
Vol.:(0123456789)

Philosophical Studies
https://doi.org/10.1007/s11098-024-02173-z

Updating on the evidence of others

Richard Pettigrew1 · Jonathan Weisberg2 

Accepted: 25 May 2024 
© The Author(s) 2024

Abstract
One often learns the opinions of others without getting to hear the evidence behind 
them. How should you revise your own opinions in such cases? Dietrich (2010) 
shows that, for opinions about objective chance, the method known as upco effec-
tively adds your interlocutor’s evidence to your own. We provide a simple way of 
viewing upco that makes properties like Dietrich’s easy to appreciate, and we do 
three things with it. First, we unify Dietrich’s motivation for upco with another moti-
vation due to Easwaran et al. (2016). Second, we show that laypeople can sometimes 
use upco to resolve expert disagreements. And third, we use it to cricitize the social 
argument for the uniqueness thesis.

1 Introduction

One often hears opinions without getting to hear the evidence behind them. 
Researchers report conclusions without sharing the underlying data; news stories 
omit testimony and statistics they relied on; and acquaintances share impressions, 
the basis for which they’ve long since forgotten. How should we modify our own 
opinions in these cases? 

In this paper we study the method known as upco, or multiplicative pooling. 
As several authors have noted, when the opinions being combined concern objec-
tive chances, upco effectively aggregates the evidence behind those opinions 
(Dietrich, 2010; Morris, 1983; Winkler, 1968). In other words, using upco to fold 
someone else’s opinions into your own is equivalent to conditionalizing on the 
evidence behind their opinion, in certain cases. 

We provide a simple way of working with upco that makes its evidence-
aggregating abilities especially easy to appreciate and work with. Then we apply 
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this perspective to three areas of philosophical interest. First, we unify upco’s 
evidence-aggregating powers with another motivation for upco offered by Eas-
waran et al. (2016). Second, we identify cases where laypeople can use upco to 
resolve disagreements between experts. And third, we criticize an argument for 
the uniqueness thesis.

2  Background

If you assign to some proposition H the probability P(H), and someone else 
reports a different probability Q(H), a natural thought is to split the difference. 
That is, you might take the midpoint

as your new probability for H. This is known as linear pooling. Linear pooling is 
intuitive and simple, but often gives undesirable results.

To illustrate, suppose you and a friend are interested in a coin of unknown 
bias. You both begin with a uniform prior over the [0,  1] interval. Then, sepa-
rately, you each perform 20 flips of the coin in private. Suppose you get 5 heads 
and they get 15. Then your posterior over the coin’s bias will be the blue curve in 
the left panel of Fig. 1, and theirs will be the purple curve. Combining these pos-
teriors by linear pooling gives the camel shaped curve in red. 

This is quite different from conditionalizing on the evidence behind your 
friend’s posterior. That would yield the dotted curve in black instead. That’s the 
distribution you’d get by conditionalizing your prior on the aggregate evidence, 
namely 5 + 15 = 20 heads out of 40 flips total.

How can we combine the blue and purple curves to get the desired, dotted curve? 
By multiplying instead of adding. Rather than add Q(H) to your P(H) and divide by 
2 to renormalize, instead multiply P(H) by Q(H), then renormalize (Winkler, 1968).

P(H) + Q(H)

2

Fig. 1  When pooling over hypotheses about the bias of a coin, linear pooling (red) has undesirable 
results, while upco (green) aggregates evidence
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The renormalization step is a bit subtler now; it will depend on just which opin-
ions Q shares with you. If you only learn their opinion about H and its negation H , 
then the total amount of pre-normalization probability is P(H)Q(H) + P(H)Q(H) . 
So you must divide by this sum to renormalize. This makes your new opinion about 
H:

We will use the notation PQ(H) for this new opinion, as a mnemonic for its multipli-
cative origin.

In general, when Q shares their opinions over a countable1 partition {Hi} , your 
new opinion about each Hi will be:

This way of combining opinions is known as multiplicative pooling (Dietrich, 2010), 
or upco (Easwaran et al., 2016). We’ll often write PQ for the distribution over {Hi} 
that it generates.

Notice that, for this operation to be defined, the denominator cannot be zero. So 
there must be at least one Hi to which both parties assign positive probability. Oth-
erwise, their opinions are too incompatible to be multiplicatively combined. Linear 
pooling does not have this limitation though, and it has at least one other advantage 
as well.

Addition and multiplication are both simple, familiar functions that increase with 
both arguments. But linear pooling ends up being simpler than upco, because the 
denominator is always 2. Since the sum of probabilities over a partition is always 
1, summing the terms P(Hi) + Q(Hi) over any partition {Hi} always yields the same 
value, 2. Whereas the sum of products P(Hi)Q(Hi) varies depending on the partition, 
and on the ways P and Q are distributed over that partition.2

And yet, upco turns out to have many desirable properties, a number of which are 
laid out by Easwaran et al. (2016). Our purpose in this section is to illustrate another 
desirable feature due to Winkler (1968) and, in more general form, Dietrich (2010). 
This feature emerges when the Hi are chance hypotheses—about the bias of a coin, 
for example.

In the right-hand panel of Fig. 1, upco combines the blue and purple curves to 
give the desired green curve. More generally, it effectively conditionalizes P’s poste-
rior on Q’s data no matter how many heads and tails each has seen.3 For example, in 
Fig. 2, P’s posterior is based on only 10 flips, while Q’s is based on 20. The dashed 

P(H)Q(H)

P(H)Q(H) + P(H)Q(H)
.

PQ(Hi) =
P(Hi)Q(Hi)

∑

j P(Hj)Q(Hj)
.

1 In the continuous case, the probabilities become probability densities and the sum becomes an integral.
2 This advantage is reversed, however, if we work on the odds scale, rather than the probability scale. 
Then upco amounts to simple multiplication, without any need for mucking around with normalizing 
constants: if we let OP(H) = P(H)∕P(H) , then OPQ(H) = OP(H)OQ(H).
3 (Winkler 1968, B64–5) and (Morris 1983, Sect.  6) make similar observations; see also Babic et  al. 
(manuscript).
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curve is the posterior for their aggregate evidence, and the upco curve in green coin-
cides perfectly.

How general is this feature of upco? When can it be used to effectively aggregate 
evidence? To a first approximation the answer is: when the Hi are chance hypotheses 
that render P’s evidence independent of Q’s (Dietrich, 2010). But this answer needs 
to be developed and refined. The next three sections undertake this development. 
Later sections then use the results to illuminate further questions.

3  A special case

Two features of the coin tossing example contribute to upco’s success. The first 
is that Q had a uniform prior over {Hi} , though we’ll see how to do without this 
assumption later. The second, more essential feature is that tosses are independent 
once we specify the coin’s true bias.

In the general case, the evidence being aggregated can be anything. The impor-
tant thing is that we can think of the Hi as chance hypotheses according to which P’s 
evidence is independent of Q’s. That is, each Hi posits a chance function Ci such that 
Ci(EF) = Ci(E)Ci(F) , where E and F are the bodies of evidence gathered by P and 
Q, respectively. Assuming P and Q defer to these chances per the Principal Principle 
(Lewis, 1980), the following two conditions hold:

When these conditions hold, and Q’s prior is uniform, P can use upco to effectively 
conditionalize on Q’s evidence.

(1)P(EF ∣ Hi) = P(E ∣ Hi)P(F ∣ Hi),

(2)P(F ∣ Hi) = Q(F ∣ Hi).

Fig. 2  Upco works even when one agent has more evidence, e.g. 20 observations vs. 10
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We’ll use the shorthand PE for P’s posterior. In other words, PE is the prob-
ability function defined by PE(−) = P(− ∣ E) . Likewise QF is Q’s posterior: 
QF(−) = Q(− ∣ F) . In this notation, the upco of P’s and Q’s posteriors is denoted 
PEQF . The formal statement of our first result—which is a special case of Dietrich’s 
(2010) Theorem 1—is then as follows (see the Appendix for all proofs):

Proposition 1 Let Q be uniform over a partition {Hi} such that (1) and (2) hold for 
all Hi . Then for all Hi , PEQF(Hi) = P(Hi ∣ EF).

Informally speaking, using upco to combine P’s and Q’s posteriors is equivalent to 
conditionalizing P’s posterior on Q’s evidence, assuming (i) a uniform prior for Q, 
and (ii) chance hypotheses that render P and Q’s data independent.

If we think of E and F as the outcomes of separate experiments, then assump-
tion (ii) is natural, and common in actual practice. Chance hypotheses typically 
posit independent and identically distributed data, as in the coin tossing example we 
began with. But whether data are discrete or continuous, i.i.d. outcomes are a stand-
ard modeling assumption.

The restriction to chance hypotheses is significant, though. For example, sup-
pose in the coin tossing case that Q were to report their opinion about heads on 
the next toss, rather than their opinions about the bias. Then Eq. (1) would fail, and 
upco would no longer serve to aggregate P’s evidence with Q’s. Instead, a slightly 
adjusted version of linear pooling would do the job.4

What about assumption (i)? What if Q’s prior isn’t uniform over {Hi} ? We’ll gen-
eralize Proposition 1 to address this case below. But first we need to establish some 
useful properties of upco, which we’ll use repeatedly in the rest of the paper. The 
next section lays out these properties, then the following section applies them to the 
case of a non-uniform prior for Q.

4  The algebra of upco

When we introduced upco, we chose the notation PQ to evoke multiplication. In 
this section we’ll push the multiplication analogy further. We’ll see that we really 
can think of upco as a product operation, multiplying one distribution P by another 
Q, to give a new distribution PQ. This product operation obeys the same algebraic 
laws as the familiar multiplication operation on numbers, e.g. it is commutative and 

4 Assuming P and Q have each observed n heads, the relevant function is

This function converges to linear pooling as n → ∞ . But unlike linear pooling, it is not convex. So it 
escapes the impossibility result due to Zhang (manuscript) discussed in Sect. 6.

P(H) + Q(H)

2

(

n + 2

n + 1

)

−
1

2(n + 1)
.
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associative. And, crucially, this same product operation also captures updating by 
conditionalization.

Looking at the definition of upco on page 899, it’s fairly straightforward to verify 
that PQ = QP for any P and Q. In other words, upco is a commutative operation. 
With a bit more work, we can further verify that upco is associative too. That is, 
whether we combine P with Q and then with R, or first combine Q and R and then 
with P, the result is the same: P(QR) = (PQ)R.5

When multiplying numbers, the value 1 has a special role: multiplying by 1 has 
no effect, x ⋅ 1 = x . The6 uniform distribution behaves similarly under upco: pooling 
an arbitrary P with the uniform distribution just returns P. That is, PU = P , where 
U is uniform over {Hi}.7 In the terminology of algebra, U is the identity element for 
the upco operation.

Another key fact about multiplying numbers is that, as long as x is nonzero, it 
has an inverse. There exists a number x−1 = 1∕x such that x ⋅ x−1 = 1 . Again, some-
thing similar is true for upco. As long as P is “regular,” it has an inverse. That is, 
if P assigns no zeros over {Hi} , then there is another distribution P−1 such that 
PP−1 = U . In fact, this inverse is obtained by associating with each Hi the value 
1∕P(Hi) , and then renormalizing.8

So upco induces a genuine algebra on probability distributions. Like multipli-
cation for numbers, upco “multiplies” distributions in a way that is commutative, 
associative, possesses an identity element (the uniform distribution), and provides 
an inverse to every nonzero distribution.9

This would all be just a neat bit of abstraction, but for one further fact. Crucially, 
conditionalization is the very same product operation as upco. Conditionalizing P 
on E is equivalent to taking the upco of P’s prior distribution over {Hi} , and another 
distribution corresponding to P’s likelihood function, P(E ∣ −).

We will write EP for the normalized likelihood function of E according to P. That 
is, EP is the following probability distribution over {Hi}:

5 Notice that these properties are trivial if we work with odds rather than probabilities. Then upco 
just amounts to scalar multiplication (see footnote 2), which is of course commutative and associative. 
Similar remarks apply to the other properties of upco developed in the rest of this section: all are much 
more obvious on the odds scale. One way to think about the main result of this section, Proposition 2, 
is that it simply verifies these properties for the probability scale. This saves us the work of having to 
constantly translate between odds and probabilities in the rest of the paper, where we discuss ideas and 
results commonly presented in the probabilistic format.
6 Many different probability functions can be uniform over {Hi} , but they all share the same distribution 
over {Hi} . So we can speak of “the” uniform distribution. The Appendix handles these matters more 
rigorously, but we allow ourselves some sloppiness in the main text for readability.
7 Technically PU is only defined over {Hi} , while P may be defined over a larger algebra. Again, we 
handle this rigorously in the Appendix, but permit some slack here to ease the exposition.
8 So P−1(Hi) = P(Hi)

−1∕
∑

j P(Hj)
−1.

9 So the regular distributions form an abelian group, with upco as the product operation.
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Where P is the prior distribution over {Hi} , and PE the posterior, the crucial equiva-
lence between conditionalization and upco is captured by the following equation:10

This tells us that P’s posterior over {Hi} can be factored into a prior distribution and 
a likelihood distribution. Which is important, because these factored terms can then 
be moved around thanks to commutativity and associativity, and even canceled in 
some cases thanks to the existence of inverses.

But first, let’s pause to summarize these properties of upco’s algebra.

Proposition 2 Fix a partition {Hi} and write PQ for the upco of P and Q over {Hi} . 
Let U be uniform over {Hi} , and let P, Q, and R be arbitrary. Then 

(a) PQ = QP,
(b) P(QR) = (PQ)R,
(c) PU = P,
(d) PP−1 = U , provided P(Hi) > 0 for all Hi so that P−1 is well-defined, and
(e) PE = PEP , where EP is given by Eq. (3).

In the next section, we’ll use these properties to address the epistemological prob-
lem that P faced at the end of Sect. 2.

5  When Q is not uniform

Recall where we left things at the end of Sect. 2. If Q’s prior was uniform over {Hi} 
and Eqs. (1) and (2) hold, then P can use upco on Q’s posterior to effectively con-
ditionalize on their evidence. The problem we left off with was: what if Q’s prior 
wasn’t uniform? Can P still use upco to acquire Q’s evidence?

There are two cases to consider. If P knows what Q’s prior was, then a simple 
adjustment to the upco calculation used in Proposition 1 solves the problem. But 
if P doesn’t know Q’s prior, things are trickier. P can still use upco to acquire Q’s 
evidence, but only if they take Q’s prior seriously, in a certain sense we’ll explain 
below. But let’s handle the easy case first.

(3)EP(Hi) =
P(E ∣ Hi)

∑

j P(E ∣ Hj)
.

PE = PEP.

10 Strictly speaking, it’s the restriction of PE to {Hi} that’s equal to PEP . But again, we permit ourselves 
some slack here, leaving a fully rigorous treatment for the Appendix.
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5.1  When Q is known

Suppose that P does know what Q’s prior was. Then all they have to do is include 
its inverse Q−1 in their upco calculation, to cancel out the offending prior Q. That is, 
in addition to “multiplying” their posterior PE by Q’s posterior QF , they must also 
multiply by Q−1.11 Then the algebraic properties developed in Sect. 3, together with 
assumptions (1) and (2), deliver:12 

In other words, taking the upco of P(− ∣ E) , Q(− ∣ F) , and Q−1 is equivalent to con-
ditionalizing P’s prior on the aggregate evidence EF:

Proposition 3 Let {Hi} be a partition such that conditions (1) and (2) hold, and 
Q(Hi) > 0 for all Hi . Then for all Hi , PEQFQ

−1(Hi) = P(Hi ∣ EF).

Notice that Proposition 1 is a special case of this result: when Q is uniform, so 
is Q−1 , so this term drops out. Indeed, Proposition 3 is in turn a special case of 
Dietrich’s (2010) Theorem 1, alluded to earlier.

Nevertheless, Proposition 3 merits independent statement here, because it con-
cerns an epistemologically distinct case of interest. It also illustrates the value of the 
algebraic perspective introduced by Proposition 2. Using that perspective, we can 
grasp epistemologically significant features of upco like Proposition 3 in just a sin-
gle line of elementary algebra, as above.

One might question the epistemological interest of Proposition 3 on the grounds 
that P is unlikely to know what Q’s prior was. And it is important to acknowledge 
that, quite often, we only get to hear what someone thinks now, and not what they 
thought in the past.

Still, cases where Q’s prior is known may not be so uncommon. After all, Q 
might simply tell P what their prior was; it’s not unusual to share one’s perspective 
by saying something like, “I used to think X, but over time I’ve come to think Y 
instead.” Often it’s too hard to articulate all the evidence and experience that led 
to such a shift in opinion, so instead we describe the shift itself, and hope that this 

PEQFQ
−1 = PEPQFQQ

−1 = PEPFQ = PEPFP = PEF.

11 This solution requires some extra computation, but not as much as it first appears. To obtain 
P(Hi ∣ EF) , it looks like P must first take the upco of their posterior with Q’s posterior, then calculate 
the inverse of Q’s prior, and then upco with that. But actually, the following much simpler calculation is 
equivalent:

So the only real cost is an extra division operation for each Hi . Otherwise, the computation is identical to 
the case where Q’s prior is uniform.

PE(Hi)QF(Hi)∕Q(Hi)
∑

j PE(Hj)QF(Hj)∕Q(Hj)
.

12 The first equality uses property (e) from Proposition 2; the second uses (a), (c), and (d); the third uses 
assumption (2); and the last combines assumption (1) with property (e).
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conveys the kind of information that led to it. Proposition 3 can then guide P’s 
interpretation of such a shift, when the topic concerns chance hypotheses.

There are other cases, too. For example, if there is a conventional prior commonly 
used in a certain domain or scientific field, then P might be able to count on Q hav-
ing proceeded from that prior. Or, P might have good reason to think that Q’s prior 
was the same as their own, if e.g. they have similar cultural backgrounds, epistemic 
tendencies, cognitive traits, etc.

Of course, P might only have an approximate idea of what Q’s prior was in these 
kinds of cases. But—except in formal modeling contexts where probabilities are 
communicated precisely—the same will typically be true for Q’s posterior. In most 
real-world cases, the opinions of others are never known exactly. So the entire pro-
ject of using precise probabilistic rules to treat the problem of learning from the 
opinions of others is only an idealized model. Nevertheless, this idealized model can 
be useful in applications, where it can be used as an approximation. And it has theo-
retical interest, as we’ll see in later sections.

5.2  When Q is not known

Now let’s turn to the trickier case: suppose P does not know what Q’s prior was. So 
P can only apply upco to the posteriors P(− ∣ E) and Q(− ∣ F) . This yields

which says that taking the upco of the posteriors is still equivalent to conditionaliz-
ing on the aggregate evidence EF, except that the prior being conditionalized isn’t P, 
but PQ—the upco of P’s prior with Q’s.

Proposition 4 Let {Hi} be a partition such that P and Q satisfy conditions (1) and 
(2). Then for all Hi , PEQF(Hi) = PQ(Hi ∣ EF).13

Like Proposition 3, this result has Proposition 1 as a special case (this time the rea-
son is that PQ = P when Q is uniform). And also like Proposition 3, Proposition 4 is 
itself a special case of Dietrich’s (2010) Theorem 1.

Informally, Proposition 4 says that, when P doesn’t know Q’s prior, they must 
compromise with Q to acquire their evidence via upco. Rather than conditionalizing 
P’s prior on the aggregate evidence, upco will first combine their prior with Q’s, and 
then conditionalize on EF.

This compromise can be desirable, however. Often we aren’t just interested 
in someone’s opinion because they have some evidence that we don’t. We may 
also think their interpretation of the evidence applies some insight, which our 

PEQF = (PQ)(EF)P,

13 Strictly speaking, PQ is only defined over the partition {Hi} : it’s only a partial probability function, 
which can’t be conditioned on EF. But it’s straightforward to extend it using the Principal Principle. Each 
Hi specifies a chance Ci(EF) , which serves as the likelihood term PQ(EF ∣ Hi) in Bayes’ theorem. So we 
will talk as if PQ(Hi ∣ EF) is defined.
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interpretation misses out. In Hall’s (2004) terminology, P may partially defer to Q 
because they have some analyst expertise, not merely database expertise.

To illustrate, suppose that P and Q are contemplating the objective chance of 
some novel event. Neither of them has any relevant experience or data, so they must 
rely on purely a priori considerations. After some reflection, P favours a higher 
chance, Q a lower one. Specifically, their priors are the blue and purple lines in 
Fig. 3, respectively.14

Now suppose that P learns about Q’s prior. Based on what they know of Q’s epis-
temic prowess, they take Q’s opinions here seriously. Not so seriously that they will 
simply adopt Q’s prior in place of their own. But seriously enough to adjust their 
own prior in light of Q’s. One possible adjustment is the compromise in green in 
Fig. 3, arrived at by upco. Then, upon learning that Q favours lower chances, P will 
dampen their expectations about the novel event in question.

But why might P adopt this particular compromise? Why not e.g. split the differ-
ence instead, making their revised prior the uniform one?

Well, P’s prior was based on some a priori reason or argument for thinking that 
the chance of the event in question is high. So when they see Q’s prior, they rec-
ognize it as the result of some similar a priori consideration, but favouring a low 
chance instead of a high one.

Now, in this particular example, the force of this a priori consideration of Q’s is 
exactly equivalent to observing one prior chance event of the sort in question, and 
finding it negative. More precisely, Q’s prior in purple is what you’d get as a poste-
rior if you started with a uniform prior and observed one negative outcome.

So a natural way for P to respond to Q’s prior is to combine Q’s negative a pri-
ori insight with their own positive one, by updating as if they’d observed one prior 
instance of the sort of chance event in question and found it negative. And this is 

Fig. 3  A possible compromise between two priors

14 P’s prior in blue is a Beta(2, 1) , and Q’s prior in purple is a Beta(1, 2) . The upco compromise in green 
is thus a Beta(3, 3).
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equivalent to using upco to combine their blue prior with Q’s purple one, to arrive at 
the green compromise.

In general, the idea here is to treat a priori considerations as if they were empiri-
cal data. When this analogy is apt, combining the a priori insights of others with 
your own is a matter of combining their “virtual data” with your own. And combin-
ing data is what upco does.

So the compromise that Proposition 4 requires between P’s prior and Q’s will be 
apt in such cases. In fact, we’ll see in the next section that this compromise is what 
P would adopt upon learning Q’s prior, when the proposed analogy holds. More 
precisely, whenever Q’s prior matches the posterior you’d get by conditionalizing 
a uniform prior on data, then applying upco is equivalent to conditionalizing on 
the fact that Q holds that prior. Stated in the case of a two-cell partition {H,H} for 
simplicity,

when Q’s prior Q(H) = q can be viewed as if it derived from a uniform ur-prior by 
conditionalizing on data.

So even though Proposition 4 requires P to first adopt the compromise PQ before 
updating on the aggregate data EF, this might in fact be precisely what P wants. The 
compromise PQ might be just the prior they would have adopted if they had known 
what Q’s prior was.

That said, there are certainly cases where this compromise is not one that P would 
endorse. After all, P might think Q’s prior isn’t worth taking seriously at all. Or they 
might take it so seriously that they would abandon their own prior entirely and adopt 
Q’s instead if they knew what it was. And even in cases where they would instead 
compromise with Q, it needn’t be the particular compromise that upco generates. 
The analogy between a priori considerations and empirical data needn’t hold. We 
only claim that, when it does, Proposition 4 shows upco to have desirable results.

6  Updating on the credences of others

We’ve seen how upco can be used to conditionalize on the evidence behind some-
one’s opinions. But Easwaran et al. (2016) use it to conditionalize on the opinions 
themselves. They show that, in certain cases, if P applies upco to Q’s opinions, the 
result is the same as if P had conditionalized on the fact that Q holds those opinions.

In which cases though? The key is in the likelihoods P assigns to the opinions 
Q might hold. For simplicity, consider just a two-cell partition {H,H} . Then what 
matters is P(Q(H) = q ∣ H) , viewed as a function of q, and also on P(Q(H) = q ∣ H) 
viewed as a function of q. Specifically, these two functions must have the form

P(H ∣ Q(H) = q) = PQ(H),

(4)P(Q(H) = q ∣ H) = c ⋅ q ⋅ f (q),

(5)P(Q(H) = q ∣ H) = c ⋅ (1 − q) ⋅ f (q),
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where c is a constant and f is a strictly positive function on [0, 1]. When P’s like-
lihoods have this form, upco agrees with conditionalization on Q’s opinion: 
PQ(H) = P(H ∣ Q(H) = q).

Conditions (4) and (5) are quite abstract, though. So it’s natural to wonder, are 
there common or familiar cases where these conditions obtain, and thus where upco 
agrees with conditionalization?

Easwaran et  al. offer examples where P’s likelihoods are linear. In these 
cases, we can dispose of the function f by making it constant at 1, and we let c 
be the sum of the possible values of Q(H). For example, if the possible values are 
0, .1, .2,… , .9, 1.0 , then c = 1∕55.

This kind of example is simple mathematically. But epistemologically, it’s some-
what mysterious. Under what circumstances would these be the possible values 
Q(H) might take? And why would the probability of Q(H) taking the value q be q/55 
if H is true, and (1 − q)∕55 if H is false? What sort of epistemic scenario might Q be 
facing such that these are the possible outcomes and likelihoods? Without an answer 
to this question, the utility of conditions (4) and (5) is in question.

As it turns out though, there are natural cases. Take the sorts of cases we’ve been 
considering, where P knows Q’s prior over a partition of chance hypotheses, and 
then learns their posterior QF . Typically, P won’t be able to infer what the proposi-
tion F is that Q conditionalized on. They can, however, infer its normalized like-
lihood distribution, by using the inverse of Q’s prior: Q−1QF = Q−1QFQ = FQ . 
And by the Principal Principle, P’s likelihood distributions are the same as Q’s, so 
FQ = FP . Thus, learning Q’s posterior is, for P, equivalent to learning that some 
proposition with likelihood distribution FP is true.

Now, if the propositions with that likelihood distribution are mutually exclusive, 
then learning that one of them holds is equivalent to learning any one of them. So 
learning their disjunction is, for P, equivalent to learning F. Thus P’s posterior is 
PFP , which agrees with the upco calculation PQFQ

−1 by Proposition 3. Condition-
alization and upco thus agree: conditionalizing on Q’s posterior yields the same dis-
tribution over {Hi} as the upco calculation PQFQ

−1.
Notice that this argument requires assumptions with a more epistemic flavour 

than the ones we’ve relied on previously. For example, we assume here that P knows 
Q obeys the Principal Principle and will update by conditionalization. Whereas 
Proposition 3 only assumed that Q does these things—P needn’t know that they do. 
The difference arises because P is now conditionalizing on Q’s posteriors, which 
brings their expectations about how those posteriors are formed into play. Notice 
that Easwaran et al.’s (4) and (5) are, similarly, conditions on P’s beliefs about Q.

The following, formal statement encodes these epistemic assumptions implic-
itly. For example, the random variable Q representing Q’s posterior is arrived at 
by applying Bayes’ theorem but with P’s likelihoods. So P effectively takes for 
granted that Q obeys conditionalization and the Principal Principle.

Proposition 5 Let {Fj} be a countable partition, and let Q be a random variable 
whose value when F ∈ {Fj} obtains is
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If QF(H) = qF , then P(H ∣ Q = qF) = PQFQ
−1(H).

This result generalizes to partitions {Hi} with more than two cells, as we show in 
the Appendix. We state just the two-cell case here for simplicity, and for continu-
ity with conditions (4) and (5). As we remark in the Appendix, (4) and (5) hold in 
the special case where Q’s prior is uniform. In which case the Q−1 term drops out 
of the conclusion of Proposition 5.

Proposition 5 thus accomplishes two things. First, it bolsters Easwaran et al.’s 
motivation for upco, by providing a natural class of cases where their conditions 
hold and upco thus agrees with conditionalization. Second, it unifies two appar-
ently distinct ways of motivating upco, namely Easwaran et al.’s and Dietrich’s. 
Roughly speaking, upco conditionalizes on (the evidence behind) Q’s opinion 
when Q’s prior over a chance partition is known to be (or just is) obtained by con-
ditionalizing on independent data.

That said, it should be acknowledged that conditions (4) and (5) are more gen-
eral in a way. They aren’t only satisfied in the special case of a uniform prior 
over a chance partition, and it would be interesting to identify other natural cases 
where they apply. But we leave that question for future work, and return instead 
to our main theme.

7  Serving two epistemic masters

When experts differ, we laypeople face a conundrum. What opinion should we adopt 
as our own, given that there is no consensus opinion among the experts? It’s tempt-
ing again to split the difference: to pool the experts’ opinions linearly. Surprisingly, 
this turns out to be untenable.

Suppose you regard Q and R as experts about some proposition H. That is, if you 
learn Q’s opinion, you will adopt it as your own, and likewise for R’s opinion. The 
following two conditions hold then, where Q and R are random variables represent-
ing Q’s and R’s opinions about H:

If your policy is to split the difference should they differ, then we also have:

(6)qF =
Q(H)P(F ∣ H)

Q(H)P(F ∣ H) + Q(H)P(F ∣ H)
.

(7)P(H ∣ Q = q) = q,

(8)P(H ∣ R = r) = r.

(9)P(H ∣ Q = q,R = r) = (q + r)∕2.
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But Dawid et  al. (1995) show that these three conditions together imply 
P(Q = R) = 1.15 In fact, they show that any weighted averaging rule with positive 
weights implies P(Q = R) = 1 . Thus, to defer to Q and R individually, yet resolve 
any differences by linear pooling, you must be certain there won’t be any differences 
to begin with.

In fact, Zhang (manuscript) shows that this result doesn’t just hold for linear pool-
ing, but for a large class of pooling rules. Assuming the domain of P is finite, it 
holds for any strictly convex pooling rule, i.e. any rule that always returns a value 
strictly between q and r (unless q = r ). For example, the red curve in Fig. 1 always 
lies strictly in between the blue and purple curves, because linear pooling is strictly 
convex.

Formally, Zhang’s generalization replaces (9) with the more general

where f is any function that returns a number strictly between q and r when q ≠ r , 
and returns q otherwise. Zhang shows that Eqs. (7), (8) and (10) again imply 
P(Q = R) = 1 , assuming P’s domain is finite. So you can only plan to resolve any 
difference between Q and R by a strictly convex pooling rule if you are certain no 
such difference will arise.

This rules out several popular alternatives to linear pooling in the kind of case 
we have been discussing. When the experts opine only about the proposition H, the 
partition over which we are pooling is {H,H} . And, in the special case of a two-cell 
partition, alternatives like geometric and harmonic pooling are both strictly convex. 
Importantly though, the same is not true for larger partitions. And indeed, geometric 
pooling escapes Zhang’s impossibility result when the partition in question is the 
“ultimate” partition, i.e. the partition into singletons of worlds (Baccelli & Stewart, 
2023).

This leaves us with the question whether any simple pooling rule is capable of 
guiding a layperson faced with differing experts on coarser partitions, including 
even two-cell partitions. As we are about to show, the answer is yes: upco can.16 In 
fact, it does so in a significant range of cases, which we can identify using Proposi-
tions 1 and 2.

Let’s start with an example. Suppose a coin has two possible biases, described 
by the hypotheses H and H . And suppose three agents all begin with the same prior 
P, which for now we’ll assume is uniform over {H,H} . One of these agents will flip 
the coin some number of times, and conditionalize on the result to arrive at a poste-
rior we’ll label Q. Another agent will perform a separate sequence of flips, arriving 
at R. The third agent, who so far still holds P, will then learn Q’s and R’s opinions 
about H.

If P knows these are the circumstances, then Eq. (7) will hold. For P, learning 
Q’s opinion is equivalent to learning how many heads and tails they observed. And 

(10)P(H ∣ Q = q,R = r) = f (q, r),

15 See also Bradley (2018), and Gallow (2018) from whom we borrow this section’s title.
16 As Easwaran et al. (2016) note, upco is non-convex even on two-element partitions.
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since P and Q share a common prior, P will draw the same conclusion from this 
information that Q did, i.e. adopt Q’s opinion as their own. For exactly parallel rea-
sons, Eq. (8) will hold too.

What about when P learns both experts’ opinions? This is equivalent to learning 
how many heads and tails they observed between them. So P is effectively condi-
tionalizing on the aggregate evidence. And we know from Proposition 1 that this is 
equivalent to taking the upco of Q’s and R’s posterior opinions. Thus

Now, crucially, it’s entirely possible that Q and R will get different numbers of 
heads, and thus report different opinions. So P(Q = R) ≠ 1 in this example. Thus 
upco is capable of serving two epistemic masters: Eqs. (7), (8) and (11) do not imply 
P(Q = R) = 1.

How general is this result? Quite general. The hypotheses and evidence can be 
anything really. P doesn’t even need to be able to infer what Q’s and R’s evidence 
was exactly, only that they acquired some evidence that warrants the reported opin-
ions. The main thing for upco to be appropriate is the kind of conditional independ-
ence assumption we made in Eq. (1). The hypotheses H and H need to render Q and 
R’s evidence independent.

For instance, continue to assume our three agents begin with a common prior, P. 
One will learn the true element of some partition {Ei} , another the true element of a 
partition {Fj} . The third agent, who still holds P, knows all this, so they defer to Q 
and R as in (7) and (8). Now, for upco to be appropriate, we must assume that Q’s 
evidence is independent of R’s, conditional on each hypothesis. That is, for every Ei 
and Fj,

and similarly given H . Then, if P is uniform over {H,H} , P will resolve any differ-
ences according to upco, i.e. (11) holds.

We can drop the uniform prior assumption much as we did in Sect. 4, by includ-
ing its inverse. Somewhat ironically, this means that P must include the inverse of 
their own opinion, P−1 , in their upco calculation. This is because P is also the prior 
behind both Q and R’s opinions, and we don’t want it to be “double counted.” Com-
bining Q’s and R’s posteriors in the present case amounts to combining PEP with 
PFP:

When P was uniform, we had P2 = P so there was no issue. But if P is not uniform, 
then P2 ≠ P and we need to include a P−1 to cancel one of the P’s.

Bottom line: even in the case of a non-uniform prior, P can still resolve any dif-
ference between Q’s and R’s opinions by upco. They just have to include the inverse 
of the shared prior, P−1 . Our main result for this section is then formally stated as 
follows:

(11)P(H ∣ Q = q,R = r) = QR(H).

P(EiFj ∣ H) = P(Ei ∣ H)P(Fj ∣ H),

PEPPFP = P2EPFP = P2(EF)P.
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Proposition 6 Let {Ei} and {Fj} be finite partitions. Let Q be a random variable that 
takes the value P(H ∣ Ei) in the event that Ei , and let R = P(H ∣ Fj) in the event Fj . 
Then (7) and (8) hold. If, furthermore, each pair Ei,Fj is conditionally indepenent 
given the elements of {H,H} , then

In the special case P(H) = P(H) , then (12) reduces to (11).

This result generalizes straightforwardly to partitions {Hi} with more than two cells, 
as we show in the Appendix.

It might seem like a severe limitation of Proposition 6 that it only applies when the 
two experts begin with the same prior as P. But this isn’t a limitation of upco; rather, 
it’s what makes Q and R experts of the kind we’re interested in here. If Q and R’s priors 
were different from P’s, they would not be experts in P’s eyes: Eqs. (7) and (8) would 
no longer hold. Even though Q and R would still have strictly more evidence than P, 
making them database experts, P would not agree with their analyses of that evidence. 
So they would not be analyst experts for P, and P would not trust their judgment in the 
manner of Eqs. (7) and (8). Zhang’s impossibility result would no longer apply.

What’s more, P can still use upco to make use of Q and R’s database expertise, 
even in the case where their priors are different from P’s, provided P knows what 
those priors are. Instead of including the inverse P−1 of their own prior in Eq. (12), 
they can include the inverses of Q’s and R’s priors. In other words, they can make 
use of the idea behind Proposition 3. And even if they don’t know Q’s and R’s pri-
ors, they might still be able make use of their database expertise in the manner of 
Proposition 4. Although, as we noted at the end of Sect. 4, this depends on P giving 
a specific sort of partial deference to Q’s and R’s priors.

8  The social argument for uniqueness

In this section we bring Proposition 2 to bear on an argument for the uniqueness the-
sis, the claim that there is only one correct way to interpret a body of evidence (Feld-
man, 2006). On this view, two agents with the same total evidence are never permit-
ted to disagree. The alternative view, known as permissivism, holds that agents with 
the same evidence can reach different conclusions, at least in some cases.

Here we are concerned with a particular argument for the uniqueness thesis, due 
to Dogramaci and Horowitz (2016). The argument begins with the observation that 
we have a social practice of pressuring one another to be rational, a practice that 
presumably has some value. But why, they ask, is it valuable? What is the good in 
promoting rationality in others? The best explanation, they argue, is one that presup-
poses the uniqueness thesis.

In their view, promoting rationality is valuable because it aids in a division of epis-
temic labour. If there is a unique, correct way of interpreting evidence, and everyone 
follows it, then we can get the benefits of one another’s evidence-gathering simply by 
hearing the conclusions drawn from that evidence. When someone tells you H is true, 

(12)P(H ∣ Q = q,R = r) = P−1QR(H).
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you needn’t worry about whether you would have drawn the same conclusion from 
whatever evidence led them to conclude H. You can just go ahead and believe H, since 
that’s the right conclusion to draw from whatever their evidence was. So promoting 
rationality makes it possible to share the work of gathering and evaluating evidence.17

One problem with this story is that it neglects potential interactions between their 
evidence and yours. For example, suppose some recent polling has made you 70% 
confident that a majority of voters favour Party X in the upcoming election. Then 
you encounter someone you know to be rational who is 80% confident. Should you 
adopt their view as your own? Maybe, if you happen to know that their evidence 
includes your own. If their 80% is based on the same polling data you saw, plus 
some additional data, then you should join them at 80%.

But if their 80% is based on an entirely separate body of polling data, then you 
should become even more than 80% confident. Between the two of you, you have an 
even larger body of data supporting a Party X majority. So you shouldn’t adopt your 
interlocutor’s 80% , but rather something higher.

In general, you can’t just adopt the views of other rational agents on the grounds 
that they’re rational. It matters what their evidence for their view is, and how that 
evidence relates to your own.

Still, Dogramaci and Horowitz’s story does seem to work in cases where you hap-
pen to know that your interlocutor’s data doesn’t overlap with your own. Suppose 
Q begins with a uniform prior over a partition {Hi} of chance hypotheses, and goes 
off to gather data. They make some novel observation F, and then report back with 
their posterior, QF . Now, P won’t typically be able to determine the proposition F 
from this posterior. But they know its likelihood distribution—it’s the same as the 
reported posterior, since QF = UFQ = FQ . And since the Hi are chance hypotheses, 
P’s likelihoods for F are the same: FQ = FP . So P can get the benefit of Q’s evi-
dence-gathering labour, by combining their prior P with the likelihood distribution 
FQ gleaned from Q’s report. The result PFQ = PFP = PF is the same as P’s prior 
conditionalized on Q’s evidence.

So the argument seems to work, in the case of chance partitions and non-overlap-
ping data. What’s more, it doesn’t just deliver the conclusion that a unique, rational 
prior exists. It says what that prior is: the uniform-over-chances prior. And this prior 
just so happens to have a long history in the objective Bayesian tradition, the version 
of Bayesianism that embraces the uniqueness thesis.18

On closer inspection though the argument fails, because the uniform-over-
chances prior isn’t actually what’s driving P’s successful exploitation of Q here. 
Even if Q uses some other prior, P can still solve for FQ , as long as they know what 
that prior was. When P learns the posterior QF = QFQ , they can solve for FQ using 

17 One might propose alternative explanations, of course. But Dogramaci & Horowitz canvass several 
and find them all wanting. This part of their argument merits scrutiny, but we will grant it here for the 
sake of discussion.
18 Laplace (1986) used this prior to derive the Rule of Succession, in response to Hume’s problem of 
induction. And it recurs in more general forms in other classic works by e.g. De Morgan, Johnson, and 
Carnap: see Zabell (1989) for an overview of the history.
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Q’s inverse: Q−1(QFQ) = FQ . And from there they can get the benefit of Q’s evi-
dence, just as before.

The moral is that it’s not important what prior Q uses. What matters is that P 
knows what prior they used. That’s enough for them to “factor out” Q’s prior from 
their posterior, and isolate the import of their evidence, whatever it was. The divi-
sion of epistemic labour Dogramaci and Horowitz propose doesn’t rely on there 
being a unique rational prior that everyone uses, but on everyone knowing what pri-
ors others are using.

Of course, one way to ensure everyone knows each other’s priors is to have a 
social convention requiring everyone to use the same prior. But then this shared 
prior would be just that: a social convention. The choice of prior would be like 
deciding which side of the road to drive on; one choice is as good as another, so long 
as everyone chooses the same.19

9  Conclusion

We’ve been studying upco’s ability to aggregate evidence in certain cases, especially 
cases of opinions about objective chance. We developed a simple, algebraic way of 
viewing upco that makes its evidence-aggregating powers especially easy to appre-
ciate and work with. And, using that algebraic frame, we’ve seen that upco’s ability 
to aggregate evidence is closely related to its ability to mimic conditionalization, 
noted by Easwaran et al. (2016). We’ve also used that frame to identify cases where 
laypeople can use upco to resolve disagreements between experts. And we’ve used it 
to criticize an argument for the uniqueness thesis.

We conclude that viewing upco as a way of aggregating evidence is a fruitful 
perspective to take. It both improves our understanding of upco itself, and exposes 
applications to areas of philosophical interest.

Appendix

Here we give formal statements and proofs of the results in the main text. Through-
out, let {Hi} be a finite partition of size n, and let P, Q, and R be probability func-
tions. Associate with P the vector p = (p1,… , pn) whose entries are pi = P(Hi) . 
Likewise let q have entries qi = Q(Hi) , and r the entries ri = R(Hi) . Note that p , q , 
and r are probability vectors, i.e. their entries are nonnegative and sum to 1.

19 One might respond that the uniform-over-chances prior would make an especially good convention on 
objective grounds, since it saves P having to use Q−1 to cancel Q in solving for FQ . This not only saves 
on computation, but also improves accuracy by eliminating opportunities for calculation errors. In reply, 
we would note how radically our sights are being lowered here. We already lowered them once, when we 
restricted the benefits of a privileged prior to cases of chance hypotheses and non-overlapping data. Now 
they are being lowered still further; the value being claimed for the uniquely rational prior is just that it 
saves on computation and reduces opportunities for calculation errors. If this is all the social argument 
for uniqueness comes to, we are content to leave it there.
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We’ll write pE for the probability vector with entries P(Hi ∣ E) , pEF for the vec-
tor with entries P(Hi ∣ EF) , and so on. We’ll also write eP for the normalized like-
lihoods of E according to probability function P:

Similarly, fQ is the normalized likelihood distribution of F according to Q. Finally, 
we’ll let G be a shorthand for EF, so that gP denotes the normalized likelihood dis-
tribution of EF according to P:

The upco of two probability functions can be viewed as a product operation on 
the associated vectors.

Definition 1 (Upco product) The upco product of p and q is defined

This operation is defined as long as p ⋅ q > 0 , in which case it always returns 
another probability vector. If p and q are regular, meaning their entries are all 
positive, then pq is also regular.

We now give a formal statement and proof of Proposition 2.

Proposition 2 (formal) Suppose p ⋅ q ⋅ r > 0 , so that pq , (pq)r , and p(qr) are 
defined. Let u = (1∕n,… , 1∕n) , and if p is regular let

Then 

(a) pq = qp,
(b) p(qr) = (pq)r,
(c) pu = p,
(d) pp−1 = u if p is regular, and
(e) pE = peP.

Proof Part (a) follows immediately from the commutativity of scalar multiplication 
and of dot products.

For part (b), compare the ith entries:

(eP)i =
P(E ∣ Hi)

∑

j P(E ∣ Hj)
.

(gP)i =
P(EF ∣ Hi)

∑

j P(EF ∣ Hj)
.

pq = (p1q1,… , pnqn)∕p ⋅ q.

p−1 =
1

∑

i 1∕pi

�

1∕p1,… , 1∕pn
�

.
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In both cases the ith entry is proportional to piqiri . Since probability distributions 
with identical proportions are identical, p(qr) = (pq)r , as desired.

For (c), the ith entry of pu is:

For (d), first observe that p−1 is a probability vector because

Moreover, the ith entry of pp−1 is proportional to

So the entries of pp−1 are constant, hence must be 1/n.
Finally, for (e), by definition pi = P(Hi) and (eP)i ∝ P(E ∣ Hi) . So 

(peP)i ∝ P(Hi)P(E ∣ Hi) . By Bayes’ theorem, qi ∝ P(Hi)P(E ∣ Hi) as well. So q and 
peP have the same proportions, hence must be identical.   ◻

Remark 1 As noted in footnotes 2 and 5, the above result becomes fairly trivial if we 
work with odds rather than probabilities. Corresponding to each regular probability 
vector p is an odds vector whose ith entry is pi∕

∑

j≠i pj . It’s straightforward to 
verify that the odds vector corresponding to pq is the elementwise product of those 
corresponding to p and to q . The commutativity and associativity of upco is then 
even easier to verify, as are the other properties stated in the above proposition. 
Nevertheless, we choose to work with probabilities here, for the sake of continuity 
with existing literature.

We will have several occasions to use the fact that conditional independence 
implies gP = ePfP.

Proposition 7 If condition (1) holds for all Hi , then gP = ePfP.

Proof The entries of eP are proportional to the P(E ∣ Hi) , and the entries of 
fP are proportional to the P(F ∣ Hi) . So the entries of ePfP are proportional to 
P(E ∣ Hi)P(F ∣ Hi) = P(EF ∣ Hi) , hence to gP .   ◻

(p(qr))i =
pi

qiri

q⋅r

p ⋅ (qr)
=

piqiri

(p ⋅ qr)(q ⋅ r)
,

((pq)r)i =

piqi

p⋅q
ri

(pq) ⋅ r
=

piqiri

(p ⋅ q)(pq ⋅ r)
.

(pu)i =
pi(1∕n)

∑

j pj(1∕n)
=

pi
∑

j pj
= pi.

�

i

1

pi
∑

j 1∕pj
=

1
∑

j 1∕pj

�

i

1

pi
= 1.

pi
1

pi
∑

j 1∕pj
=

1
∑

j 1∕pj
.
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Next we prove Proposition 3, which we restate here for convenience.

Proposition 3 (restatement) Suppose that for all Hi , conditions (1) and (2) hold and 
Q(Hi) > 0 . Then for all Hi , PEQFQ

−1(Hi) = P(Hi ∣ EF).

Proof By condition (1), ePfP = gP . And by (2), fQ = fP . So

Since the distribution on the left gives the PEQFQ
−1(Hi) values, and the entries of 

pEF are the P(Hi ∣ EF) values, this completes the proof.   ◻

Now we prove Proposition 4, which we also restate for convenience.

Proposition 4 (restatement) Suppose that for all Hi , conditions (1) and (2) hold. 
Then for all Hi , PEQF(Hi) = PQ(Hi ∣ EF).

Proof By condition (1), ePfP = gP . And by (2), fQ = fP . So

The left hand side gives the values of PEQF(Hi) , and the right gives the PQ(Hi ∣ EF) 
values. So this completes the proof.   ◻

Next we prove the general form of Proposition 5.

Proposition 8 Let {Hi} and {Fj} be countable partitions. Let Q be a random vector 
whose value when F ∈ {Fj} obtains is the vector qF defined by

If QF(Hi) = qF
i
 for all i, then P(Hi ∣ Q = qF) = PQFQ

−1(Hi) for all i.

Proof Fix F, and let JF index the elements of {Fj} that satisfy (13). So Q = qF just in 
case 

⋃

j∈JF
Fj , and thus

By Bayes’ theorem then:

(peP)(qfQ)q
−1 = (pqq−1)(ePfQ) = p(ePfP) = pgP = pEF.

(peP)(qfQ) = (pq)(ePfQ) = (pq)(ePfP) = (pq)(ef)P.

(13)qF
i
=

Q(Hi)P(F ∣ Hi)
∑

k Q(Hk)P(F ∣ Hk)
.

P(Q = qF ∣ Hi) = P(
⋃

j∈JF

Fj ∣ Hi) =
∑

j∈JF

P(Fj ∣ Hi).
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Similarly, PQFQ
−1(Hi) ∝ P(Hi)QF(Hi)∕Q(Hi) . So the two distributions have the 

same proportions, hence must be identical.   ◻

Remark 2 To recover Easwaran et  al.’s conditions (4) and (5) in the above proof, 
consider the special case where {Hi} = {H,H} and Q(H) = Q(H) = 1∕2 . There we 
set c = 1 , and define

We now turn to Proposition 6, which we’ll prove in the more general form of 
Proposition 9. The proof really has two separate pieces, one that depends on the 
specifics of upco and a second which has nothing to do with upco. The first is 
quick using upco’s algebra.

Lemma 1 Let Q(−) = P(− ∣ E) and R(−) = P(− ∣ F) . If (1) holds and P(Hi) > 0 for 
all Hi , then

Proof By hypothesis, q = peP , r = pfP , gP = ePfP , and p−1 exists. So,

Since the left hand side gives the P(Hi ∣ EF) values, and the right gives the 
P−1QR(Hi) values, the proof is complete.   ◻

In the main text we stated Proposition 6 in terms of a two-cell partition {H,H} . 
Proposition 9 addresses the more general case, where {Hi} may have more than two 
elements.

Proposition 9 Let {Hi} , {Ej} , and {Fk} be finite partitions. Let Q be a random vector, 
whose ith value when Ej obtains is P(Hi ∣ Ej) , and let R be a random vector whose ith 
value when Fk obtains is P(Hi ∣ Fk) . Then

P(Hi ∣ Q = qF) ∝ P(Hi)P(Q = qF ∣ Hi)

= P(Hi)
∑

j∈JF

P(Fj ∣ Hi)

= P(Hi)
∑

j∈JF

qF
i

Q(Hi)

∑

k

Q(Hk)P(Fj ∣ Hk)

∝ P(Hi)QF(Hi)∕Q(Hi).

f (qF
1
) = 2

∑

j∈JF

∑

k

Q(Hk)P(Fj ∣ Hk).

P(Hi ∣ EF) = P−1QR(Hi).

pgP = pePfP = (p−1p)pePfP = p−1(peP)(pfP) = p−1qr.

(14)P(Hi ∣ Q = q) = qi,

(15)P(Hi ∣ R = r) = ri.
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If, furthermore, P(EjFk ∣ Hi) = P(Ej ∣ Hi)P(Fk ∣ Hi) for all i, j, k, then

Proof Note that, with Lemma 1 proved, the remaining work has nothing to do with 
upco. The operative idea is just that P can infer Q and R’s evidence from their 
opinions, or near enough.

Let Eq be the union of all Ej ’s such that P(Hi ∣ Ej) = qi for all i. And let Fr be the 
union of all Fk ’s such that P(Hi ∣ Fk) = ri:

Since Q = q is equivalent to Eq , and R = r to Fr , we have for all i:

establishing (14) and (15).
Now observe that Q = q,R = r is equivalent to 

⋃

x,y (Eqx
∩ Fry

) . So

By conditional independence then, Lemma 1 implies that for all Hi,

as desired.   ◻

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Babic, B., Gaba, A., Tsetlin, I., & Winkler, R. L. Resolute and Correlated Bayesians. INSEAD Working 
Paper No. 2022/20/DSC. https:// papers. ssrn. com/ sol3/ papers. cfm? abstr act_ id= 40777 26#.

Baccelli, Jean, & Stewart, Rush T. (2023). Support for geometric pooling. The Review of Symbolic Logic, 
16(1), 298–337.

Bradley, Richard. (2018). Learning from others: Conditioning versus averaging. Theory and Decision, 
85(1), 5–20.

Dawid, Alexander P., DeGroot, Morris H., & Mortera, Julia. (1995). Coherent combination of experts 
opinions. Test, 4(2), 263–313.

(16)P(Hi ∣ Q = q,R = r) = P−1QR(Hi).

Eq = Eq1
∪… ∪ Eqm

,

Fr = Er1
∪… ∪ Ern

.

P(Hi ∣ Q = q) = P(Hi ∣ Eq) = P(Hi ∣ Eq1
) = qi,

P(Hi ∣ R = r) = P(Hi ∣ Fr) = P(Hi ∣ Fr1
) = ri,

P(Hi ∣ Q = q,R = r) = P(Hi ∣
⋃

x,y

(Eqx
∩ Fry

)) = P(Hi ∣ Eq1
∩ Fr1

).

P(Hi ∣ Q = q,R = r) = P−1QR(Hi),

http://creativecommons.org/licenses/by/4.0/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4077726#


 R. Pettigrew, J. Weisberg 

Dietrich, Franz. (2010). Bayesian group belief. Social Choice and Welfare, 35(4), 595–626.
Dogramaci, Sinan, & Horowitz, Sophie. (2016). An argument for uniqueness about evidential support. 

Philosophical Issues, 26(1), 130–47.
Easwaran, Kenny, Fenton-Glynn, Luke, Hitchcock, Christopher, & Velasco, Joel D. (2016). Updating on 

the credences of others: Disagreement, agreement, and synergy philosophers. Imprint, 6(11), 1–39.
Feldman, Richard. (2006). Reasonable religious disagreementsmeditations on atheism and the secular 

life (pp. 194–214). In Philosophers Without Gods: Oxford University Press.
Gallow, J. Dmitri. (2018). No one can serve two epistemic masters. Philosophical Studies, 175(10), 

2389–2398.
Hall, Ned. (2004). Two mistakes about credence and chance. Australasian Journal of Philosophy, 82(1), 

93–111.
Laplace, P. S. (1986). Memoir on the probability of the causes of events. Statistical Science, 1(3), 

359–363.
Lewis, David. 1980. A subjectivist’s guide to objective chance. In Studies in inductive logic and 

probability, ed. Richard C. Jeffrey. Vol. II University of California Press.
Morris, Peter A. (1983). An axiomatic approach to expert resolution. Management Science, 29(1), 24–32.
Winkler, Robert L. (1968). The consensus of subjective probability distributions. Management Science, 

15(2), B61-75.
Zabell, Sandy L. (1989). The rule of succession. Erkenntnis, 31(2/3), 283–321.
Zhang, S. Coherent Combinations of Multiple Experts’ Opinions: Another Impossibility Result. Draft 

manuscript / personal communication.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Updating on the evidence of others
	Abstract
	1 Introduction
	2 Background
	3 A special case
	4 The algebra of upco
	5 When Q is not uniform
	5.1 When Q is known
	5.2 When Q is not known

	6 Updating on the credences of others
	7 Serving two epistemic masters
	8 The social argument for uniqueness
	9 Conclusion
	Appendix


