2

(Mizutani and Ohta 1998) and NADH-dependent

cytochrome b5 reductase (Fukuchi-Mizutani et al.

1999) in quantities sufficient for purification and

reconstitution. Combinations of these with

NADH, NADPH and other proteins in their

electron-transfer chains have demonstrated that

these electron transfer proteins are highly selective

in use of their electron donors: NADH-dependent

cytochrome b5 reductase utilizes NADH but not

NADPH and NADPH-dependent ATR1 and

ATR2 utilize NADPH but not NADH. Impor-

tantly and contrary to other eukaryotic electron

transfer chains, both Arabidopsis P450 reductase

and cytochrome b5 reductase are capable of

reducing cytochrome b5 providing two avenues for

transfer of reducing equivalents to terminal ac-

ceptors in microsomes (e.g., P450s, fatty acid de-

saturases). The extent to which NADH

supplementation enhances P450 activities in Sf9

cells co-expressing P450s with all three of its elec-

tron transfer partners has not yet been analyzed.

These reconstitution systems clearly represent

valuable tools for the study of the P450-related

microsomal electron transfer and the individual

physiological roles of the diversified P450 electron

transfer systems in higher plants.

Various P450s expressed in human cells have

been reported to be modified by phosphorylation

(CYP2B1, CYP2B4, CYP2E1), glycosylation

(CYP19A1), nitration (CYP4A subfamily) and

ubiquitination (CYP3A4, CYP2E1) (Aguiar et al.

2005). Little is known about the extent of post-

translational modifications occurring on plant

P450s. But it is known that the degree of post-

translational modification varies substantially

among these heterologous expression systems.

Most relevant to our discussion of baculovirus-

mediated expression is the fact that insect cells do

not produce terminally sialylated complex glycans

that are found on many proteins expressed in

mammalian cells (Hooker et al. 1999). But, they

do myristoylate, palmitoylate and phosphorylate

heterologously expressed proteins such as endo-

thelial nitric oxide synthase (Busconi and Michel

1995).

Bacterial expression

Some of the advantages that bacterial expression

systems share with yeast systems are their use of

inexpensive culture media and rapid growth of

host cells. However, since these are prokaryotic in

nature, they have distinctly different codon pref-

erences than most eukaryotes and more codon

usage problems encountered in expressing plant

P450s. In an increasing number of examples, high

level expression of membrane-bound P450s has

been achieved only after substantial modification

of the N-terminal signal sequences. For expres-

sion of mammalian P450s, the two most fre-

quently used strategies for optimizing expression

are recoding, deletion of N-terminal hydrophobic

sequences (Barnes 1996; Guengerich et al. 1997)

and fusion with ompA targeting sequences that

direct the expressed proteins to bacterial lipid

bilayers (Pritchard et al. 1998). For expression of

plant P450s in E. coli, only the first approach

altering N-terminal sequences has been used.

Examples of this include CYP74 proteins that

have been expressed in E. coli at high levels

after deletion of their N-terminal chloroplast

transit sequences (Laudert et al. 1996; Bate and
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Rothstein 1998). Others include ER-targeted

P450s (e.g., Arabidopsis CYP79A2 (Wittstock

and Halkier 2000), CYP79B2 (Hull et al. 2000;

Mikkelsen et al. 2000), CYP79B3 (Hull et al.

2000) and CYP79F1 (Hansen et al. 2001)) that

have been expressed in E. coli after modifications

enriching the AT content of their 5¢ coding

sequences and eliminating RNA secondary

structures as described in Barnes et al. (1991) for

expression of the bovine CYP17a protein. Most of

these plant P450 expressions have used either the

pCWori+ or pSp19g10L plasmid (Barnes 1996)

that have lac or lac-derived promoters. The latter

vector also has a short leader sequence (g10L) of

T7 bacteriophage gene 10 that has proved to be

an excellent leader sequence for many types of

proteins in E. coli (Olins et al. 1988). Even with

enrichment of their AT-richness, addition of

phage leader sequences and construction of chi-

meric coding sequences with eight N-terminal

amino acids from CYP17a, some plant P450s such

as CYP79F2, CYP79D1, CYP79D2 and

CYP79B1 have still been problematic. While all

of these are from the CYP79 family, other

members in this family, such as CYP79A1,

CYP79A2, CYP79B2, CYP79B3 and CYP79F1,

have been expressed in E. coli successfully. For

those that have remained problematic, most dif-

ficulties have been overcome by switching to

yeast expression systems (Bak et al. 1998;

Andersen et al. 2000; Chen et al. 2003).

Except for certain nonclassical P450s such as

members in CYP74 family, which do not require

electron transfer partners (Laudert et al. 1996;

Bate and Rothstein 1998), bacterially expressed

P450s need to be purified and reconstituted with

appropriate redox partners to achieve any sort of

catalytic activity. In some cases, P450–P450

reductase fusion proteins have been constructed

as in the example of Catharanthus roseus C4H

where the N-terminal P450 ORF is linked in-

frame to C. roseus P450 reductase via a ST linker

(Hotze et al. 1995). Although this strategy may

not be the most optimal system for extensive ki-

netic analysis, this has made it possible to con-

struct bacterial culture-based bioreactor systems.

One of the most recent examples of the successes

of this expression strategy has been the synthesis

of plant flavonols from phenylpropanoid acid

precursors in E. coli (Leonard et al. 2006). For

this, a chimeric C. roseus flavonoid 3¢,5¢-hydrox-

ylase-P450 reductase (F3¢5¢H-CPR) fusion pro-

tein was created and co-expressed in E. coli with

4-coumaroyl:CoA-ligase (4CL), chalcone syn-

thase (CHS), chalcone isomerase (CHI), flava-

none 3b-hydroxylase (FHT) and flavonol

synthase (FLS) to produce plant flavonols

including kaempferol, quercetin and myricetin.

One of the most important advantages of

bacterial expression systems is that they can be

used to produce large quantities of proteins for

structural studies. For the mammalian mem-

brane-anchored P450s, this has been possible only

after reengineering of their coding sequences for

optimal expression in E. coli. To date, the major

modification has been to delete the N-terminal

anchor sequence that converts the integral mem-

brane protein into one that binds peripherally to

membranes and causes in the subcellular location

of the engineered protein to vary depending on

the ionic strength of the extraction buffer

(vonWachenfeldt et al. 1997; Wester et al. 2003a, b;

Williams et al. 2000, 2003; Scott et al. 2001, 2003;

Schoch et al. 2004). The one exception to this

strategy has been CYP3A4 that had only residues

3–23 deleted from its N-terminal transmembrane

domain (Yano et al. 2004). Additional modifica-

tions on most of these P450s have included the

addition of His4-tags to the C-terminus for nickel-

affinity purification and, for mammalian CYP2C5

and CYP2C9, modification of seven amino acids

in the F-G loop region to eliminate potential

interactions with the lipid bilayer (vonWachen-

feldt and Johnson 1995; Williams et al. 2003).

Rupasinghe and Schuler (unpublished) have used

similar approaches to express Arabidopsis plant

P450s CYP98A3 in E. coli. The modifications

added for successful expression have included

deletion of the N-terminal hydrophobic se-

quences and addition of MA to the N-terminus.

Expression of this construct in the pCWori in E.

coli DH5a strain (vonWachenfeldt et al. 1997)

yielded 25 mg P450 per liter of culture media as

assayed by the CO difference analysis. As a

comparison, expression of same protein and other

plant P450s in yeast and insect cells could only

yield few hundred lg protein per liter of culture

media (Rupasinghe et al. unpublished).
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Alternative E. coli strains, such as C41(DE3)

and C43(DE3), have been developed to avoid the

toxic effects of overexpressing membrane pro-

teins using the T7 bacteriophage promoter in the

bacterial BL21 strain (Miroux and Walker 1996).

These strains were selected for greater tolerance

to expression of high levels of membrane proteins

using several rounds of growth for cells trans-

formed with vectors capable of expressing OCGP

(mitochondrial oxoglutarate–malate transport

protein) and F-ATPase (H+-transporting

F1F0ATPase) in the presence of IPTG. Using the

first single mutant C41 (DE3) strain isolated,

mammalian CYP2B4 has been expressed in

quantities as high as 100 mg (2,000 nmol) per liter

(Saribas et al. 2001). Using the second double

mutant C43 (DE3) strain that has an even greater

tolerance for membrane protein expression,

Arabidopsis CYP79F1 has been expressed at

110 nmol per liter in TB media, which represents

a 200-fold increase in activity relative to enzyme

produced in the more standard JM109 strain

(Hansen et al. 2001). These strains provide the

opportunity to dramatically increase the yield of

functionally expressed P450s.

Nanodisc technologies

One of the biggest challenges in the field of

membrane proteins in general and P450s in par-

ticular has been the characterization of their

structure and function in soluble, dispersable

formats that are suitable for crystallographic tests

and high-throughput substrate binding analyses.

Significant advances have recently been made in

developing nanotechnologies for the assembly of

P450s into soluble Nanodiscs either alone for

substrate binding titrations or with P450 reduc-

tases for activity assays. The core of this

technology is a bioengineered amphipathic multi-

helical membrane scaffold protein (MSP1) whose

hydrophobic faces circumscribe the edges of small

lipid bilayer and whose polar faces interact with

polar aqueous solvents (Bayburt and Sligar 2002,

2003). When mixed with detergent-solubilized

phospholipids, and upon detergent removal, the

MSP1 protein self-assembles and encircles lipids

and membrane proteins in a flat discoidal struc-

ture (termed Nanodisc) that is nominally 10 nm

in diameter (Fig. 1). It has now been demon-

strated that a wide variety of integral membrane

proteins, either prepurified or heterologously ex-

pressed proteins embedded within cellular mem-

branes from Sf9 insect cells or yeast cells, can be

incorporated into the discoidal bilayer while

retaining their native activities (Bayburt and Sli-

gar 2002, 2003; Civjan et al. 2003; Duan et al.

2004). To date, this system has been used for

encapsulating integral membrane proteins such as

bacteriorhodopsin (bR) containing seven trans-

membrane helices (Bayburt and Sligar 2003), in-

sect CYP6B1 (Civjan et al. 2003), mammalian

CYP2B4 (Bayburt and Sligar 2002), and mam-

malian CYP3A4 (Baas et al. 2004) each contain-

ing a single transmembrane helix, G-protein

coupled receptors containing seven transmem-

brane helices (Leitz et al. 2003) and human

mitochondrial NADH/NADPH transhydrogen-

ase containing 24 transmembrane domains (S.G.

Sligar and C.D. Stout unpublished). And, using a

co-assembly strategy with microsomes obtained

from independent pools of Sf9 cells expressing

Arabidopsis CYP73A5 or housefly P450 reduc-

tase, both of these proteins have been co-incor-

porated into Nanodiscs (Duan et al. 2004). With

this Arabidopsis P450 as the first plant represen-

tative inserted into Nanodiscs, this system has a

demonstrated potential for high-throughput

analyses of substrate binding by spectral analysis

of nanodisc samples arrayed in microtiter plates.

With the bimolecular P450–P450 reductase com-

plexes inserted in Nanodiscs, this system has

demonstrated potential for defining activities on

membrane protein complexes moved from com-

plex membrane environments into defined lipid

bilayer systems without the need for strong

denaturing detergents. Evidence that the mild

solubilization conditions used to transfer proteins

from the membranes of heterologous expression

systems into Nanodiscs maintain the integrity of

P450 target proteins has been demonstrated by

the ability of CYP73A5-containing Nanodiscs to

appropriately bind carbon monoxide in CO dif-

ference analyses (Fig. 2A), bind t-cinnamic acid

(t-CA) in type I binding analyses and, when co-

assembled with P450 reductase, to metabolize
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t-CA into p-coumaric acid (Duan et al. 2004). In

addition to making P450s and P450 reductases

amenable to fractionations on affinity and sizing

columns normally suited to soluble proteins, one

clear advantage of this system is the stability of

P450 proteins afforded by insertion into Nano-

discs. Separated from an array of undefined

membrane components, CYP73A5-containing

Nanodiscs incubated for 96 h at 25�C generate

the same CO difference optima at 450 nm as at

the beginning of the time course (Fig. 2A). But at

longer times, (e.g., the 168 h time point in

Fig. 2A), even this P450 shows some degree of

destabilization with higher levels of P420 and

lower levels of P450 suggesting some degree of

unfolding in the catalytic site. Another clear

advantage is that, without the high concentrations

of microsomal proteins that are prone to scatter

light in spectral assays for substrate binding,

P450-containing Nanodiscs are capable of gener-

ating strong type I substrate binding profiles with

lower amounts of P450 than standard microsomal

assays. An example of this is shown in Fig. 2B

where lauric acid binding spectra are compared

for 30 pmol CYP86A8 assembled in Nanodiscs

versus 100 pmol CYP86A8 in microsomes. Fig-

ures demonstrating the stability of P450-contain-

ing Nanodiscs to repeated fractionations on sizing

columns and the purity of size-fractionated

Nanodisc P450–P450 reductase complexes are

included in Duan et al. (2004).

Currently, a number of ‘‘extended’’ and

‘‘truncated’’ MSP proteins which self-assemble

into Nanodiscs larger than the typical MSP1 have

been engineered (Denisov et al. 2004). These

enable the incorporation of larger protein and

protein–protein complexes into this type of nan-

obilayer and provides for the possibility of

assembling larger macromolecular complexes

containing P450s and other membrane integral

proteins. Tagging methods for producing His-free

MSP proteins have also been optimized (Baas

Fig. 1 Nanodisc assembly of membrane proteins into lipid bilayers. Heterologously expressed microsomal proteins are
solubilized in a first step that uses mild detergents such as cholate for solubilization followed by assembly as detergents are
removed with Biobeads. The assembled Nanodiscs are then separated from non-membrane proteins in a second step that
binds His6-tagged MSP1 Nanodiscs to nickel affinity matrices and these are size-fractionated by Sephadex size exclusion
chromatography
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et al. 2004) and, when assembled with plant P450s

tagged at their C-terminus with four histidines,

these His-free MSP proteins provide promising

opportunities for purification of homogenous

P450-contaning Nanodiscs for future structure

determinations.

Conclusions

The heterologous expression systems discussed

above have been used to produce plant P450s in

many different sorts of functional forms. Each

system has its own advantages and disadvantages

with the most frequently used and optimized

yeast system expected to continue as the prime

contender for functional characterizations. Even

so, the baculovirus-insect cell system, which is

being used for expression of a growing number of

plant P450s, is coming to the forefront for its ease

in manipulating electron transfer components and

its less apparent codon constraints. With the

opportunity to scale-up cultures in liquid sus-

pension cultures, this system should prove valu-

able for future plant P450 research. Interestingly,

in two recent independent studies aimed at

characterizing the Arabidopsis P450 CYP707A

subfamily (ABA 8¢-hydroxylases), functional

expressions were done in both yeast and insect

cell systems (Kushiro et al. 2004; Saito et al.

2004) indicating that both systems are appropriate

for functional analysis of these P450s. The bac-

terial system, although requiring substantial

cDNA modification for functional P450 expres-

sion, will likely be the most ideal system for

generating the large quantities of proteins needed

for crystallization studies. Both the bacterial and

yeast systems have the advantage of being readily

scaled for fermentation production of natural

products. In both reconstitution and co-expres-

sion assays, P450 reductases from several differ-

ent kingdoms have been used as electron

providers. Examples of this include use of yeast

P450 reductase for CYP73A1 (Urban et al. 1994),

rat P450 reductase for CYP79B2 (Hull et al.

2000) and housefly P450 reductase for CYP73A5

(Duan et al. 2004). The reasonable catalytic

activities obtained in these three examples sug-

gest that the P450 reductase functions are rela-

tively conserved and not limiting to the catalytic

activities of many plant P450s. Coupling these

heterologous expression system with the new

Nanodisc technologies dispersing overexpressed

membrane proteins into monodispersed bilayers

in their native form provides unique and exciting

opportunities to produce ‘‘soluble’’ P450 pro-

teins in defined complexes associated with lipid

bilayers.
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