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Abstract 
 
The aim of the present experiment was to evaluate the currently used allometric models for Vitis vinifera L., as well as to 
develop a simple and accurate model using linear measurements [leaf length (L) and leaf width (W)], for estimating the 
individual leaf area (LA) of nine grapevine genotypes. For model construction, a total of 1,630 leaves coming from eight 
genotypes in 2010 was sampled during different leaf developmental stages and encompassed the full spectrum of leaf 
sizes. The model with single measurement of L could be considered an interesting option because it requires 
measurement of only one variable, but at the expense of accuracy. To find a model to estimate individual LA accurately 
for grapevine plants of all genotypes, both measurements of L and W should be involved. The proposed linear model 
[LA = –0.465 + 0.914 (L × W)] was adopted for its accuracy: the highest coefficient of determination (> 0.98), the 
smallest mean square error, the smallest prediction sum of squares, and the reasonably close prediction sum of squares 
value to error sum of squares. To validate the LW model, an independent data set of 200 leaves coming from another 
genotype in 2011 was used. Correlation coefficients showed that there was a highly reliable relationships between 
predicted leaf area and the observed leaf area, giving an overestimation of 0.8% in the prediction. 
 
Additional key words: estimation model; linear regression; nondestructive method. 
 
Introduction 
 
Leaf area (LA), a measure, which is seemingly so simple 
and fundamental, is really the backbone that provides the 
framework for further research in areas such as plant 
pathology, agronomy, and plant physiology. These and 
many other disciplines including horticulture rely on the 
measurement of LA for their research, since LA strongly 
influences crop growth, developmental rate, and produc-
tivity (Lizaso et al. 2003, Rouphael et al. 2004, Rouphael 
and Colla 2005). LA can be measured by direct or indirect 
methods (Marshall 1968). Many methods were proposed 
for direct LA measurement, based on the collection of the 
leaves and on the subsequent measurements of their area 
by using specific instruments (e.g. planimeter and 
electronic leaf area meter) or by acquiring and processing 
leaf images (Giuffrida et al. 2011). These methods are all 
labor and time-consuming, especially for species having 
small leaves or leaves subjected to rapid withering and 

curling; they could also affect the accuracy of measure-
ment (Confalonieri et al. 2013). In addition, direct LA 
measurement requires excision of leaves, and it is therefore 
not possible to make successive measurements of the same 
leaf. Plant canopy is also damaged, which might affect 
the other measurements by nonnegligible uncertainty 
(Rouphael et al. 2010a). As a consequence, several authors 
have pointed out the need for simple, accurate, rapid, 
inexpensive, and nondestructive method for estimating 
LA (Salerno et al. 2005, Tsialtas and Maslaris 2005, 
Rivera et al. 2007, Fallovo et al. 2008, Fascella et al. 
2009, Rouphael et al. 2010b) in various agronomical 
and physiological experiments, where destructive LA 
measurement is not desirable, in particular in the case of 
measurements carried out on genetically segregated 
populations (De Swart et al. 2004) and on rare plants 
(Misle et al. 2013). 
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A simple approach for LA estimation is to develop 
ratios and regression estimators by using easily measured 
leaf parameters, such as leaf length (L) and leaf width 
(W) (Gao et al. 2012). Various models and regression 
equations have been proposed for several fruit trees, such 
as avocado (Uzun and Çelik 1999), cherry (Demirsoy and 
Demirsoy 2003), peach (Demirsoy et al. 2004), kiwifruit 
(Mendoza-de Gyves et al. 2007), medlar (Mendoza- 
de Gyves et al. 2008), persimmon (Cristofori et al. 2008), 
and citrus (Mazzini et al. 2010). In many experiments, 
the accuracy of the LA estimation model has not been 
carefully examined, since small or minor violations of the 
underlying assumptions can invalidate the interferences 
drawn from the analysis (Pompelli et al. 2012). Several 
models for individual LA estimation have been proposed 
for grapevine (Manivel and Weaver 1974, Sepúlveda and 
Kliewer 1983, Elsner and Jubb 1988, Schultz 1992, 
Montero et al. 2000, Williams and Martinson 2003, 
Tsialtas et al. 2008; Table 1). However, these models 

have been just developed for a specific genotype (e.g. 
only one or two genotypes) and consequently no 

information is available whether these models could be 
adapted to other grapevine genotypes without recali-
bration (Antunes et al. 2008). Especially, a leaf shape 
(L:W ratio) may vary among different genetic materials 
(Stoppani et al. 2003). Moreover, most of these models 
were selected and based on the highest coefficient of 
determination (r2) between observed and predicted values 
and the lowest mean square deviation (MSD). However, 
it is inappropriate procedure, because high correlations do 
not indicate that the predicted values agree with the 
observed ones (Bland and Altman 1986). Based on these 
considerations, the examination of residual plots is a simple 
and effective method for detecting model deficiencies in 
regression analysis (Antunes et al. 2008, Pompelli et al. 
2012). Therefore, the aims of the current paper were: 
(1) to evaluate the currently used models, (2) to create 
a statistical model, based on fast linear measurements 
(e.g. L and W), for grapevine that would fit the effect of 
leaf size and shape between genotypes, and (3) to validate 
the robustness (e.g. unbiased) of the selected model with 
an independent data set coming from other genotype. 

 
Table 1. Previous models developed for estimating individual leaf area (LA) of grapevine using simple linear measurements.  
r2  coefficient of determination. SEE  standard error of estimate; MSD  mean square deviation. 
 

Model 
No. 

Form of model tested Genotypes Independent 
variable used 

Validation 
experiment  

Criteria  
for model 
selection 

References 

1 LA = 1.162 L2 – 0.802 L + 1.051 Grenache L No r2 Manivel and Weaver (1974) 
2 LA = 0.644 W2 + 0.469 W + 0.109 Grenache W No r2 Manivel and Weaver (1974) 
3 LA = 0.69 (L  W) + 3.17 Chardonnay L  W No r2, SEE Sepúlveda and Kliewer (1983) 
4 LA = 0.68 (L  W) + 2.49 Chenin blanc L  W No r2, SEE Sepúlveda and Kliewer (1983) 
5 LA = –3.01 + 0.85 (L  W) Concord L  W No r2, SEE Elsner and Jubb (1988) 
6 LA = –1.41 + 0.527 W2 + 0.254 L2 Concord L and W No r2, SEE Elsner and Jubb (1988) 
7 LA = 1.18  (L – 2.6)  (L + 8.75) White Riesling L Yes r2 Schultz (1992) 
8 LA = 0.587 (L  W) Cencibel L  W No r2 Montero et al. (2000) 
9 LA = 0.647 L1.956 Cencibel L No r2 Montero et al. (2000) 
10 LA = 0.637 W1.995 Niagara W No r2, SEE Williams and Martinson (2003) 
11 LA = 0.672 W1.963 DeChaunac W No r2, SEE Williams and Martinson (2003) 
12 LA = 18.379 L – 151.41 Cabernet-

Sauvignon 
L No r2, MSD Tsialtas et al. (2008) 

 
Materials and methods 
 
Field experiments: The experiment was carried out during 
two consecutive growing seasons 2010 and 2011, in a five- 
year-old, commercial vineyard located at Rutigliano (Bari), 
Southern Italy (41°10'N, 17°00'E, 250 m a.s.l.). The 
climate is of the Mediterranean type, with hot and dry 
summers and mild winters, having an average annual 
rainfall of 500600 mm, with about 350400 mm falling 
during the autumn and winter months. The soil was a 
sandy-clay loam soil with the following characteristics: 
bulk density of 1.1 g cm–3, pH 7.1, 2.1% of organic 
matter, 246 mg(exchangeable K) kg–1, with a textural 
analysis of 49% sand, 17% silt, and 34% clay. The vines 
were spaced 2.5 m between rows and 2.5 m along rows, 

summing up about 1,600 plants per hectare. The training 
system was “tendone”, consisting of a continuous overhead 
canopy under which the bunches are disposed (Rana et al. 
2004). Standard cultural practices in the region were 
applied during the two growing seasons. 
 
Data collection: Nine grapevine (Vitis vinifera L.) geno-
types were used to develop the LA prediction model. Wide 
varieties of fully expanded ( 3 cm) leaves were used. The 
leaves encompassed the broadest range as possible. The 
minimum LA sampled was 10.2 cm2 and maximum was 
540.0 cm2 (Table 2). In both experiments, the leaves were 
randomly sampled from different parts of the grapevines,
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Table 2. Mean, minimum (min), maximum (max) values for leaf length (L), width (W), leaf area (LA), length:width (L:W) ratio, 
variation inflation factor (VIF), and tolerance values (T) of grapevine (Vitis vinifera L.) genotypes. SE  standard error; r2  coefficient 
of determination of the linear regression between W and L. 
 

Genotype L [cm] W [cm] LA [cm2] L:W ± SE r2 VIF T 
 Mean Min Max Mean Min Max Mean Min Max     

Big Perlon 11.3 4.2 25.0 14.2 5.5 28.0 154.8 20.0 540.0 0.80 ± 0.013  0.915 6.14 0.16 
Black Magic   9.8 3.6 23.0 12.7 4.2 23.0 134.5 16.8 424.1 0.77 ± 0.012 0.896 5.07 0.19 
Crimson   9.4 3.1 18.5 12.7 3.9 22.2 116.5 10.2 336.3 0.73 ± 0.016 0.876 4.29 0.23 
Italia 10.1 4.7 17.4 13.4 6.2 24.4 128.4 26.5 379.6 0.75 ± 0.017 0.859 3.81 0.26 
Michele Palieri 11.8 5.5 19.5 15.3 8.2 24.2 177.4 39.8 461.0 0.77 ± 0.014 0.902 5.36 0.18 
Red Globe 11.5 4.6 21.5 14.8 6.0 26.6 164.7 24.6 441.1 0.78 ± 0.016  0.904 5.47 0.18 
Sugraone 10.5 4.1 17.4 13.2 6.0 20.6 126.8 23.2 281.1 0.80 ± 0.015 0.854 3.69 0.27 
Victoria 11.7 3.4 21.2 16.2 4.5 28.0 204.6 12.8 480.6 0.72 ± 0.013 0.901 5.31 0.18 
Vitroblack 10.1 4.9 16.5 13.2 6.8 22.5 125.1 25.6 308.8 0.76 ± 0.018 0.901 5.31 0.18 

 
during different phenological stages (e.g. anthesis, 
flowering, veraison, and repining). In total, 1,630 healthy 
leaves (about 200 leaves per genotype) were measured for 
LA, L, and W in the calibration experiment (e.g. model 
building) coming from eight genotypes: ‘Big Perlon’, 
‘Black Magic’, ‘Crimson’, ‘Michele Palieri’, ‘Red Globe’, 
‘Sugraone’, ‘Victoria’, and ‘Vitroblack’. These genotypes 
were selected as a representative sampling of many grape-
vines cultivated in the Mediterranean region (Spain, Italy, 
Tunisia, Algeria, and Morocco). For model validation, 
around 200 leaves of the genotype ‘Italia’ were used to 
determine LA, L, and W. Immediately after cutting, 
leaves were sealed in plastic bags and transported to the 
laboratory. The maximum leaf L (from lamina tip to the 
point of the petiole intersection to the midrib), and leaf W 
(the widest linear length perpendicular to the midrib) 
were measured by a ruler (Fig. 1). Values of L [cm] and 
W [cm] were rounded to the nearest 0.1 cm. The area of 
each leaf (LA) was measured using an area meter (LI-3100, 
LICOR, Lincoln, NE, USA) calibrated to 0.01 cm2. 
 
Methodology and statistical analysis: Before model cali-
bration, twelve individual LA estimation models proposed 
 

 
 
Fig. 1. Grapevine (Vitis vinifera L.) leaf showing the position of 
leaf length (L) and width (W) measurements. 

previously for grapevine (Table 1) were evaluated for LA 
prediction with the nine genotypes used in the current 
experiment. 

For model construction, the dependent variable LA 
was regressed on the independent variables L, W, L2, W2, 
and the product LW. The relationships were evaluated by 
fitting regression models with the linear regression pro-
cedure of SPSS (SPSS Inc., Chicago, IL, USA) and the 
stepwise elimination option, as reported by Jiménez and 
Díaz (2003a). The internal validity of the models was tested 
by the coefficient of determination (r2), mean square error 
(MSE), error sum of squares (SSE), predicted residual 
error sum of squares (PRESS). Residual plots were used 
to evaluate whether the data points in the residual plot 
were scattered within a constant width horizontal band 
centered around zero for an adequate regression model 
(Weisberg 1985). The final model was selected based on 
the combination of the highest r2, the lowest MSE, the 
lowest PRESS, and when the PRESS values were reason-
ably close to SSE. These criteria allowed us to evaluate 
the occurrence of bias and the precision and accuracy of 
the models (Walther and Moore 2005). Individualized 
models for each genotype were built. In addition, 
Shapiro-Wilk statistic test result revealed that data pooled 
from all genotypes showed normal distribution. For this 
reason, data were pooled and a single relationship was 
calculated to develop LA prediction model for V. vinifera. 
Moreover, using two measurements (L and W) introduced 
potential problems of collinearity, resulting in poor 
precision in the estimates of the corresponding regression 
coefficients. For detecting collinearity, the variance 
inflation factor VIF = 1/(1 – r2) (Marquardt 1970) and the 
tolerance values T = 1/VIF (Gill 1986) were calculated, 
and the following constraint was taken into consideration: 
if the VIF value was higher than 10 or if T value was 
smaller than 0.10, then collinearity may have more than a 
trivial impact on the estimates of the parameters, and 
consequently one of them should be excluded from the 

model (Cristofori et al. 2007, Fallovo et al. 2008). 
In addition to validate the developed model and to 

assess the robustness, a validation experiment was 
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conducted on leaf samples of ‘Italia’ genotype in 2011 
growing season. Two hundred leaves of ‘Italia’ genotype 
were used to determine LA and leaf L and W by the pre-
viously described procedures. This genotype was selected 
as the most representative grapevine genotype cultivated 
in Italy.  

Two techniques reported by Jiménez and Díaz (2003a), 
and Jiménez and Díaz (2003b) were used to validate the 
models: (1) the validation data set was used to produce 
a validation model by re-estimating the model parameters 
using the stepwise regression option approach to develop 
the estimation model and the models were compared for 
consistency; (2) regression parameter estimates from the 
estimation models were used to predict outcomes for 
observations in the validation data set and then the mean 
squared prediction error (MSPR) was calculated and 

compared with the MSE of the regression fit to the model 
building data set (Neter et al. 1996). In order to compare 
the predicted LA (PLA) to the observed LA (OLA) for 
the genotype ‘Italia’, graphical procedures (Bland and 
Altman 1986) were used. Plots of values for the PLA 
against the OLA are presented (Fig. 2). GLM (general 
linear model) procedure of SPSS was used to evaluate the 
linear relationship for OLA and PLA. Values for PLA 
were subtracted from OLA for the genotype ‘Italia’ and 
differences were plotted against the OLA for each of 
them. Lack of agreement was evaluated by calculating the 
relative bias, estimated by the mean of the differences (d) 
and the standard deviation (SD) of the differences (Fig. 2). 
Normality (Gaussian distribution) test was carried out to 
obtain a Shapiro-Wilk statistic using examines procedure 
of SPSS (Marini 2001). 

 
Results and discussion 
 
Leaf data analysis and collinearity test: Leaf area of the 
grapevine leaves ranged between 10.2 to 540 cm2, L from 
3.1 to 25 cm, and W from 4.2 to 28 cm (Table 2). Across 
all genotypes, ‘Victoria’ had the highest average LA 
(204 cm2), whereas, the genotype ‘Crimson’ had the 
smallest average LA (116 cm2). One of the leaf shape traits 
was also the L:W ratio. In the current experiment, the L:W 
ratio of the V. vinifera genotypes ranged between 0.72 
and 0.80, with the widest leaves recorded for ‘Victoria’, 
whereas genotypes ‘Big Perlon’ and ‘Sugraone’ had the 
narrow leaves (Table 2). Moreover, for detecting 
collinearity, the VIF and the T values of grapevine 
genotypes were analyzed. Across all genotypes, the VIF 
ranged from 3.69 to 6.14, whereas the T values ranged 
from 0.16 to 0.27 (Table 2), indicating that the collinear-
ity between the two measurements (e.g. L and W) can be 
considered negligible (Gill 1986), since VIF was lower 
than 10 and T higher than 0.10 and consequently both 
L and W could be included in the calibration model 
(e.g. model construction).  
 
Model construction: Separate regression models that 
estimate LA, from L, W, and the product LW were not 
significantly different between the eight genotypes for the 
linear LW model that we developed in our experiment 
(data not shown). The L, W, and LA data of these geno-
types were pooled and single regression models were fit 
to the combined data (Table 3). Regression analysis 
demonstrated that there were significant relationships 
between LA, and L, W, LW, the square of length (L2), and 
the square of width (W2). Analysis of model deviation 
showed that among the twelve models of individual LA 
estimation previously proposed for grapevine, two models: 
(5) LA = –3.01 + 0.85 (L × W) (Elsner and Jubb 1988) 
and (12) LA = 18.379 L – 151.41 (Tsialtas et al. 2008), 
reported high precision, but they were biased, which leads 
to a significant underestimation of individual LA. For 

instance, the model developed by Elsner and Jubb (1988) 
underestimates in average the LA in about 9%, whereas 
the model developed by Tsialtas et al. (2008), underesti-
mates in average the LA in 18%. However, when the 
accuracy is not a matter, the model proposed by Tsialtas 
 

 
 

Fig. 2. Plot of predicted leaf area (PLA) using LW model  
(LA = –0.465 + 0.914 L × W) vs. observed values of single leaf 
areas (OLA) for ‘Italia’ genotype (validation experiment). Solid 
line represents linear regression lines of LW model. Dotted lines 
represent the 1:1 relationship between the predicted and 
observed values. The analysis of dispersion pattern of residuals 
for LW model is shown in the inset. The solid line is the mean 
of the differences. The broken lines are the limits of agreement, 
calculated as d ± 3 SD; where d is the mean of the differences, 
and SD is the standard deviation of the differences. If the 
differences are normally distributed, 97% of the differences in 
a population lie between the limits of agreement. 
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Table 3. Fitted constant (a) and coefficient (b) of the models used to estimate the individual grapevine leaf area (LA in cm2) from leaf 
length (L) and leaf width (W) measurements. Coefficient of determination (r2), mean square errors (MSE), predicted residual error 
sum of squares (PRESS), and error sum of squares (SSE) of the various models are also given. L and W were in cm. All data were 
derived from the model construction (calibration experiment, sampled in 2010; 1,630 leaves).  
 

Model No. Form of model tested Fitted coefficient and constant r2 MSE [cm2] PRESS [cm2] SSE [cm2] 
  a [cm2] b      

1 LA = a + b L –88.599 ± 2.455 20.758 ± 0.195 0.884 1,254.2 2.047.542 2.041.810 
2 LA = a + b W –112.92 ± 4.09 20.075 ± 0.292 0.754 2,547.9 4.157.678 4.147.960 
3 LA = a + b (L  W)   –0.465 ± 0.718   0.914 ± 0.004 0.986    240.2    392.825    391.094 
4 LA = a + b L2     38.57 ± 1.576   0.738 ± 0.008 0.865 1,547.0 2.528.175 2.518.510 
5 LA = a + b W2     38.57 ± 1.576   0.738 ± 0.008 0.765 1,547.0 2.528.175 2.518.510 

 
et al. (2008) could be adopted, because of its simplicity 
and convenience, as it only involves one variable (leaf L). 
As stated by Robbins and Pharr (1987), model selection 
requires a balance between predictive qualities of the 
model (e.g. r2) and the economy of including the least 
number of variables necessary to predict LA (e.g. L or 
W). Overall, the models (1 to 12) proposed by the other 
authors (Table 1) are simple with relatively high r2. 
However, these models were developed for a reduced 
number of genotypes and only in a few cases a validation 
experiment was carried out. It is well established that 
model calibration based on a high number of genotypes is 
very important, since a leaf shape (L:W ratio) may vary 
among different genetic materials (Stoppani et al. 2003, 
Rouphael et al. 2010a). Moreover, the amplitude of 
leaves used in our experiment were 10540 cm2 compared 
to 10350 cm2, 10360 cm2, and 150180 cm2 proposed 
by Montero et al. (2000), Williams and Martinson (2003), 
and Tsialtas et al. (2008), respectively; these differences 
might be responsible for the lower accuracy of the former 
models. Finally, the previous models (1–12) were 
selected based on the highest r2 between observed and 
predicted values and the lowest mean square deviation 
(MSD), but this is inappropriate procedure, because high 
correlations do not indicate that the predicted values 
agree with the observed ones (Bland and Altman 1986), 
and consequently the examination of residual plots is 
required to detect model deficiency in regression analysis. 

Among the five models developed in the current 
experiment (Table 3), the best one was chosen according 
to the selection criteria described in the Materials and 
methods (higher r2, lower MSE, lower PRESS, and when 
the PRESS values were reasonably close to SSE). This 
study demonstrated that model with a single measurement 
of W or W2, was less acceptable for estimating the 
individual LA of grapevine due to the lowest r2, higher 
MSE, and higher PRESS value. Our results are in contrast 
to those of Rouphael et al. (2006) on zucchini squash, 
Rouphael et al. (2007) on sunflower, Olfati et al. (2010) 
on red cabbage, and Zhang and Liu (2010) on Bergenia 
purpurascens, who observed that W is a suitable variable 
to estimate the individual LA. An improvement in the 
accuracy of the model was observed when L was used as 

independent variable (Table 3). LA prediction models, 
based on L measurements have already been proposed for 
different grapevine cultivars, such as ‘Grenache’ (Manivel 
and Weaver 1974), ‘White Riesling’ (Schultz 1992), ‘Cen-
cibel’ (Montero et al. 2000), and ‘Cabernet-Sauvignon’ 
(Tsialtas et al. 2008). The model with the single measure-
ment of L could be considered an interesting option 
because it requires measurement of only one variable, 
thus simplifying measurement procedures (Robbins and 
Pharr 1987). Moreover, when using the L model, there is 
obviously no need to measure W, which is not easy to 
measure, because of the need to consider an imaginary 
perpendicular line to the leaf L; it causes inaccurate 
measurements (Antunes et al. 2008, Pompelli et al. 2012). 
To find a model to estimate individual LA accurately for 
V. vinifera independently of genotypes, both measure-
ments of L and W should be involved (e.g. LW model). We 
preferred this linear model [LA = –0.465 + 0.914 (L × W)] 
for its accuracy: highest r2

 (> 0.98), smallest MSE, smallest 
PRESS, and the reasonably close PRESS value to SSE 
(Table 3). In the current study, the PRESS value of 
grapevine was reasonably close to SSE for the LW 
equation (Table 3), and supports the validity of the fitted 
regression model and of the MSEs as an indication of the 
predictive capability of this model (Neter et al. 1996). 
Consequently, involving both dimensions (L and W) was 
necessary to estimate grapevine LA accurately. This is in 
agreement with previous studies on cucumber (Blanco 
and Folegatti 2005), broccoli (Stoppani et al. 2003), 
sweet pepper (de Swart et al. 2004), and hazelnut 
(Cristofori et al. 2007). The former authors concluded 
that models based on the product LW gave a better 
prediction of LA than models based on either L or W 
alone. 
 
Model validation: For validation of the accuracy and 
robustness of the LW model, the validation experiment 
was conducted in 2011 growing season, with an indepen-
dent data set coming from another genotype (‘Italia’). 
The regression coefficients for LW of the estimation and 
validation models were not significantly different, and the 
r2 values were similar for both models (0.91 vs. 0.90) 
(Table 4), indicating the applicability of the proposed LW 
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model to data beyond those on which the model was 
based (Neter et al. 1996). Moreover, regression parameter 
estimates from estimation models were used to predict 
outcomes for observations in the validation data set and 
then the mean of the squared prediction errors (MSPR) 
was calculated (Jiménez and Díaz 2003a). If the MSPR is 
fairly close to the MSE based on the regression fit to the 
estimation data set, then the MSE for the selected regression 
model is not seriously biased and gives an appropriate 
indication of the predictive ability of the model. In the 
current study, the MSPR from the validation data set for 
grapevine LA did not differ greatly from the MSE of the 
estimation data set (Table 4). This implies that the MSE 
based on the estimation data set is a reasonably valid 
indicator of the predictive ability of the estimation 
regression model (Neter et al. 1996). In the model 
validation, correlation coefficients showed that there was 
a highly reliable relationship between PLA and OLA, 
giving an overestimation of 0.8% in the prediction 
(Fig. 2). However, as stated above, correlation is insuffi-
cient analysis to explain the relationship between PLA 
and OLA and plotting the residuals (differences between 
PLA and OLA) against OLA might be more informative 

(Bland and Altman 1986, Marini 2001). Plotting differ-
ences against the OLA value also allows investigation of 
possible relationships between a measurement error and 
the true values. Lack of agreement between estimated 
PLA and OLA can be evaluated by calculating the bias, 
estimated by the mean of the differences (d) and the SD 
of the differences. In Fig. 2, a solid line represents the 
mean of the differences. If the differences are normally 
distributed, 97% of the differences lie between d ± 3 SD, 
which is the case in the current study, where a few plots 
were out of these lines, while the rest of the plots were 
placed between the lines. 
 
Conclusions: The rapid and simple model [LA = –0.465 + 
0.914 (L × W)] was developed to predict the leaf area for 
V. vinifera. This model was chosen for its simplicity and 
accuracy to estimate the individual LA of grapevine 
irrespective of genotypes, leaf developmental stages, and 
sizes. The use of this linear model would be an effective 
tool to predict LA, without the use of any expensive 
instruments, in various physiological grapevine experi-
ments, where destructive LA measurement is not desirable. 

 
Table 4. Statistics and parameter estimates from a regression model for individual leaf area (LA, cm2) estimation. The estimation 
model was developed from eight grapevine genotypes sampled in 2010. The validation model was developed from one grapevine 
genotype (‘Italia’) sampled in 2011. 
 

Statistic or parameter estimate Estimation model Validation model 

Intercept –0.465 0.143 
Standard error of intercept 0.718 0.910 
Regression coefficient for L  W 0.914 0.906 
Standard error of regression coefficient 0.004 0.008 
Prediction sum of squares (PRESS) 392,825 - 
Error sum of squares (SSE) 391,094 9,059.90 
Mean squared prediction error (MSPR) - 61.50 
Mean square error (MSE) 240.23 59.25 
Coefficient of multiple determination r2 0.9859 0.9860 
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