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Abstract
In this paper, we develop a non-reductive variant of the regularity theory of causa-
tion proposed in Andreas and Günther (Pacific Philosophical Quarterly 105: 2–32, 
2024). The variant is motivated as a refinement of Lewis’s (Journal of Philosophy 
70:556–567, 1973) regularity theory. We do not pursue a reductive theory here 
because we found a challenge for Baumgartner’s (Erkenntnis 78:85–109, 2013) reg-
ularity theory which applies to our previous theory as well. The challenge is side-
stepped by a framework of law-like propositions resembling structural equations. 
We furthermore improve the deviancy condition of our previous theory. Finally, we 
show that the present theory can compete with the most advanced regularity and 
counterfactual accounts.

Keywords Causation · Regularity theory · Counterfactual accounts · Causal models

1 Introduction

Causation is instantiation of regularities. This is the core idea behind the regularity 
theory of causation dating back at least to Hume (1975, Sect. VII). Lewis (1973) 
authored a regularity theory just for the purpose of criticising and rejecting it. His 
theory cannot distinguish genuine causes from effects and preempted would-be 
causes. These problems speak decisively against Lewis’s regularity theory.

The regularity theory has been refined before Lewis had any chance to criticise it. 
We learned from Mill (1843/2011) and others that causation requires the instantia-
tion of a specific kind of regularity: laws of nature. Mere accidental regularities do 
not establish genuine causal relations. Since authors like Hart and Honoré (1985) 
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and Mackie (1965), we allow one indispensable condition to be a cause as long as 
the totality of conditions is invariably followed by the effect according to at least 
one law. In this spirit, Lewis’s regularity theory says that a cause is an indispensable 
member of any minimal set of actual conditions which jointly entail the effect in the 
presence of the laws. If so, we say for brevity that the effect is inferable from the 
cause.

Baumgartner (2013) observed that Mackie’s complex regularities must be non-
redundant to avoid spurious regularities. In Andreas and Günther (2024), we built 
on Baumgartner’s work to propose a regularity theory which aims to be reductive. 
It says that causation is deviant forward-directed inferability along the causal paths 
of direct non-redundant regularities. Our regularity theory delivers commonsense 
judgments in many causal scenarios, including isomorphic scenarios, omissions, 
and scenarios which suggest that causation is not transitive.1 We have shown in the 
prequel paper that our theory agrees better with the commonsense judgments about 
causation than Baumgartner’s.

In this paper, we motivate our regularity theory as a refinement of Lewis’s, locate 
it among others, and compare it to counterfactual accounts. Along the way, we put 
forth a challenge for the reductivity of Baumgartner’s theory—a challenge our pre-
quel theory inherits (see Sect. 5.1.2). As a consequence, we set forth our theory in 
terms of law-like propositions rather than non-redundant regularities. Causation is 
deviant forward-directed inferability along lawful paths. We thereby do not aim for 
a reductive theory in this paper.

At the core our theory says—like Lewis’s—that an effect is inferable from a gen-
uine cause in the presence of law-like propositions. We impose further conditions 
on the inferability. First, an effect must be inferable from a genuine cause in a caus-
ally forward-directed way. Second, the lawful paths from a cause to its effect must 
remain intact. Lawful paths are, roughly speaking, chains of law-like propositions 
running from a cause to its effect. Third, any cause of an effect must be deviant. We 
have changed our deviancy condition from the one in Andreas and Günther (2024) 
in response to a counterexample (see fn. 2 in Sect. 4.2).

We proceed as follows. In Sect.  2, we introduce the regularity theory authored 
by Lewis and the problems it faces. In Sect. 3, we embed this theory of determinis-
tic token causation into a framework of causal models, add the requirement of for-
ward-directedness, and show how the so refined theory overcomes the problems. In 
Sect. 4, we present our complete regularity theory as a generalization of the refined 
theory and explain the additional transitivity and deviancy conditions. In Sect. 5, we 
compare our theory to other regularity theories as well as counterfactual accounts 
including Gallow’s (2021). The upshot is that our complete regularity theory can 
compete with the most advanced accounts of causation.

1 We show in Andreas and Günther (2024) that our regularity theory provides the desired verdicts in 
scenarios known as Preemption, Bogus Prevention, Omission, Subcause, Short Circuit, Extended Double 
Prevention, Modified Extended Double Prevention, and Switch.
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2  Lewis’s regularity theory

Since at least Mackie (1965), the regularity theory says that a cause is an indispen-
sable element of a totality of conditions whose instantiation is sufficient for its effect 
by the true complex regularities. Lewis (1973, p. 556) made this more precise. He 
understands sufficiency as entailment: a set of conditions is sufficient for an effect 
just in case the set entails the effect in the sense of classical logic. On his regular-
ity theory, an event c is a cause of another event e if and only if (iff) c belongs to a 
minimal set of actual conditions that entail the occurrence of e in the presence of the 
laws. If so, we say e is inferable from c for short.

Here is Lewis’s statement of the regularity theory. Let A be the proposition which 
is true if and only if (iff) the token event a occurs, and ¬A the proposition which is 
true iff no token event a occurs. Furthermore, let L denote a set of law-like proposi-
tions entailed by the true laws and F  a possibly empty set of true propositions of 
particular fact.

c is a cause of e iff there is a set F  of true propositions of particular fact and a 
set L of true law-like propositions such that all of the following conditions are 
satisfied: 

(1) C and E are true.
(2) L ∪ F ⊧ C → E.
(3) L ∪ F ̸⊧ E.
(4) F ̸⊧ C → E.

Let us explain this regularity theory. (1) says that cause and effect are actual. (2) 
says that a cause entails its effect in the presence of L ∪ F  . However, (3) says that 
L ∪ F  alone does not entail E. Given L ∪ F  , C is indispensable for E. In this sense, 
L ∪ F ∪ {C} is a minimal set which entails E. (4) says that F  alone does not entail 
the material implication C → E . This is Lewis’s way to implement that the set L of 
true law-like propositions is not redundant for the entailment of E.

The set F  contains only propositions of particular fact. The negation ¬A of an 
actual event a, for example, cannot be in it. It follows from (1)-(4) that the possibly 
empty set F  alone neither entails C nor E. If it alone were to entail E, (4) would be 
violated. If it alone were to entail C, either (2) or (3) would be violated. Finally, note 
that the usage of the material implication is not essential. By the deduction theorem 
of classical logic, clauses (2) and (4) can be equivalently rephrased as follows: 

 (2’) L ∪ F ∪ {C} ⊧ E , and
 (4’) F ∪ {C} ̸⊧ E.

The presented regularity theory faces a problem: it recognizes more causes than 
there are. It wrongly counts as causes (a) effects of unique causes, (b) joint effects of 
common causes, and (c) preempted would-be causes. 
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(a) The problem of unique causes. If c is inferable from e, e may nevertheless be an 
effect of c rather than a cause. Consider the scenario depicted in Fig. 1. There 
is only one causal arrow from c to e which represents that c causes e, but e does 
not cause c, and there are no other causes for e. In this scenario, the law-like 
propositions L entail the bi-implication C ↔ E . And so L and the empty F  entail 
the implication E → C going against the direction of causation. The empty F  
neither entails C nor E. Hence, the clauses (1)-(4) are satisfied.

(b) The problem of joint effects. If e is inferable from a, a and e may be joint effects 
of a common cause c. Consider the scenario depicted in Fig. 2, where c causes 
a and e, but a does not cause e and e does not cause a. Furthermore, a could not 
have been caused otherwise than by c and c could not have failed to cause e. In 
this scenario, the law-like propositions L entail C ↔ A and C → E . And so L and 
the empty F  entail A → C against the direction of causation, and C → E in the 
direction of causation. By the transitivity of the material implication, we obtain 
A → E . Hence, the clauses (1)-(4) are satisfied and a counts as a cause of e.

Fig. 1  Unique cause

Fig. 2  Joint effects

Fig. 3  Preemption
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(c) The problem of preemption. If e is inferable from a, a may be a mere would-be 
cause of e. Consider the scenario depicted in Fig. 3. There is a “preventive” 
causal arrow from c to the absence of b which represents that c prevents b from 
occurring. In the preemption scenario, a did not cause e but would have had the 
genuine cause c been absent. The law-like propositions entail A → E . There is 
some F  , which does not contain anything that implies A, E and/or C, such that 
the clauses (1)-(4) are satisfied. Hence, the mere would-be cause a counts as a 
cause of e although the genuine cause c preempted the causal efficacy of a.

The failure of Lewis’s regularity theory motivates our requirement of forward-
directedness: an effect must be inferable from a genuine cause in a causally forward-
directed way. As we have seen in the problem of unique causes and the problem of 
joint effects, entailments against the direction of causation lead to the recognition of 
causal relations where there are none. Mere inferability of some event from a puta-
tive cause is not enough.

As we pointed out in Andreas and Günther (2024,  p.  7), the problem of 
preemption illustrates that Lewis’s regularity theory is too liberal as to the 
choice of the true propositions F  of particular fact. One principle of the regu-
larity theory is the respect for true particular facts. But the entailment of A → E 
in the problem of preemption involves an inference via B, even though b does 
not occur. A maximality constraint on F  is lacking which would guarantee that 
¬B ∈ F  . Such a maximality constraint alone, however, does not help Lewis’s 
regularity theory. Even if F = {¬B} , a counts as a cause of e in the preemption 
scenario. For this to be seen, observe first that the law-like propositions in L 
and ¬B entail ¬A ∨ C . There are only two cases: if ¬C , then L and F  entail ¬A , 
and thus A → E . If C, then L and F  entail E, and thus A → E . Condition (2) is 
again satisfied. But observe that this reasoning is artificial. Intuitively, a is not 
a cause of e because A does not entail E in a causally forward-directed way via 
B.

In the next section, we embed the regularity theory authored by Lewis into a frame-
work of causal models. This allows us to add both: a maximality constraint on the 
minimal set of actual conditions which jointly entail the effect, and a requirement of 
forward-directedness on the inferability of the effect. The refined regularity theory still 
resembles Lewis’s, but we will see that it overcomes the three problems.

3  Refining Lewis’s regularity theory

We refine Lewis’s regularity theory by embedding it into a framework of causal mod-
els offered in Andreas and Günther (2024, pp. 8–10). However, we replace the direct 
non-redundant regularities by directed law-like propositions since we do not aim for 
a reductive theory here. Then, we analyse causation in the spirit of Lewis’s regularity 
theory while taking the lessons from the last section into account: causation requires a 
condition of forward-directedness and a maximality constraint. Finally, we revisit the 
three troublesome causal scenarios.
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3.1  A framework of causal models

Causal models represent causal scenarios. In a causal scenario like preemption, cer-
tain events occur, others do not, and we have a certain law-like structure that tells us 
how event types depend on other event types. We define a causal model ⟨L,F⟩ by 
two components: a set L of law-like propositions and a set F  of true propositions 
of particular fact. A ∈ F  means that some token event a of type A occurs. ¬A ∈ F  
means that no token event of type A occurs. In other words, ¬A denotes the absence 
of any event of type A, or simply the absence of A.

A law-like proposition has the form

where A is a propositional variable, � a propositional formula in disjunctive normal 
form, and no variable appears vacuously. So each logical symbol of � is either a 
negation, a disjunction, or a conjunction. � can be seen as a truth function whose 
arguments represent occurrences and non-occurrences of events. The truth value 
of � determines whether A or ¬A . A law-like proposition expresses the true regu-
larity that A iff � . We say a propositional variable appears in A = � vacuously iff 
the variable never affects the truth values of A and � . In the law-like proposition 
A = C ∨ (D ∧ ¬D) , for example, the variable D appears vacuously.

In our framework, law-like propositions are directed bi-implications. They have 
a variable A standing for a type effect on the left-hand side and a Boolean combina-
tion of variables standing for type causes on the right-hand side. We take the direc-
tion of law-like propositions as given. As a consequence, our theory is not reductive. 
We discuss the prospects of a reductive regularity theory in Sect. 5.1.

Assuming the direction of law-like propositions, the preemption scenario can be 
represented by a causal model ⟨L,F⟩ , where L = {D = C,B = A ∧ ¬C,E = D ∨ B} 
and F = {C,A,D,¬B,E} . For readability, we represent causal models in two-layered 
boxes. The upper layer shows the set L of law-like propositions. The lower layer 
shows the set F  of propositions of particular fact. For the preemption scenario, we 
obtain:

Let us define a causal model semantics in terms of the semantics of propositional 
logic. We say a classical valuation satisfies a law-like proposition A = � iff both 
sides have the same truth value on this valuation. This allows us to define the satis-
faction relation in the standard way. Where Γ is a set of propositional formulas and 
law-like propositions, Γ ⊧ 𝜓 iff the propositional formula or law-like proposition � 
is satisfied by any classical valuation that satisfies all members of Γ . We define the 
entailment relation in causal models as follows:

A = �,
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Finally, we say that a set Γ of propositional formulas and law-like propositions satis-
fies another such set Δ iff Γ ⊧ 𝜓 for any � in Δ.

A central idea of our theory is that an effect is inferable from its cause in a 
causally forward-directed way. A law-like proposition A = � has the truth con-
ditions of the bi-implication A ↔ � and so is symmetric: it allows for forward-
directed inferences from � to A and backward-directed inferences from A to � . 
We introduce the notion of a setting to isolate the forward-directed causal conse-
quences of some event a of type A for a causal model ⟨L,F⟩ . Roughly speaking, 
a setting removes a law-like proposition A = � from L and replaces it by a true 
proposition, either A or ¬A . Thereby backward-directed inferences from A or ¬A 
are excluded.

Settings establish an asymmetry based on the direction of law-like proposi-
tions. Consider, for example, a causal model which includes the law-like proposi-
tion E = C . Setting C determines E in a causally forward-directed way. However, 
setting E does not determine C, it removes the law-like proposition and replaces it 
by E. The considered law-like proposition has the same truth conditions as C = E . 
But had the latter instead of the former been in the causal model, setting C would 
have removed this law-like proposition and setting E would have determined C in a 
causally forward-directed way. The difference between E = C and C = E matters for 
what is and isn’t inferable in a causally forward-directed way. In general, the direc-
tion of the law-like propositions matters for the direction of causation. Henceforth 
we may simply use “forward-directed” for “causally forward-directed”.

Suppose we want to determine the forward-directed causal consequences of the 
occurring token event a of type A for a causal model ⟨L,F′⟩ . The setting of A in this 
causal model results in a causal model ⟨LA,F

� ∪ {A}⟩ . If A = � is a member of L , 
LA is obtained from L by removing this law-like proposition. Otherwise LA = L . We 
call ⟨LA,F

� ∪ {A}⟩ the causal submodel of ⟨L,F′⟩ after the setting of A. By remov-
ing the law-like proposition of A from L , backward-directed inferences from A or ¬A 
are excluded in the causal submodel. The asymmetry of causation may so be estab-
lished by a setting and the direction of the law-like propositions.

In general, we denote possibly complex settings by an operator [⋅] that takes a 
causal model ⟨L,F′⟩ and a set S , where both F′ and S are subsets of the true propo-
sitions F  of particular fact, and returns a causal model: the submodel of ⟨L,F′⟩ after 
the setting of S . The setting by a set of true propositions of particular fact is defined 
as follows:

where

LS is the subset of L that contains each law-like proposition A = � whose variable A 
does not appear in S . After setting S in the causal model ⟨L,F′⟩ , the set S becomes 
part of the propositions of particular fact of the resulting submodel. Note that the 

⟨L,F⟩ ⊧ 𝜓 iff L ∪ F ⊧ 𝜓 .

⟨L,F�⟩[S] = ⟨LS,F
� ∪ S⟩

LS = {(A = �) ∈ L ∣ A ∉ S and ¬A ∉ S}.
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resulting submodel is again a causal model consisting of a set of law-like proposi-
tions and a set of propositions of particular fact.

Settings will always only set true propositions of particular fact. No propositions 
contrary to the true facts are ever set, unlike the interventions employed by Halpern 
and Pearl (2005) for example. As a consequence, the submodels resulting from set-
tings are not inconsistent provided the original causal models are not.

Our framework of causal models parallels the one in Andreas and Günther 
(2024, pp. 7–9). Unlike there, we do not employ direct non-redundant regularities 
to obtain the direction of causation. We rather take the direction of law-like proposi-
tions as given. Hence, our directed law-like propositions resemble symmetric struc-
tural equations. For some authors, the structural equations themselves are asym-
metric and thereby exclude inferences against the direction of causation (Hitchcock, 
2001). For others the asymmetry comes in only through the interventions defined for 
structural equations (Pearl, 2009). For us the asymmetry comes in only through the 
settings defined for directed law-like propositions.

3.2  A refined regularity theory

We are now in a position to refine Lewis’s regularity theory of causation (cf. 
Andreas and Günther, 2024, p. 10).

Definition 1 Let ⟨L,F⟩ be a causal model such that F  satisfies L . An event c is a 
cause of a distinct event e relative to ⟨L,F⟩ iff there is a possibly empty set F′ ⊆ F  
such that all of the following conditions are satisfied: 

 (i) ⟨L,F⟩ ⊧ C ∧ E.
 (ii) ⟨L, �⟩[F�][{C}] ⊧ E.
 (iii) ⟨L,F�⟩ ̸⊧ E and there is no F′′ such that F′ ⊂ F

′′ ⊆ F  and ⟨L,F��⟩ ̸⊧ E.

(i) says that cause and effect are actual. (ii) says that, in the presence of the law-like 
propositions L , a cause together with some propositions F′ of particular fact entails 
its effect in a causally forward-directed way. However, (iii) says that the propositions 
F

′ of particular fact and the law-like propositions L alone do not entail E; and it 
requires that F′ is maximal: any strict superset of F′ would entail E in the presence 
of the law-like propositions.

Our preliminary regularity theory resembles the regularity theory authored by 
Lewis. F′ is some set of particular facts such that the effect proposition E is forward-
directedly entailed by it together with a genuine cause proposition C in the presence 
of the law-like propositions in L ; and yet L and F′ alone do not entail E. C is indis-
pensable for the forward-directed entailment.

However, our refined regularity theory is stronger than Lewis’s. (ii), as com-
pared to (2) or (2’), is strengthened by the requirement of forward-directedness. (iii), 
as compared to (3), is strengthened by a maximality condition that implements a 
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respect for the true particular facts. A genuine cause proposition C is thus an indis-
pensable member of a minimal set of actual conditions that entail E in a forward-
directed way, while it contains as many as possible of the actual facts. The two 
strengthenings make an equivalent to Lewis’s condition (4) or (4’) superfluous.

On our refined theory, a cause is each member of any maximised minimal set 
of actual conditions which, in the presence of the law-like propositions, entail the 
effect in a forward-directed way. Causation so understood is lawful inferability in a 
forward-directed way that respects the particular facts. It is time to revisit the trou-
blesome causal scenarios.

3.3  Causal scenarios revisited

Our refined regularity theory gives the correct verdicts for the three troublesome 
scenarios we have considered so far. Consider the causal model ⟨L,F⟩ for the prob-
lem of unique causes:

Here, c is a cause of e. C and E are true in the causal model, and (ii) and (iii) are 
satisfied for F� = �.

By contrast, e is not a cause of c. There is no F′ that satisfies (ii) and (iii). (ii) 
demands that ⟨L, �⟩[F�][{E}] entails C. The setting of E removes the law-like propo-
sition E = C from L . (ii) is then only satisfied if F′ contains C. But then ⟨L,F′⟩ ⊧ E 
which violates (iii). Indeed, c is not inferable from e in a forward-directed way.

Consider the causal model ⟨L,F⟩ for the problem of joint effects:

Here, c is a cause of e. C and E are true in the causal model, and (ii) and (iii) are 
satisfied for F� = � . Similarly, c is a cause of a.

By contrast, a is not a cause of e. There is no F′ that satisfies (ii) and (iii). (ii) 
demands that ⟨L, �⟩[F�][{A}] entails E. The setting of A removes the law-like propo-
sition A = C from L . (ii) is then only satisfied if F′ contains C or E. In both cases 
⟨L,F′⟩ ⊧ E , which violates (iii). Indeed, e is not inferable from a in a forward-
directed way. Similarly, e is not a cause of a.

The problems of unique causes and joint effects illustrate how settings establish 
the asymmetry of causation based on the direction of law-like propositions. In the 
presence of the law-like proposition A = � , a setting of some proposition in � may 
determine whether A or ¬A , but a setting of A does not determine any truth value of 
any proposition appearing in � . In the presence of settings, any A = � says that � 
determines whether A or ¬A in a forward-directed way and not the other way around. 
We use this feature of settings to identify the direction of causation. A correct 
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identification is necessary to solve the problems of unique causes and joint effects. 
This means: our theory can solve these problems only if we have identified the true 
law-like propositions and their direction. We discuss the extent to which the direc-
tion of law-like propositions may be obtained in Sects. 5.1.1 and 5.1.2.

Consider the causal model ⟨L,F⟩ for the problem of preemption (cf. Andreas and 
Günther, 2024, p. 11):

Here, c is a cause of e. C and E are true in the causal model, and (ii) and (iii) are 
satisfied for F� = {¬B}.

By contrast, a is not a cause of e. There is no F′ that satisfies (ii) and (iii). 
(iii) demands that ⟨L,F�⟩ ̸⊧ E and every strict superset of F′ that is a non-strict 
subset of F  would entail E. So F′ must be the set {¬B} . (ii) then demands that 
⟨L, �⟩[{¬B}][{A}] entails E. But this is not the case.

We have shown this: once we have the true law-like propositions and their 
direction, our refined regularity theory overcomes the three problems that speak 
decisively against the regularity theory authored by Lewis. We leave it to the 
reader to verify that it solves further classic scenarios, including Overdetermi-
nation, Conjunctive Causes, Prevention, and Double Prevention (Andreas and 
Günther, forthcoming).

Still, the refined regularity theory faces several problems, as we showed in 
Andreas and Günther (2024). First, it has troubles with scenarios which suggest that 
causation is not transitive (pp. 17–9). Second, it succumbs to the problem of isomor-
phic causal models (pp. 11–3). Third, it cannot account for the fact that some omis-
sions are judged to be causes, while others are not (pp. 14–5). Our prequel theory 
overcomes all of these issues and more. And so does our complete regularity theory.

4  Our regularity theory

Our complete regularity theory is a generalization of the refined regularity theory 
which is then amended by conditions (iv) and (v). Condition (iv) corresponds to 
the transitivity condition (5) in Andreas and Günther (2024, p. 19). Condition (v) 
improves upon the deviancy condition (4) of our prequel theory (p.  13). These 
conditions use the terms ancestor and descendant which will be explained at the 
end of this section.

Definition 2 Let ⟨L,F⟩ be a causal model such that F  satisfies L . An event c is a 
cause of a distinct event e relative to ⟨L,F⟩ iff there are possibly empty sets F′ ⊆ F  
and L′ ⊆ L such that all of the following conditions are satisfied: 



2155A Lewisian regularity theory  

(i) ⟨L,F⟩ ⊧ C ∧ E.
(ii) ⟨L�

, �⟩[F�][{C}] ⊧ E.
(iii) ⟨L�

,F
�⟩ ̸⊧ E and there is no F′′ such that F′ ⊂ F

′′ ⊆ F  and ⟨L�
,F

��⟩ ̸⊧ E.
(iv) The law-like proposition of any descendant of C is in L′.
(v) Any C� ∈ F⧵F� whose variable is neither a descendant nor an ancestor of C is 

more deviant than ¬C�.

Unlike Definition 1, Definition 2 allows to disregard certain law-like proposi-
tions. Causation requires only a certain subset L′ of the law-like propositions. 
This subset L′ figures in conditions (ii) and (iii): it must be sufficient for the 
forward-directed inferability of E from C in a maximal context F′ of actual facts, 
while C is still indispensable for the inferability of E in this context.

Definition 2 restricted to the first three conditions is a proper generalization 
of Definition 1. If c is a cause of e relative to a causal model on our refined regu-
larity theory, c is also a cause of e relative to this causal model on our complete 
regularity theory restricted to conditions (i)-(iii). For this to be seen, observe 
that you can always take the “subset” L′ to be the set L of all law-like proposi-
tions. Indeed, Definition 2 restricted to the first four conditions is still a proper 
generalization of Definition 1. If L� = L , all law-like propositions of the causal 
model under consideration are in it—also the ones of any descendant of C.

The generalization which allows us to remove law-like propositions from L is 
constrained by Condition (iv): the lawful paths running from a candidate cause 
and its co-conditions to its effect must remain in L′ . These lawful paths are a set 
of law-like propositions which connects a genuine cause and its co-conditions to 
its effect via all causal paths between them. An effect must be inferable from a 
genuine cause with the help of its instantiated co-conditions in the presence of 
all the lawful paths between them. Condition (iv) effectively requires that the 
causal paths starting from a candidate cause C and its co-conditions must remain 
intact. The condition imposes transitivity on the law-like propositions which 
connect cause to effect. Causation so understood is forward-directed inferability 
along the lawful paths from cause to effect.

To understand the formal details of the transitivity condition, we need some 
terminology. We say A = � is the law-like proposition of A. For any variable 
B appearing in � , we call the other variables appearing in � its co-conditions. 
Moreover, we call A a child variable of the parent variables appearing in � . This 
allows us to stipulate that there is a causal arrow ⇒ from any parent variable B 
to any of its child variables A: B ⇒ A . A causal path from a variable B to another 
A is a set of causal arrows which all point in the same direction connecting B to 
A: B ⇒ … ⇒ A . A variable B is an ancestor of a variable A iff there is a causal 
path from B to A. A variable A is a descendant of a variable B iff B is an ancestor 
of A. Finally, we say that a proposition D of the form B or ¬B is a proposition 
of the variable B. We stipulate the descendants of the proposition D to be all the 
descendants of the variable B. Condition (iv) is herewith well-defined.
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4.1  Non‑transitivity

Definition 2 restricted to the first four conditions accounts for scenarios which sug-
gest that causation is not transitive (Andreas and Günther, 2024). One such sce-
nario may be found in Hitchcock (2001, p. 276). A boulder is dislodged (f) and rolls 
toward a hiker (b). Fortunately, the hiker sees the boulder approaching and ducks 
(d). So she is not hit by the boulder ( ¬E ). It goes against commonsense that the 
dislodgement of the boulder is a cause of the hiker’s remaining unscathed. However, 
the dislodgement is a cause of the ducking and the ducking is a cause of the remain-
ing unscathed. Here our causal judgments fail to be transitive.

The formal representation of informal stories like the boulder example is some-
what controversial. We think Paul and Hall (2013,  pp.  223–6) argue successfully 
against the causal model for the boulder scenario employed and argued for by Hitch-
cock (2001, pp. 295–8). Similar to Gallow (2021, p. 53), we represent the boulder 
scenario by the following causal model:

The refined regularity theory already says that the dislodgement of the boulder (f) is 
not a cause of the hiker’s remaining unscathed ( ¬E ). However, it also says that the 
ducking of the hiker (d) is not a cause of her remaining unscathed ( ¬E)—an unfor-
tunate verdict.

Our complete regularity theory restricted to the first four conditions faces no trou-
bles here. It still says that f is not a cause of ¬E . The transitivity condition ensures 
that all law-like propositions must remain in L′ and so our complete regularity the-
ory restricted to conditions (i)-(iv) collapses to the refined regularity theory. But the 
two theories come apart as to whether the ducking of the hiker is a cause of her 
remaining unscathed: d counts as a cause of ¬E on the complete regularity theory. 
For this to be seen, observe that F is not a descendant of D, and so the law-like prop-
osition D = F can be removed from L . Our boulder scenario has the general form of 
a Short Circuit (Hall, 2007, p. 36). For more details on it and a thorough motivation 
for the transitivity condition, see Andreas and Günther (2024, pp. 17–20).

4.2  Deviancy

Condition (v) is required to overcome the problems posed by isomorphic causal 
models and omissions. As we explained in Andreas and Günther (2024, p. 11), the 
problem of isomorphic causal models is that there are pairs of scenarios, which are 
structurally indistinguishable for simple causal model accounts while our causal 
judgments differ (Hall, 2007). Simple causal model accounts represent causal sce-
narios by structural equations and variable values only—or only by our law-like 
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propositions and propositions of particular fact. As a consequence, simple causal 
model accounts cannot deliver the correct verdicts for certain pairs of isomorphic 
causal models. Overdetermination is, for example, structurally indistinguishable 
for simple causal model accounts from a causal scenario known as Bogus Preven-
tion. Hence, any simple causal model account which correctly counts an overdeter-
miner as a cause must incorrectly count a bogus preventer as a cause (Andreas and 
Günther, 2024, pp. 11–2).

To illustrate the problem of isomorphic causal models, consider an example of 
Bogus Prevention. An assassin does not poison the coffee of his target ( ¬D ). Target’s 
bodyguard administers antidote in her coffee (f). Target survives ( ¬E ). Crucially, 
there is no danger that target dies as her coffee is not poisoned in the first place. The 
prevention of target’s death by bodyguard’s antidote is bogus. Bodyguard’s adminis-
tration of antidote is judged not to be a cause of target’s survival (Hiddleston, 2005; 
Hitchcock, 2007). The causal model of this scenario is as follows:

Definition 2 restricted to the first four conditions incorrectly says that bodyguard’s 
administration of antidote (f) is a cause of target’s survival ( ¬E ). Note that this 
causal model is structurally indistinguishable from an overdetermination sce-
nario  for any simple causal model account: target’s survival ( ¬E ) is “overdeter-
mined” by bodyguard’s administration of antidote (f) and assassin’s failure to poison 
her coffee ( ¬D ). And yet, we usually judge overdeterminers to be causes but not 
bogus preventers.

A classic scenario of overdetermination is this: a prisoner is shot (e) by two sol-
diers (f) and (d) at the same time, and each of the bullets is fatal without any tempo-
ral precedence. Each of the shots is a cause of the death of the prisoner. To see that 
Bogus Prevention is isomorphic to Overdetermination, simply negate both sides of 
the structural equation and then substitute ¬E and ¬D by E and D, respectively. Defi-
nition 2 restricted to the first four conditions correctly says that one soldier’s shot 
(f) is a cause of victim’s death (e). Here the problem of isomorphic causal models 
is that any simple causal model account can only obtain one of the desired verdicts. 
Either overdeterminers count as causes, but then bogus preventers incorrectly do as 
well. Or bogus preventers do not count as causes, but then overdeterminers incor-
rectly do not come out as causes.

Our regularity theory in Andreas and Günther (2024, pp. 12–13) can account for 
the difference between overdetermination and bogus prevention. The idea is to solve 
the problem of isomorphic causal models by a condition of deviancy. Deviancy is 
understood as follows. The absence ¬A of any event of type A is more deviant than 
an event of type A if ¬A violates a norm that is active in the scenario under consid-
eration (Beebee, 2004; Andreas et al., 2022). Without violations of active norms, an 
occurring event is more deviant than its absence (Gallow, 2021).
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Our deviancy condition is different from the one in Andreas and Günther 
(2024, p. 13). We change it because the latter leads to counterexamples.2 Our new 
deviancy condition is motivated by the idea that any cause of an effect must be devi-
ant from what is normal (McGrath, 2005). Condition (v) implements this idea as 
follows: any candidate cause C′ of an effect E, which is neither a descendant nor an 
ancestor of the candidate cause C under consideration, must be deviant. Note that 
C is neither a descendant nor an ancestor of itself as long as there are no cycles in 
the causal model under consideration—no causal paths starting from C and coming 
back to C. Any one C′ in F ⧵ F′ is a candidate cause of E because it entails the effect 
together with the propositions in F′ in the presence of the laws L′ . Otherwise C′ 
would remain in F′ in virtue of its maximality.

In sum, Condition (v) says that, for c to be a cause of e, the proposition C and 
each proposition C′ which may form with F′ some maximised minimal set for E and 
whose variable is neither a descendant nor an ancestor of C must be more deviant 
than its respective negation. It follows that the propositions along the lawful paths 
from each C′ to E may be non-deviant so long as any cause C is deviant. On our 
complete regularity theory, causation is understood as forward-directed inferability 
along lawful paths from deviant events and absences.

Our complete regularity theory says that neither bodyguard’s administration of 
antidote (f) nor the absence of poison ( ¬D ) is a cause of target’s survival. The reason 
is that the presence of poison in target’s coffee (D) is more deviant than its absence 
( ¬D ) and the variable D of the proposition ¬D ∈ V⧵V � is neither a descendant nor 
an ancestor of F. Our complete regularity theory solves Bogus Prevention. And it 
solves Overdetermination, where both overdeterminers F and D are more deviant 
than their respective negations and so count as causes.

Our complete regularity theory, like the one in Andreas and Günther (2024), says 
that deviant omissions are genuine causes while non-deviant ones are not. An omis-
sion is, for example, not to water my plant. Putin’s failure to water my plant did not 
cause it to dry up and die. My neighbour, by contrast to Putin, promised me to water 
my plant while I am away. Her failure to water my plant should count as a cause of 
its death (McGrath, 2005). Our complete theory accounts for these verdicts. Putin’s 
failure to water my plant is an absence and so less deviant than his watering my 
plant. He did not make any promise or was under any other obligation to do so. My 
neighbour’s failure to water my plant, however, violates the active norm of promise-
keeping. Hence, her omission is more deviant than its negation. More details on how 
our theories solve the riddle of omissions may be found in Andreas and Günther 
(2024, pp. 14–5).

2 Our regularity theory in Andreas and Günther (2024) delivers for instance the wrong verdict when we 
add the following information to our example of Bogus Prevention: the assassin’s mentor tells him to 
refrain from poisoning target’s coffee (b) and assassin always listens to his mentor. The causal model is 
the one of Bogus Prevention plus the proposition B and the law-like proposition D = ¬B . Bodyguard’s 
administering the antidote (f) is still a bogus preventer of target’s survival ( ¬E ). But our theory in the 
prequel paper comes to the wrong verdict that f is a cause of ¬E . Our complete regularity theory pre-
sented here delivers the desired verdict.
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On our complete regularity theory, a genuine cause is deviant and allows us to 
infer its effect in a forward-directed way along lawful paths. We leave it to the reader 
to check that our complete regularity theory delivers the desired verdicts in all the 
scenarios considered so far and in Andreas and Günther (2024). It is time to com-
pare our complete theory to other accounts of causation.

5  Comparisons

How does our regularity theory compare to other accounts of causation? In this sec-
tion, we will locate our theory among other regularity accounts and briefly compare 
it to counterfactual accounts. We will argue that our theory is compatible with the 
tradition of “typical” regularity theories. We will explain Baumgartner’s attempt to 
establish the direction of causation in Sect. 5.1.1. While we built on his non-redun-
dant regularities in Andreas and Günther (2024), we do not endorse them here for 
reasons laid out in Sect. 5.1.2.

We then turn to Wright’s (2011) non-reductive regularity account that imposes 
transitivity on causation. As a consequence, his NESS account faces troubles in sce-
narios which suggest that causation is not transitive. Several authors have attempted 
to formalize Wright’s NESS account using causal models. We will argue that they 
either miss their target, or else inherit the problems of Wright’s original account, or 
both.

Finally, we will contrast our regularity theory to counterfactual accounts and dis-
cuss another switch scenario due to Halpern and Hitchcock (2010). We will show 
that our complete theory can solve this switch scenario as well.

5.1  “Typical” regularity theories

Lewis (1973, p. 556) calls the regularity theory he authored and rejected “typical”. 
And indeed, his proposal reflects the development of the regularity approach to cau-
sation until then. The core idea of regularity theories of causation is that causes are 
regularly followed by their effects. Hume (1975) adds to the instantiation of regular-
ity that a cause is spatiotemporally contiguous to its effect and precedes its effect in 
time. At least on one reading of Hume, there is nothing more to causation, and so 
causation is reduced to non-causal entities.

The regularity approach in Hume’s tradition aims to be reductive. It is charac-
terised by taking a stance against metaphysically thick conceptions of causation 
(Dowe, 2000; Psillos, 2002; Andreas and Günther, 2021). The causal relation does, 
in particular, not involve a necessary connection, a productive relation, unobservable 
causal powers, or the like—not even to ground the regularities. A regularity is only 
a stable pattern of events and absences. Cause and effect simply instantiate such a 
pattern.

Mill (1843/2011) observes that causation requires laws of nature: the most gen-
eral regularities which subsume all the other true regularities. For Mill (1843/2011, 
Book I, Ch.  V), a cause is a “sum total” of actual conditions which are jointly 
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sufficient for the effect in the presence of the laws of nature. An effect may have 
many sum totals or sets of conditions that are sufficient for it. Hart and Honoré 
(1985, p. 112) and Mackie (1965, p. 246) emphasise that each sum total must be 
minimally sufficient for its effect: without any one of its members, a sum total is 
not sufficient for its effect. In brief, each member of a sum total is necessary for its 
sufficiency. And since Hart and Honoré and Mackie, the regularity theory counts 
as a cause each necessary condition of any actual or instantiated sum total for an 
effect.

Mackie (1965, 1974) spells out his theory in terms of complex regularities. A 
complex regularity for an effect is a disjunction of conjunctions in disjunctive nor-
mal form which is necessary and sufficient for said effect. Here is a toy example of 
such a complex regularity:

The sum total C1 ∧ C2 is minimally sufficient for the effect E, and so is the sum 
total D1 . C1 on its own is insufficient to bring about E. But it is part of the sum total 
C1 ∧ C2 which is sufficient but unnecessary for E. Taken together, C1 is an insuf-
ficient but non-redundant part of an unnecessary but sufficient condition for E. In 
brief, C1 is an INUS condition for E.

On Mackie’s theory, a token event c is a cause of another e iff C is at least an 
INUS condition of E and belongs to an instantiated sum total sufficient for E. “At 
least” because C may also be a necessary, or a sufficient, or even a necessary and 
sufficient condition for E. This theory says, roughly, that a cause is at least a non-
redundant or indispensable member of a minimal set of actual conditions which 
are jointly sufficient for the effect to occur in the presence of the complex regulari-
ties. Lewis (1973) represented this “typical” regularity theory of his time using the 
entailment relation of classical logic.

Indeed, like Lewis’s statement of the regularity theory, Mackie’s succumbs 
to the problems of unique causes and joint effects. It is controversial whether 
Mackie’s theory solves the problem of preemption. Strevens (2007) argues 
against Mackie (1974, p. 44-7) that it does. Recall Fig. 3. Everyone agrees that 
c is a cause of e. For c belongs to a set of actual conditions which are jointly 
sufficient for the effect e to occur, and removing c from that set makes it insuf-
ficient. The controversy is whether the event a falsely counts as a cause of e. 
Strevens says no. Even though A belongs to a minimal sum total A ∧ ¬C suf-
ficient for E, not all conditions of this sum total are actual: c occurs. And he 
thinks this generalizes to all cases of preemption when sufficiency is replaced 
by causal sufficiency—a notion which we will discuss below.

The underlying problem for Mackie’s theory is that it does not give us the direc-
tion of causation. The complex regularities are material bi-implications which seem 
to blur the asymmetry between cause and effect—at least in the problems of unique 
causes and joint effects.

(1)(C1 ∧ C2) ∨ D1 ↔ E.
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5.1.1  Non‑redundant regularities

Baumgartner (2013) developed Mackie’s theory further. He observes that complex 
regularities like (1) show a certain directedness: an instantiation of a sum total, here 
C1 ∧ C2 or D1 , is sufficient for E, while an instantiation of E is generally not suffi-
cient to determine which sum total is instantiated. Baumgartner uses this directed-
ness to establish the direction of causation under his assumption of multiple type 
causes: each type effect has at least two type causes.

Here is how Baumgartner aims to establish the direction of causation in a nut-
shell. The complex regularities must be constrained: they must be rigorously mini-
mized. The left-hand side of each complex regularity must be necessary for its effect 
in a minimal way. We illustrate this requirement by considering the joint effects 
structure of Fig. 4: the joint type effects A and B have a common type cause C and 
each type effect has an alternative type cause, D and E, respectively.

No effect occurs without any of its causes. Hence, A ∧ ¬D is minimally sufficient 
for C, and so for B. For this type structure, we obtain the true complex regularity:

A is an INUS condition of B. But an instantiation a of A should never count as a 
cause of an instantiation b of B—not even when A is co-instantiated with ¬D . In this 
case, a and b are merely joint effects of an occurring common cause c.

Baumgartner’s insight is that (A ∧ ¬D) ∨ C ∨ E is not minimally necessary for B 
because C ∨ E is still necessary for B. Indeed, B is only instantiated if C or E is. 
And C ∨ E is necessary for B in a minimal way: no disjunct can be removed without 
losing the necessity for B. C ∨ E is a minimally necessary disjunction of minimally 
sufficient conjunctions for B. In general, Baumgartner requires that each complex 

(2)(A ∧ ¬D) ∨ C ∨ E ↔ B.

Fig. 4  Joint effects of a common type-cause
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regularity must be a minimally necessary disjunction of minimally sufficient con-
junctions for an effect. He calls such regularities non-redundant.

The non-redundant regularities are relative to the set of considered variables. In 
the above structure, (A ∧ ¬D) ∨ E ↔ B is a non-redundant regularity relative to the 
variable set {D,E,A,B} . Extending the variable set by C, however, renders the regu-
larity redundant. (A ∧ ¬D) ∨ E is not necessary for B any longer. B may be instanti-
ated if A and D is, and E is not—namely when C is also instantiated. The non-redun-
dant regularity of B after the extension is of course C ∨ E ↔ B.

Baumgartner defines token causation in terms of type causation. He says, roughly, 
that C is a type cause of E iff C is a condition in a non-redundant regularity for E 
and remains so under any suitable extension of the variable set. An extension of 
the considered variables is suitable only if the additional variables do not introduce 
dependences among the variables that are stronger than causation, such as logical or 
mereological relations, supervenience, or grounding.

The assumption of multiple type causes ensures that all the non-redundant regu-
larities are directed. For assume there is a simplistic regularity like C ↔ E , which 
has only one type cause for a type effect relative to some variable set. This simplistic 
regularity is non-directed: E is minimally sufficient for C, and C is minimally suf-
ficient for E. However, by the assumption of multiple type causes, the variable set 
can either be suitably extended by another type cause C′ of E or else by another 
type cause E′ of C. The resulting non-redundant regularity, let’s say C ∧ C�

↔ E , is 
directed: ¬C and ¬C� alone are minimally sufficient for ¬E , whereas ¬E is only suffi-
cient for their disjunction ¬C ∨ ¬C� . This establishes the direction of non-redundant 
regularities and so the direction of type causation if the assumption of mutliple type 
causes is true (Baumgartner, 2013, pp. 94–8).

Equipped with his theory of type causation, Baumgartner defines token causation 
roughly as follows. A token event c is a cause of another e iff C is a type cause of 
E and there is an active path of direct non-redundant regularities from C to E. An 
active path of direct non-redundant regularities is a sequence ⟨C,D1,… ,Dn,E⟩ of 
conditions, where each condition except E belongs to a direct minimally necessary 
disjunction of a minimally sufficient conjunction for its successor, and each condi-
tion except E is co-instantiated with all conditions of the respective minimally suf-
ficient conjunction for its successor.

Baumgartner’s regularity theory reduces causation to material implications and 
minimization procedures. No modal notions like counterfactuals are required. More-
over, Baumgartner’s theory accounts well for many causal scenarios. His theory 
delivers the desired verdicts for overdetermination scenarios, preemption, as well as 
some short-circuits, and some switching scenarios. We think it therefore justified to 
say that Baumgartner advanced the “typical” regularity theory beyond Mackie.

In Andreas and Günther (2024), we built our regularity theory based on Baum-
gartner’s non-redundant regularities. We could also explain our notion of law-like 
proposition in terms of direct non-redundant regularities here: law-like propositions 
of a causal model in our framework are direct non-redundant regularities which 
are true of the respective causal scenario. This explanation would make our theory 
just as reductive as Baumgartner’s and would place it at the forefront of “typical” 
regularity theories. Causation would be reduced to true propositions of particular 
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fact and facts about deviancy from norms. But we refrain from doing so because it 
remains unclear how a reductive theory can be adequately applied to causal models 
featuring simplistic regularities.

5.1.2  The challenge of applicability

How can Baumgartner’s theory be applied to causal scenarios? Well, we model the 
scenario under consideration by a set of instantiated and non-instantiated variables 
and a set of regularities which remain non-redundant under any suitable extension of 
the variable set. Such a model does, however, not suffice to apply his theory without 
worries. He must and does, in addition, assume that the model of a causal scenario 
is complete. Otherwise his theory may come to the wrong verdicts about token cau-
sation, as we will show now.

Suppose the regularity C ∨ A ↔ E is true and non-redundant relative to the vari-
able set {C,A,E} , and each variable is instantiated. Then the instantiation a of A is a 
cause of the instantiation e of E on Baumgartner’s theory. Indeed, c and a look like 
overdetermining causes of e. But appearances may be deceptive. The actual scenario 
may be the preemption scenario depicted in Fig. 3. The regularity is still true and 
non-redundant in this scenario relative to {C,A,D,B,E} : E is instantiated iff C or A 
is. But the instantiation of A which is preempted by the one of C should not count 
as a cause of e. This problem is quite general: our causal verdicts may very well 
change when we consider more variables—even if the relevant regularities remain 
non-redundant under the extension.

Baumgartner (2013, pp. 98–9) solves the problem by the assumption of complete 
description: the models of causal scenarios describe them completely. A complete 
description leaves no variables out and contains all direct non-redundant regulari-
ties. The regularity C ∨ A ↔ E does not describe the preemption scenario com-
pletely. It does not model that the efficacy of the instantiation of A is preempted 
by the simultaneous instantiation of C. Any complete description of the scenario, 
by contrast, does so. Take for example our causal model of the scenario, replace 
= by ↔ , and reverse the sides. We obtain the direct non-redundant regularities 
C ↔ D,A ∧ ¬D ↔ B , and D ∨ B ↔ E . The actual events and absences are repre-
sented by C,A,D,¬B,E . This complete description models why a is not a cause of 
e on Baumgartner’s theory. There is no active path of direct non-redundant regulari-
ties from A to E. A ∧ ¬C is minimally sufficient for B and B is minimally sufficient 
for E, but A is not co-instantiated with ¬C . The direct non-redundant regularities rel-
ative to {C,A,D,B,E} completely describe the structure of the preemption scenario. 
Indeed, they entail the indirect regularity C ∨ A ↔ E , which is thereby superfluous 
for a complete description. In sum, Baumgartner’s theory is adequately applicable to 
causal scenarios only under the assumption of complete description.

The assumption of complete description entails that the model of a causal sce-
nario contains all of the variables. As a consequence, the non-redundant regularities 
between the variables remain so under any suitable extension of the variable set—
simply because there is none. Let us assume, for example, that the just discussed 
canonical model of the preemption scenario is complete. Then there are only the 
five variables {C,A,D,B,E} , and so this variable set cannot be extended. But this 
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non-extendability in virtue of the assumption of complete description contradicts the 
assumption of multiple type causes. If the variable set cannot be extended, the type 
effect D can only have one type cause C. It follows that the direction of the simplis-
tic regularity C ↔ D in the scenario cannot be established under the assumption of 
complete description—at least not by Baumgartner’s method of suitably extending 
the variable set. As a result, he is forced to assume the direction of simplistic regu-
larities in his complete descriptions of causal scenarios.

Baumgartner faces a dilemma. The assumption of multiple type causes is essen-
tial to obtain the direction of the non-redundant regularities and so the direction of 
causation. His theory is not reductive if the assumption is given up. The assumption 
of complete description, on the other hand, is what allows us to adequately apply 
his theory to causal scenarios in the first place. If we give it up, we don’t know 
what the direct non-redundant regularities are. And so we cannot check whether the 
paths of direct non-redundant regularities are active—a check his theory requires to 
determine whether this token is a cause of that. But as we have seen in the canonical 
preemption scenario, the two assumptions may well contradict each other. Indeed, 
they do so in any complete description which features a simplistic regularity. Hence, 
Baumgartner cannot make both assumptions—at least not in all causal scenarios.

In this paper, we treat Baumgartner’s theory as prioritizing the assumption of 
complete description whenever it conflicts with the assumption of multiple type 
causes. Too many of the canonical causal scenarios discussed here and in the lit-
erature on token causation are modelled by simplistic regularities or corresponding 
structural equations. The point of the problem of unique causes is that it violates the 
assumption of multiple type causes: there is only a single type cause for the type 
effect. This being said, we are optimistic that there is a reductive regularity theory 
which can be applied to causal scenarios featuring simplistic regularities. One way 
to resolve the tension is to drop the assumption of complete description and to 
replace it by the assumption that the causal model under consideration is an abstrac-
tion of a causal model satisfying the assumption of multiple type causes. An abstrac-
tion of a causal model may abstract away from certain variables but not from others 
and the causal verdicts between the remaining variables must remain invariant. An 
investigation of the abstraction idea deserves its own paper.

The boulder scenario of Sect. 4.1 spells further trouble for Baumgartner’s theory. 
To apply his theory, let us assume that its causal model corresponds to a complete 
description. Then the hiker’s remaining unscathed is uncaused on his theory. The 
reason is that “e’s absence” has no type causes. For this to be seen, observe that 
the complete description corresponding to our causal model is empirically equiva-
lent to the complete description featuring only the regularities F ↔ B,F ↔ D , and 
¬F ∨ F ↔ ¬E . In both complete descriptions, the respective sets of regularities allow 
for only two empirically possible situations: {F,B,D,¬E} and {¬F,¬B,¬D,¬E}.

For Baumgartner (2013,  pp.  101–5) the empirically equivalent complete 
description shows that the regularity B ∧ ¬D ↔ E is empirically redundant or 
“ungrounded”. ¬B ∨ D is not a minimally necessary disjunction of minimally suffi-
cient conjunctions for ¬E . The tautology ¬B ∨ B is a minimally sufficient “conjunc-
tion” for ¬E , and so are the other tautologies ¬D ∨ D and ¬F ∨ F . Indeed, the only 
minimally necessary disjunction of minimally sufficient conjunctions for ¬E in the 
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boulder scenario is some tautology. As a good result, the dislodged boulder does not 
count as a cause of the hiker’s remaining unscathed. However, the hiker’s ducking 
does also not count as a cause—which seems wrong.

We have learned that the underlying problem for Mackie’s regularity theory—to 
establish the direction of causation—can be solved for complex enough scenarios, 
where each type effect has at least two type causes. Mackie only minimized the 
conjunctions or sets of actual conditions which are jointly sufficient for the effect. 
Baumgartner has seen that necessary conditions may also contain redundancies, and 
these redundancies must be minimized as well to avoid spurious regularities. Yet we 
have seen that Baumgartner’s theory is either reductive, or else adequately applica-
ble to causal scenarios, but not both. Our regularity theory is “typical” if we explain 
our law-like propositions in terms of non-redundant regularities. But then—without 
further ado—our theory would likewise face the challenge of applicability. Hence, 
we refrain from doing so for the time being.

Mackie (1974, pp. xiv & 85–6) gave up the ambitious quest for a reductive regu-
larity theory of causation in the light of the problem of joint effects. Other authors 
departed as well from the the tradition of the “typical” regularity theory of Hume 
and Mill over Mackie and Baumgartner to Andreas and Günther (2024). We will 
discuss their proposals next.

5.2  Non‑reductive regularity accounts

Wright (1985, 2011) builds on Hart and Honoré (1985) to develop a regularity 
account similar to Mackie’s (1965). The account roughly says a direct cause is an 
instantiated NESS condition for its effect: a cause is a necessary element of a suf-
ficient set for the effect. Less roughly, a token event c is a direct cause of another e 
iff the condition C is a necessary element in a set of actual conditions that are jointly 
sufficient in a causal way for an instantiation of E. In many scenarios, C is a NESS 
condition for E iff C is at least an INUS condition for E. A NESS condition is a non-
redundant part of a causally sufficient condition.

Unlike Mackie and like Strevens (2007), Wright (2011,  pp.  289–90) employs 
a notion of causal sufficiency. A set of actual conditions is causally sufficient for 
an effect iff all antecedent conditions in a causal law are instantiated. A causal law 
specifies a minimal set of actual conditions that entails the immediate instantia-
tion of some effect. “Immediate” means here that the effect occurs shortly after the 
instantiation of all antecedent conditions. Wright seems to use the direction of time 
to obtain the direction of causal laws, and thus the direction of causation. He writes 
as if he subscribes to the Humean dictum: causes must precede their effects in time.

This being said, Wright (2011, fn. 33) also writes:

Interpreted in the usual manner, causal succession precludes temporally back-
ward causation, through which events today change events in the past. How-
ever, the definition of causal succession in the text does not preclude such 
backward causation, which would occur if the present instantiation of the ante-
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cedent results in the immediately following instantiation of the consequent 
(paradoxically) in the past.

This reads paradoxical indeed. Pace Wright (2011, pp. 295–6), the directionality of 
the causal laws remains unexplained. He owes us an explanation why, for example, 
the true regularity A → E in the scenario of joint effects is not a causal law. After 
all, the regularity specifies a minimal set of actual conditions {A} that entails the 
instantiation of the joint effect e a moment later. A similar point applies to the true 
regularity A → E in the preemption scenario. Given that the preempted condition 
A is instantiated, E will be instantiated a moment later—either because the genuine 
cause condition C is instantiated, or because it is not. Indeed, {A} is a minimal set 
of actual conditions that entails the occurrence of e. So why is {A}—in both sce-
narios—not causally sufficient for e?

Wright (2011) gestures at Mill’s difference method, and empirical observation 
and experimentation more generally. We observe in an experiment what happens 
after some manipulation in order to identify the effects of the manipulation. This 
seems to presuppose the Humean dictum of the temporal succession of cause and 
effect. Otherwise we cannot exclude that the manipulation caused a past event, 
which in turn caused the observed events. As we have just seen, Wright allows for 
backward causation: a cause may indeed obtain later in time than its effect. The 
Humean dictum is thereby jettisoned. And yet this dictum seems necessary to estab-
lish causal laws by observation and experimentation. The verdict stands: it remains 
unclear on Wright’s account how the directionality of causal laws is determined.

Of course, Wright may rely on Baumgartner’s non-redundant regularities 
as causal laws (on pain of inheriting the problem of applicability explained in 
Sect.  5.1.2). Without such an amendment, however, Wright’s account does not 
account for the directionality of causal laws in terms of non-causal facts, and 
hence is not reductive. Strevens (2007), by contrast, acknowledges the non-reduc-
tive character of his regularity account: the primitive causal relations on the type 
level must somehow be determined by the physical laws.

Wright’s account is transitive by stipulation. He says c is a direct cause of e iff c 
and e instantiate a causal law. The right-hand side means C is a necessary element 
in a set of actual conditions that is the complete antecedent of a causal law whose 
consequent is E. Finally, c is a cause of e iff there is a sequence of direct causes from 
c to e. A cause c is connected to its effect e by a sequence of instantiated causal laws.

Recall the preemption scenario. Under the restriction to the five variables 
C, A, D, B, E, there are four causal laws: A ∧ ¬C → B,C → D,D → E , and B → E . 
Consider the variation of the preemption scenario, where C is not instantiated, and 
so D is not, but A is instantiated and hence is B and E. In this scenario, our regularity 
theory says that a causes e via b, and the absence ¬C does not cause e. We take this 
to be commonsensical. Wright’s account, by contrast, wrongly says that the absence 
¬C is a cause of e. ¬C is a necessary element in the set {A,¬C} of actual conditions 
that entails B by the causal law A ∧ ¬C → B . And B is a necessary element in the set 
{B} of actual conditions that entails E by the causal law B → E.

Wright’s account also leads to troublesome verdicts in scenarios that suggest that 
causation is not transitive. Recall the boulder scenario. The dislodged boulder causes 
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the ducking of the hiker, which in turn causes the hiker’s remaining unscathed. Wright’s 
account says so. However, Wright’s account must in virtue of its transitivity say that the 
dislodged boulder is a cause of the hiker’s remaining unscathed. But this seems wrong.

A similar problem arises in a scenario due to Hall, (2000, p. 205). Flipper sees a 
train approaching. She flips the switch on the railroad tracks (f) so that the train trav-
els down the right-hand track (r), instead of the left ( ¬L ). As the tracks reconverge 
up ahead, the train arrives at its destination anyways (e). Flipping the switch only 
determines the causal path—via the right tracks—by which the train arrives. But the 
train would also have arrived by the alternative causal path—the left tracks—if the 
switch had not been flipped. Here is a simple causal model for the switch scenario:

Flipping the switch is a cause of the train’s travelling on the right track, and the 
train’s travelling on the right track is a cause of the train’s arrival. Indeed, F is an 
instantiated NESS condition for R, and R is an instantiated NESS condition for E. 
However, Wright’s account imposes transitivity on causation and so is forced to say 
that the flipping of the switch is a cause of the train’s arrival. This is the wrong ver-
dict for many: flipping the switch is not a cause of the train’s arrival (Paul, 2000; 
Yablo, 2002; Sartorio, 2005, 2006; Schaffer, 2005; Hall, 2007; Hitchcock, 2009; 
Paul and Hall, 2013; Baumgartner, 2013; Halpern, 2016; Beckers and Vennekens, 
2018; Andreas and Günther, 2021b; Gallow, 2021).

In the switch and boulder scenario, F is not a necessary element of a set of actual 
conditions jointly sufficient for E and ¬E , respectively. F is neither a NESS nor an 
INUS condition for E in the simple switch and ¬E in the boulder scenario. Hence, 
Mackie’s non-transitive theory comes to the desired verdicts.

Baumgartner’s (2013) regularity theory is likewise not transitive. f in the simple 
switch scenario does not count as a cause of e. The reason is that F is no type-level 
cause of E: F can be removed from any set of conditions which are jointly sufficient 
for E without losing the set’s sufficiency, and so F is no condition in any non-redun-
dant regularity for E. In the confines of the scenario, the only minimally sufficient 
condition for E is some tautology like F ∨ ¬F . Similarly, as we have seen above, the 
falling boulder is no cause of the hiker’s remaining unscathed on his theory.

This being said, Baumgartner’s theory judges that the train travelling down the 
right track is not a cause of the train’s arrival in the simple switch; and that the 
ducking of the hiker is not a cause of the hiker’s remaining unscathed. The underly-
ing reason is that the only minimally sufficient condition for the respective effect 
is a tautology, and so the effects are uncaused. Our theory, by contrast, delivers 
the desired verdicts in the boulder and switch scenario (cf. Andreas and Günther, 
2024, pp. 23–5).
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5.2.1  Formalizations of the NESS account

We have embedded Lewis’s regularity theory into causal models and refined it. Oth-
ers had the idea to embed Wright’s (1985) NESS account into causal models. The 
idea surfaced first in Baldwin and Neufeld (2003, 2004). However, their account is 
not strictly speaking a NESS account, but rather a de facto account: an effect coun-
terfactually depends on a genuine cause when holding certain events and absences 
fixed by intervention. Holding this and that fixed, the effect would not have obtained 
if the cause had not obtained. Wright (2011, pp. 287 &304), by contrast, stays clear 
of counterfactuals and aims for a “factual” account. This is, in part, why Beckers 
(2021b,  p.  6215) writes that Baldwin and Neufeld’s account “is inconsistent with 
Wright’s views of the NESS definition.”

Halpern (2008, pp. 205–7) aims to formalize Wright’s (1985) NESS condition in 
Halpern and Pearl’s (2005) framework of causal models. Roughly, C is a Halpern-
NESS condition of E in a causal model if C belongs to some set S of actual events 
and absences such that S is strongly sufficient for E in the causal model, and S ⧵ {C} 
is not. In an attempt to clarify Wright’s notion of causal sufficiency, he says a set S 
of events and absences is strongly sufficient for E in a causal model if S remains suf-
ficient for E when adding any actual events and absences to it. A set S of events and 
absences is sufficient for an effect E in a causal model if setting S by intervention 
entails E in the resulting submodels across different “contexts”, including non-actual 
ones.

A Halpern-NESS condition is, however, inadequate as a formalization of a NESS 
condition. As we have observed above, F is not a NESS condition for E in the Sim-
ple Switch and ¬E in the boulder scenario, but it is a Halpern-NESS condition for 
each. And so the flipping of the switch counts as a cause of the train’s arrival and the 
dislodged boulder counts as a cause of the hiker’s remaining unscathed on Halpern’s 
(2008) NESS test. Another counterexample, where a genuine NESS condition does 
not count as a Halpern-NESS condition may be found in Beckers (2021b, p. 6214).

Beckers (2021b,  pp.  6213–4) also provides another formalization of Wright’s 
(2011) NESS account in Halpern and Pearl’s framework of causal models. He repre-
sents Wright’s non-reductive causal laws by likewise non-reductive structural equa-
tions. This allows to define a notion of causal sufficiency as sufficiency in causal 
models. The resulting NESS account is stipulated to be transitive. And so it inher-
its the problems of the original NESS account in the boulder and switch scenar-
ios. Moreover, it counts the absence ¬C a cause of e in the variation of preemption 
discussed above—which seems wrong to us. Beckers’s formalization of the NESS 
account resembles the original indeed.

Moreover, Beckers (2021b, p. 6216) proposes an “improvement”. He marries his 
NESS account with a counterfactual condition: if c is a cause of e, then, had c not 
obtained, its absence would not have been a cause of e. Sartorio (2006, pp. 73–5) 
motivates this principle by switching scenarios. According to Sartorio’s principle 
alone, flipping the switch cannot be a cause of the train’s arrival in the simple switch 
because not flipping the switch would be a cause of the train’s arrival as well.

Beckers’s counterfactual NESS account defines causation in terms of his NESS 
causation coupled with a path-specific version of Sartorio’s principle. c is a CNESS 
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cause of e if c is a NESS cause of e along some path p in the causal model M and 
¬C is not a NESS cause of e along any subpath of p in the causal submodel of M 
after intervening by ¬C . Notwithstanding Sartorio’s motivation, flipping the switch 
is a CNESS cause of the train’s arrival. Flipping the switch is a NESS cause of the 
train’s arrival via its travelling on the right track. And not flipping the switch would 
not be a NESS cause of the train’s arrival via its travelling on the right track. The 
train’s merely possible path along the left track is quite literally no subpath of the 
actual path to its destination. A similar argument shows that the dislodgement of the 
boulder is a CNESS cause of the hiker’s remaining unscathed.

Beckers (2021b, pp. 6210 &6216) says his CNESS account is a “nice” and “natu-
ral” compromise of a regularity account and a counterfactual one. He does, however, 
not explain why such a compromise is desirable.

The CNESS account is a simpler version of Beckers’s (2021a) definition of cau-
sation. He claims that the latter definition is “a formal expression of the NESS intui-
tion” (p.  1352). But he employs a counterfactual notion of necessity instead of a 
notion of non-redundancy: when testing for causation, the putative cause is replaced 
by a non-actual event or absence rather than simply removed from the minimal set 
of actual conditions sufficient for the effect. He roughly defines causation to be the 
transitive closure of direct sufficiency coupled with a network-specific version of 
Sartorio’s principles. This is not a formal expression of Wright’s NESS account, as 
Beckers admits (p.  1342, fn.  1). He also acknowledges that the explicit statement 
of his favourite definition “looks even more complicated than” Halpern and Pearl’s 
(2005) de facto definition (p.  1354). Except for one of the many examples in the 
2005 paper, the two definitions come to the same verdicts (p. 1358). Moreover, the 
definition agrees with the CNESS account on the verdicts in the simple switch and 
boulder scenarios. So why should we settle for it?

Beckers (2021a, pp. 1361–3) argues that his favourite definition delivers “consist-
ent (and intuitive) answers” to a series of closely related scenarios—unlike many 
other accounts of causation, including the de facto definitions of Halpern and Pearl 
(2005) and Halpern (2015). We leave it to the reader to verify that our complete 
regularity theory delivers the results Beckers desires in the series of scenarios. One 
of his selling points supports our theory as well.

5.3  Counterfactual accounts

Our regularity theory does not rely on any condition of counterfactual dependence. 
It does not ask what would have happened, had the putative cause not obtained. 
Thereby our theory does not rely on counterfactual dependence, de facto depend-
ence, or Sartorio’s principle—unlike the accounts of Beckers and Vennekens 
(2017, 2018) and Beckers (2021a, 2021b) for example. Our regularity theory is not 
counterfactual.

In this section, we briefly explain counterfactual accounts of causation and dis-
cuss a switching scenario proposed by Halpern and Hitchcock (2010). Finally, we 
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say a few words on Gallow’s (2021) account—one of the leading counterfactual 
accounts at the moment.

The starting point of counterfactual accounts of causation is that counterfac-
tual dependence between distinct occurring events is sufficient for causation. The 
simple counterfactual account elevates counterfactual dependence between actual 
events and absences to a necessary and sufficient condition for causation. The 
token event c is a cause of a distint token event e iff c and e are actual, and had 
c not been actual, e would not have been actual. Notably, the simple counterfac-
tual account solves the simple switch and the boulder scenario. Had the switch 
not been flipped, the train would have arrived at its destination anyways. Had the 
boulder not been dislodged, the hiker still would have remained unscathed. The 
flipping of the switch and the dislodgement of the boulder do not make a dif-
ference to the train’s arrival and the hiker’s remaining untouched, respectively. 
Moreover, on a non-backtracking interpretation of counterfactuals, the train trav-
elling on the right track is a cause of the train’s arrival, and the ducking is a cause 
of the hiker’s remaining unscathed.

As is well-known, however, the simple counterfactual account has troubles 
with scenarios of preemption. Had the genuine cause c not occurred, the effect 
e would still have occurred—due to the backup cause a. Hence, the genuine 
cause c does not count as a cause. In response, Lewis (1973) says that causation 
is the transitive closure of non-backtracking counterfactual dependence between 
actual events and absences. This solves certain preemption scenarios, but not oth-
ers. Unfortunately, it also makes flipping the switch a cause of the train’s arrival. 
There is a chain of true non-backtracking counterfactuals running from flipping 
the switch over the train’s travelling on the right tracks to its arrival at the desti-
nation. The dislodgement of the boulder likewise counts as a cause of the hiker’s 
remaining unscathed.

There are plenty de facto accounts of causation using causal models (Hitchcock, 
2001; Woodward, 2003; Halpern and Pearl, 2005; Halpern, 2015). For the simple 
switch, they have all in common that flipping the switch counts as a cause of the 
train’s arrival (Andreas and Günther, forthcoming). For the train’s arrival counter-
factually depends on flipping the switch when holding fixed by intervention that the 
train does not travel on the left tracks. And similarly for the boulder scenario.

This being said, Halpern (2016, pp. 79–81 &90–1) shows how the definitions of 
Halpern and Pearl (2005) and Halpern (2015) can be amended by a condition of nor-
mality so that they solve the Simple Switch. Roughly, causation is then understood 
as de facto dependence witnessed by a possible world which is at least as normal as 
the actual one. The idea is that the non-actual world, where the train does not travel 
on the left track even though the switch has not been flipped, is less normal than the 
actual world. Hence, there is no possible world at least as normal as the actual wit-
nessing that the train’s arrival de facto depends on the flipping.

Another resort for causal modellers when their accounts deliver an undesired 
result is to say that the causal model employed to represent the causal scenario is 
inappropriate. Halpern and Hitchcock (2010, Sec. 4.3) argue that values of different 
variables in a causal model must be logically independent, and further that the vari-
ables R and L in the Simple Switch are
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arguably not independent; the train cannot be on both tracks at once. If we 
want to model the possibility of one track or another being blocked, we should 
use, instead of [L and R], variables LB and RB, which indicate whether the left 
track or right track, respectively, are blocked. This allows us to represent all 
the relevant possibilities without running into independence problems.

We disagree: the variables R and L are not logically dependent. As Beckers and Ven-
nekens (2017, p. 14) put it, “it is a matter of physics, not logic, that a train can only 
occupy a single track at any given moment.”

Halpern (2016, pp. 38–9) proposes the modified switch scenario, where the tracks 
are unblocked but might be blocked, in an attempt to save the verdict that flipping 
the switch is on Halpern’s (2015) definition not a cause of the train’s arrival. Here is 
his causal model:

Halpern (2016, pp. 38) says “it seems strange to call flipping the switch a cause of 
the train arriving when in fact both tracks are unblocked.” Still, the definition of 
Halpern and Pearl (2005) says so. And the one of Halpern (2015) counts the flip-
ping as “part of” the cause {f ,¬lb} , where parts of causes correspond to “what we 
think of as causes” (Halpern, 2016, p. 25). The definitions amended by a condition 
of normality overcome the problem if the non-actual world, where the left track is 
blocked, is less normal than the actual world. For then, there is no de facto depend-
ence of e on f witnessed by a possible world which is at least as normal as the actual 
one.

Our regularity theory without the deviancy condition likewise says that the flip-
ping of the switch (f) is a cause of the train’s arrival (e). Conditions (i)-(iv) are sat-
isfied for L� = L and F� = {¬RB} . Indeed, flipping the switch is a member of a 
maximised minimal set {F,¬RB} of actual conditions which, in the presence of the 
law-like proposition, entails the effect in a forward-directed way. f is also an insuf-
ficient but non-redundant part of an instantiated sufficient condition for e. F is an 
INUS condition of E in Halpern’s switch. In the simple switch, by contrast, flipping 
the switch is redundant, which is arguably a feature of typical switching scenarios.

Our complete regularity theory, however, says that the flipping of the switch f 
is not a cause of the train’s arrival e. For this to be seen, note that ¬LB is in F⧵F′ 
and the variable LB is neither a descendant nor an ancestor of F, and yet ¬LB is less 
deviant than LB. Hence, f is not a cause of e, as desired in Halpern’s switch.

We have seen that switching scenarios pose problems for many accounts of cau-
sation. It is thus not surprising that their representation is controversial. Our regu-
larity theory without deviancy condition delivers the desired results for the “basic” 
switch discussed by Paul and Hall (2013, p. 232). Amended by the deviancy condi-
tion, our theory also delivers the desired results for the more “realistic” switches 
discussed by Hitchcock (2009, p. 395–6).

Counterfactual dependence is clearly not sufficient for causation on our theory. 
For this to be seen, reconsider non-deviant omissions. Putin’s failure to water my 
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plant does not prevent it from drying up and dying. But had he watered my plant, it 
would not have dried up and died. Despite the counterfactual dependence, Putin’s 
omission to water my plant is not a cause of its death.

5.3.1  Gallow’s account

Gallow (2021) offers perhaps the most sophisticated counterfactual account of 
causation to date. On closer inspection, he actually offers several closely related 
accounts. One is guided by the idea that a cause must transmit deviancy via an active 
causal network to its effect. Roughly, each member of a set C of particular proposi-
tions, or variable assignments, is a cause of E in a causal model M iff there is a mini-
mal causal network in M leading from C to E, and the propositions in C ∪ {E} are 
more deviant than their respective negations (p. 83). A network consists of causal 
paths, which start from some C ∈ C and end up in E. In a causal network, the value 
of each variable not in C counterfactually depends on certain values of its parent 
variables. Such dependences are called local.

This counterfactual account can handle an impressive set of scenarios including 
some switches, but it faces some trouble in the Simple Switch. There is a minimal 
causal network leading from flipping the switch {F} to the train’s arrival E, namely 
the causal path F ⇒ R ⇒ E . Within this causal network, E counterfactually depends 
on R, and R counterfactually depends on F. Moreover, the proposition F departing 
from the minimal network to ¬L and the return proposition E are both more devi-
ant than their negations. Hence, flipping the switch counts as a cause of the train’s 
arrival on Gallow’s account.

Gallow (2021,  p.  87) himself observes a consequence of his deviancy require-
ment: “default, inertial states can be neither causes nor effects.” This means that 
preventers do not count as causes in simple prevention scenarios. Assassin poisons 
target’s coffee. Bodyguard prevents target’s death by putting antidote in her coffee. 
It seems that bodyguard’s putting in the antidote causes target’s default survival. But 
the present account must deny causation here and likewise for omissions which are 
supposedly causal.

The problem with genuine prevention cases and omissions motivates Gallow 
(2021,  p.  88) to mention three variants of the above theory. These variants agree 
that, for C to be a cause of E, there must be a minimal causal network in M leading 
from C to E. They differ in what actual values of the cause and effect variables must 
be deviant. There are three options: (i) causes must be deviant, but not effects; (ii) 
effects must be deviant, but not causes; (iii) neither causes nor effects must be devi-
ant. The variants no longer transmit deviancy from cause to effect.

Gallow doesn’t say which of the constraints on deviancy should be preferred. We 
recommend variant (i): causes must be deviant, but not effects. With this constraint 
in place, it is easy to show that Gallow’s theory discriminates between bogus and 
genuine simple preventions in the same way our theory does. Likewise, the discrim-
ination between supposedly causal and presumably non-causal omissions is not a 
problem any more for Gallow’s theory. We merely have to declare that a violation of 
a norm is more deviant than conforming to it. If a neighbour fails to water the plants 
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despite promising to do so, this is then recognized as a cause of the death of the 
plants. Putin’s not watering these plants is not as long as he doesn’t have an obliga-
tion to do so.

Finally, recall the boulder scenario. The hiker’s remaining unscathed by the dis-
lodged boulder is default. If effects are admitted to have non-deviant values, Gal-
low’s account runs into a problem: it says that the dislodgement of the boulder and 
its rolling toward the hiker are joint causes of the hiker’s remaining unscathed. There 
is a minimal causal network leading from {F,B} to ¬E : F ⇒ D ⇒ E ⇐ B . To verify 
that there is such a network, we need to specify contrasts for the values of F, B, and 
D. Since we are free to assign, for all non-effects, a contrast which does not differ 
from the actual value of the variable, we can choose the following contrasts: F and 
D are false, while B is true. Then, it holds for both D and E that their value locally 
depends on the values of their parents, and so F ⇒ D ⇒ E ⇐ B is a causal network. 
Minimality is easy to show for this network. Hence, the dislodged boulder is a cause 
of the hiker’s remaining unscathed on variant (i) of Gallow’s account—a joint cause 
with the boulder’s rolling toward the hiker.

We suggest two solutions for the problem that the dislodged boulder counts as a 
cause on variant (i) of Gallow’s account. First, we may require that all members of 
the set C of presumed causes have contrasts which differ from their actual values. 
Second, we may require that any assignment of contrasts to a variable’s parents must 
satisfy all the structural equations of the causal model. This being said, these solu-
tions may of course lead to troubles in other causal scenarios.

6  Conclusion

We have refined Lewis’s regularity theory of causation twice over. First, we have 
embedded it into a framework of causal models which allowed to add our require-
ment of forward-directedness and a maximality constraint. The refined theory solves 
the problems that speak decisively against Lewis’s regularity theory: the problems 
of unique causes, joint effects, and preemption.

Second, we have generalized the refined theory and added the transitivity and 
deviancy conditions. Our complete theory says that causation is deviant forward-
directed inferability along lawful paths. It can handle causal scenarios which suggest 
that causation is not transitive, like the boulder and several switch scenarios. And it 
features a deviancy condition which helps to overcome the problems of isomorphic 
causal models and omissions. We have shown that our complete theory delivers the 
desired verdicts for the Bogus Prevention scenario, even though this scenario is iso-
morphic to a scenario of Overdetermination. Finally, our theory says that deviant 
omissions are genuine causes while non-deviant omissions are not.

We have argued that Baumgartner (2013) advances the “typical” regularity 
theory beyond Mackie (1965, 1974). As we observed in Andreas and Günther 
(2024,  p.  7), Baumgartner’s theory reduces causation to material implications 
and minimization procedures. He thereby proposes a theory of causation free of 
modal notions like counterfactuals and free of epistemic ingredients (Andreas and 
Günther, 2019, 2020, 2021a). We likewise observed that his theory accounts well 



2174 H. Andreas, M. Günther 

for many causal scenarios, including Overdetermination, Preemption, as well as 
some switching scenarios, and some short-circuits. Only recently counterfactual 
theories of causation have been able to account for these scenarios (Andreas and 
Günther, 2021b; Gallow, 2021).

Baumgartner (2013, p. 106) prefers not to amend his regularity theory by a notion 
of deviancy or typicality. He points to the intuition that causation is an entirely objec-
tive matter that is independent of contexts and norms. This being said, he outlines 
how his theory could be amended by a notion of deviancy. He can thereby secure the 
verdict in the Bogus Prevention scenario that bodyguard’s putting in the antidote is 
not a cause of target’s survival. However, he must still say that assassin’s refraining 
to poison target’s coffee is a cause of target’s survival. But this goes against common 
sense: the typical absence of poison does not cause target’s survival.

The Simple Switch and boulder scenario mean trouble for both Baumgartner’s 
and Andreas and Günther’s (2021b) theory. The theories say, against common sense, 
that the train travelling down the right track is not a cause of the train’s arrival in 
the Simple Switch, and that the ducking of the hiker is not a cause of the hiker’s 
remaining unscathed. We have also pointed out that Gallow’s (2021) counterfactual 
accounts of causation have troubles with these examples.

In Andreas and Günther (2024), we relied on Baumgartner’s non-redundant regu-
larities to propose a regularity theory which aims to be reductive. We have discussed 
that we could do so to save the reductivity of our complete regularity theory. But 
then, our theory would—just like Baumgartner’s—face the challenge of applicabil-
ity: it would not be adequately applicable to many of the causal scenarios discussed 
in the literature. We hope to overcome this challenge in future work.

Our complete theory featuring the condition of deviancy is in a way still incom-
plete. We haven’t said much on what norms are and when events deviate from norms 
in a given scenario. In future work, our theory should be amended by a theory of 
what norms are. We can then also address the question whether or not norms can be 
reduced to propositions of particular matter of fact. For now it should suffice to say 
that our theory emerges as a competitor to the most advanced regularity and coun-
terfactual accounts of causation.
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