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Abstract A detailed analysis of joint-contribution of premises and conclusions in

classically valid sequents is presented in terms of hypergraphs. In (Saint-Germier,

P., Verdée, P., & Villalonga, P. T. (2024). Relevant entailment and logical ground.
Philosophical Studies (pp. 1–43). https://doi.org/10.1007/s11098-024-02101-1), this

idea of joint-contribution is introduced and motivated as a method for characterizing

four kinds of relevant validity, in the sense of selecting the relevantly valid sequents

among the classically valid sequents. The account in (Saint-Germier, P., Verdée, P.,

& Villalonga, P. T. (2024). Relevant entailment and logical ground. Philosophical
Studies (pp. 1–43). https://doi.org/10.1007/s11098-024-02101-1) is built on a cal-

culus, called GLKa, which proves grounding claims for (enthymematically) valid

sequents. In the present paper an adequate representation of GLKa is given in terms

of hypergraphs. The hypergraphs are a kind of diagrammatic proofs for Classical

Propositional Logic, entirely based on the grounds of premises and conclusions. The

hypergraphs and their visualization provide insights into the relations between

premises and conclusions and into the way validity is produced by the binding of

premises and conclusions via their partial grounds. They visualize the network of

elements of the sequent that contribute to its logical validity. Non-contributing (i.e.
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irrelevant) premises and conclusions are then specified to be those that are dis-

connected from the network, however one constructs the graphs.

Keywords Contribution � Relevance � Grounding � Hypergraphs

1 Introduction

In this paper we deal with formally representing how exactly certain premises and

conclusions of classically valid arguments contribute to the validity of the sequent

and others do not. We will conceive of arguments as multiple-conclusion sequents.

As is fairly common, let SET-SET sequents be pairs of sets of formulas separated by

the -symbol. In the sequent , the members of C represent the premises of the

argument and the members of D its conclusions. A multiple-conclusion argument is

valid if, whenever all the premises hold, some of the conclusions hold, whence

is defined to be valid if, in all interpretations, either at least one member of C
is false or at least one member of D is true,1

Validity in this sense by definition admits Weakening for premises and

conclusions, i.e. if is valid then so is , whenever C � C0 and D � D0.
This means that, when one already has a valid sequent, one can arbitrarily add

random formulas as premises or as conclusions. Qua random formulas, they do no

work for establishing the validity of the sequent; they are so to say mere harmless

bystanders.2

Consider for example the valid sequents and . In both

cases q is present in a non-contributing way; the other premises and conclusions are

intuitively doing all the work for the validity and q could have been any other

formula. We assume these to be non-controversial and straightforward cases of non-

contributing premises or conclusions. But other cases are more interesting. In the

equally valid , conclusion q is non-contributing in exactly the

same sense as before, but it seems that also one of the premises p ^ r and r ^ p plays

no role at all. We only need one of the two for the validity, the other could again

have been any other formula. However, there is no good reason to mark one of them

as non-contributing and not the other. In this case we need the notion of ‘joint

contribution’. While all of the premises and the first conclusion contribute, p ^ r and

p form a jointly contributing set of premises and conclusions, and so do r ^ p and

p. The set containing all three of them does not form a jointly contributing set. A

similar phenomenon occurs in and in : merely a

subset of the premises and conclusions are jointly contributing (in the first case

either the two p-formulas or the two q formulas and in the second case either the

1 The terms interpretation, false, and true can be formalized as in one’s preferred formulation of standard

classical logic model-theory.
2 The added formulas may happen to constitute parts of other ways of establishing the validity and in that

specific case we would consider them as doing work, as will become clear later. But the fact that they are

introduced by Weakening means that a proof in which they are so introduced would contain no evidence

that they play any role in making the sequent valid.
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premise on its own or the conclusion on its own), but there is no good reason to

choose one of the jointly contributing subsets over the others. As a last example,

consider : while the conclusion p could have been any other formula

without affecting the validity, one can nevertheless consider both the premise and

the conclusion as jointly contributing to the validity, in the sense that the sequent is

an instance of the valid schema , in which all elements jointly

contribute to the validity. One of the reasons why the sequent is valid, i.e. that it is

an instance of that valid schema, involves this specific conclusion p.

So there is an intuitive sense in which some subsets of premises and conclusions

of a valid sequent jointly contribute to the validity and others may not. But the

natural question to ask is: if they indeed contribute, how exactly do they contribute

and what is it that they contribute? A partial possible answer to this question is

proposed and defended in (Saint-Germier et al., 2024). The basic idea there is that

premises and conclusions contribute part of their meaning to the validity. In

the first premise contributes by offering itself entirely to the

conclusion and the conclusion contributes by receiving the p-part of its meaning.

The second premise does not contribute anything. One could say that the two

contributing elements of the sequent are bound by a part of their meaning, namely p,

and that this binding makes the sequent valid.

Saint-Germier et al. (2024) uses the notion of grounding (in the spirit of (Correia,

2013) and (Fine, 2012), but then conceived in a bilateral fashion) as the more precise

way to capture what we here intuitively introduced in terms of parthood of meaning.

More specifically, it introduces a notion of bilateral logical grounding, i.e. the idea that

the truth or falsity of complex sentences can be explained by the truth or falsity of

other, less complex sentences. This way of explaining is found in the common practice

of giving recursive clauses when defining truth and falsity of formulas in a model. We

say that the truth or falsity of a complex sentence is grounded in the truth or falsity of

simpler sentences if, whenever the simpler sentences have those truth values, the truth

value of the complex formula can be explained by those truth values (in virtue of the

usual semantic clauses). For example, we say that the truth of p grounds the truth of

p _ q. The truth of p also grounds the falsity of :p and, together with the falsity of q, it

moreover grounds the falsity of:p _ q. Reading this kind of grounding as articulating

one aspect of parthood of meaning, one could say that p is a positive part of the positive

meaning of p ^ q, of the negative meaning of :p, and of the negative meaning of

:p _ q. q is a negative part of the latter. Jointly-contributing sets of premises and

conclusions contribute to the validity of sequents by those premises and conclusions

being bound together by these kinds of grounds.

Remember that we defined validity of sequents as a property involving the falsity

of some premises and the truth of some conclusions. It is then natural to expect that

premises contribute partial grounds for their falsity to the validity of the sequent,

while conclusions contribute partial grounds for their truth. In , the

first premise contributes the falsity of p and the conclusion contributes the truth of

p. Because p is always either true or false, because the falsity of p trivially grounds

the falsity of the first premise, and because the truth of p grounds the truth of the

conclusion, in all possible interpretations at least the falsity of premise p or the truth of

conclusion p _ r is grounded, which is enough to establish validity. In the sequent
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, the falsity of p grounds the first premise, that of q the second and the

truth of p, together with the truth of q, ground the conclusion. Because every

interpretation supports either the truth or falsity of p and either the truth or falsity of q,

at least one of the premises is grounded in those models in which either p or q are false,

while in the models where they are both true, the conclusion is grounded.

Consequently, the validity is established by binding the first premise via its only

partial ground to the conclusion accounting for one of its two partial grounds in

combination with binding the second premise via its only partial ground to the

conclusion, accounting for its other partial ground. In general, this process shows that

validity can be obtained by premises and conclusions being bound by their opposite

partial grounds.

In (Saint-Germier et al., 2024) a sequent calculus called GLKa is given that

specifies how one can derive the validity of sequents from mere claims about

grounding of the falsity of premises and the truth of conclusions, by repeatedly

binding jointly contributing elements of a sequent via their opposite partial

grounds3. The binding metaphor is intuitively clear and simple for basic cases like

the aforementioned sequents: anybody who knows basic propositional logic, sees

which premises and conclusion can be bound in this way.

It might then seem that reducing contribution to such binding relations is a mere

matter of realizing that a premise or conclusion contributes if and only if it is able to

bind with some other premise or conclusion. However, the notion of contribution

considered here is much more subtle: for there to be contribution, exactly those

binding relations between contributing premises or conclusions need to make the

sequent valid, not other bindings that do not sufficiently establish validity. For

example, in the valid sequent only the

premise contributes to the validity (by the fact that two copies of it can be bound

through the truth/falsity of q), although the premise and conclusion have opposed

partial grounds and can be bound by those partial grounds.

In fact, the way GLKa explicates contribution gives rise to a structurally rather

complex binding relation between premises and conclusions. This interesting

structure is not immediately transparent in GLKa-derivations. Understanding how

the (joint) contribution really works by ground-binding requires explicitly mapping

the network of interactions between premises and conclusions in detail.

This is the main objective of the present paper. We provide insight into the ways

in which parts of valid sequents relate to each other by mapping and visualizing this

complicated relation of establishing sequent validity by means of ground binding.

We completely stick to the formalism presented in (Saint-Germier et al., 2024) for

3 As an intermediate between grounding the truth values of premises and conclusion and proving the

validity of sequents, the calculus also produces grounding claims for enthymematic validity.

Enthymematic validity is the idea that even invalid sequents may be enthymematically valid implicitly

assuming the truth or falsity of specific sentences. If those sentences are more basic than the sequent, we

then say that the sentences having those truth values grounds the sequent’s enthymematic validity. An

example: assuming the truth of q, the sequent is enthymatically valid and, because q’s truth

is more basic than the sequent, we say that the sequent can be grounded by the truth of q. Properly valid

sequents will then be a special case of the enthymematically valid sequents, namely those that can be

grounded by the empty set, those that do not require supplementary assumptions about the world.
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the basic notion of joint-contribution and grounding, but, by means of hypergraphs

consisting of vertices labeled by formulas–premises, conclusions and their partial

grounds– and their sign (positive/true or negative/false), we are able to represent the

detailed network of binding interactions between all the different premises and

conclusions of sequents. The crucial factor for joint-contribution will be the

connectedness of parts of the networks. Only if there is some connected subnetwork

(i.e. one in which all elements are indirectly connected to each other) involving a set

of premises and conclusions in some correct network representation of the sequent,

the network will prove validity, and only the premises and conclusions in such a

subnetwork will be seen as jointly contributing to the validity. In this way one

obtains clear and visual insight into the precise way in which several elements of

sequents interact by matching opposite partial grounds.

Like in (Saint-Germier et al., 2024), the aim behind all of this is to explicate

relevance intuitions in a natural and insightful way, without going beyond or against

classical logic. In (Saint-Germier et al., 2024), the ground-theoretical joint-

contribution idea is used for the definition of four types of relevant validity, three of

which have before been discussed in the literature (cf. Brauer, 2020; Smiley, 1996;

Tennant, 2017; Verdée et al., 2019), ultimately based on a negative account of

contribution as a form of indispensability. The main contribution of (Saint-Germier

et al., 2024) is to provide a positive account of the four kinds of relevance by means

of joint-contribution cashed out in terms of grounding. It is that account that is

further analysed here. Unlike (Saint-Germier et al., 2024), the current paper will not

directly discuss relevant validity or relevant entailment. It is straightforward for the

reader of both papers to see how the hypergraphs can also be seen as providing a

proof theory and visualization for each of the four kinds of relevant validity.

This paper does not aim or claim to offer deep mathematical results about the

concepts that are introduced or used. The whole text is written in such a way that the

metatheoretical propositions we formulate are easily seen to hold, once the

definitions are well understood. The definition of the hypergraphs and the associated

joint-contribution idea is supposed to be a new way of thinking visually and

structurally about relevant and irrelevant arguments. It is an invitation to use this

new language for pedagogical purposes and for proving substantial mathematical

results about proofs conceptualized as networks or hypergraphs.

2 The calculus GLKa for bilateral grounding

We start by rehearsing the GLKa-calculus from (Saint-Germier et al., 2024).

Fix the language of propositional logic with connectives4 :, _, ^, and sentential

letters p, q, r, . . ., possibly with subscripts. A;B;A1; . . . will be used as

metavariables for formulas. A signed formula Aþ or A� is a formula A with a

4 In (Saint-Germier et al., 2024) also the material conditional � is in the language. It can safely be added

here too, either as a defined connective or based on the grounding rules formulated in (Saint-Germier

et al., 2024), but it does not play an interesting role here.
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sign ‘þ’ or ‘-’ added to it. They represent formulas with their truth value (Aþ

means ‘A is true’, while A� means ‘A is false’).

We will represent sequents by means of multisets of signed formulas with their

truth value, namely the falsity of the premises together with the truth of the

conclusions. A multiset is a set, combined with the information how often each

member occurs in the multiset. We represent them by enumerating each copy of

each member between double braces ff and gg (we omit the braces if there is no

confusion). Sequents will be represented as expressions of the form ½½U��, where U is

a multiset of signed formulas, such that ½½ffAþ
1 ; . . .;A

þ
n ;B

�
1 ; . . .B

�
mgg�� denotes the

sequent . We use multisets instead of sets because premises

and conclusions can play multiple different roles for establishing validity. Take for

example , in which the first premise is used once together

with the second premise to give q and once with the third premise to give r. We

need both the truth of q and that of r to ground the conclusion, so one could say that,

in the multiset ffp�; p�;:p _ q�;:p _ r�; q ^ rþgg used for representing the

sequent, all elements jointly contribute to the validity. This would not hold if we had

added a (useless) third copy of p� to the multiset. We call the members of U the s-
elements (abbreviation of ‘sequent elements’) of the sequent ½½U��.

Sequents can be valid absolutely/simpliciter as stipulated before, but they can

also be enthymematically valid given a set of fixed truths and falsities (certain

formulas with determined truth values) if either the premises are false or the

conclusions are true in all interpretations respecting the given set of fixed truths and

falsities. For example: ½½:p _ q�; qþ�� is enthymematically valid given the truth of p,

because either :p _ q is false or q is true in all interpretations in which p is true.

Capital letters X; Y ; Z;X1; . . . are used as metavariables for signed formulas, and

Greek capital letters U;U;R;R1; . . . as metavariables for multisets of signed

formulas. ½½U��; ½½U1��; ½½R��; ½½R1��; . . . are then metavariables for sequents. We use

X;Y;Z;X1; . . . as metavariables for signed formulas or sequents.5

In the grounding calculus, grounding statements are constructs of the form U\X,

i.e. of the form U\X or U\½½W��.
Let us discuss one of the ways to read and understand such claims.

Aþ
1 ; . . .;A

þ
n ;B

�
1 ; . . .B

�
m\C�

and

Aþ
1 ; . . .;A

þ
n ;B

�
1 ; . . .B

�
m\Dþ

mean that, if all Ai were true and all Bi were false, the falsity of C, resp. the truth of

D, would be grounded in the the truth of the Ai and the falsity of the Bi.

Aþ
1 ; . . .;A

þ
n ;B

�
1 ; . . .B

�
m\½½Cþ

1 ; . . .;C
þ
o ;D

�
1 ; . . .D

�
p ��

means that, assuming that we fix all Ai as true and all the Bi as false, the fact that

either one of the Ci is true or one of the Di is false in all thus selected interpretations

5 In (Saint-Germier et al., 2024), the term sequent term is used for constructs of the form ½½R��. Here we

conflate sequents and their formulation as enthymeme-terms.
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can be grounded by the truth of the Ai in combination with the falsity of the Bi. The

sequents that can be GLKa-derived with an empty ground slot to the left of\ (we

say that they are zero-grounded) are all and only the ones that are classically valid.

For philosophical interpretation and justification of this grounding relation and its

calculus, we refer to (Saint-Germier et al., 2024).

Definition 1 W\X holds if it can be derived from the rules in Table 1.

For this paper it will suffice to restrict ourselves to, so called, analytic
derivations. They are, informally put, the ones in which the structural rules are

applied separately by type, not intermingled, and in a specific order; in a first phase

axioms, then only (Trans\), in the third phase only (Bind), in the fourth only

(Amalg), and in the final phase only (\W), with the nuance that (SCon) and (GCon)

are possible everywhere.6 Formally we can represent this with the rules in Table 2,

in which a grounding claim of the form U\iX means that U\X can be derived in

phase i of a derivation.

Here is an example of an analytic derivation in the grounding calculus GLKa

divided into the aforementioned phases. We omit applications of the (Ph)-rule. We

Table 1 The grounding calculus GLKa

6 In (Saint-Germier et al., 2024) there are only four phases, because the first phase is not distinguished

from the second. This slight modification is useful for explanatory purposes and has no impact on any of

the formal definitions or results.
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start with derivations D1 for pþ; q�\2½½:p _ q���, D2 for r�\2½½:rþ��, and D3 for

qþ; rþ\1½½q ^ rþ��.

Table 2 Canonical GLKa-derivations in 5 phases
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In derivation D4 and D5 we resp. show that pþ\3½½:p _ q�;:rþ; q ^ rþ�� and

that \3½½p�;:p _ q�;:rþ; q ^ rþ��, now also utilizing the (Bind)-rule:

In the last derivation we finally add the missing premise by means of (\W):

3 From GLKa-derivations to logical hypergraphs

In this section, we introduce a graph-theoretic representation of the grounding

calculus GLKa by means of a special kind of graphs. The logical hypergraphs, as we

shall call them, will have exactly the same proving power as that calculus, but by

associating graphs to every sequent, we are able to show whether and how the

partial grounds of the contributing premises and conclusions relate to each other. In

this way, we obtain a clear and visual insight into and a precise mathematical

characterization of joint-contribution and the relevance and irrelevance of parts of

valid sequents.

Technically, the graph-theoretical objects we shall employ are hypergraphs, a

generalization of ordinary graphs allowing edges to connect multiple vertices

(instead of just two in ordinary graphs). This is, admittedly, a rather unfamiliar

notion, but it can simply be seen as a totality of nodes that can be connected by

edges that can relate a multitude of nodes at once (instead of always two in ordinary

graph theory).

Definition 2 [Hypergraph] A hypergraph is a pair hX;Ei such that X is some set

(called the vertices) and E is a set of non-empty subsets of X (called the edges).

Accordingly, several usual notions of graph theory (e.g., path, cycle, etc.) need to

be generalized to apply to hypergraphs. While, in the literature, these notions are

sometimes given alternative names (such as e.g. Berge path), we use the ordinary

graph-theoretical names. This is possible without causing confusion because we do

not need to and will not speak about ordinary graphs at all in this paper. Even the

word graph will always denote a hypergraph in the remainder of the paper. The
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reader does not need to be acquainted with hypergraphs to understand our very basic

usage of them. The following definitions suffice to comprehend what follows.

Definition 3 We use the following fairly standard notions from hypergraph theory:

• A vertex v and an edge e are adjacent iff v 2 e.

• A path consists of a sequence of k distinct vertices v1; v2; . . .; vk and k � 1

distinct edges e1, e2, ..., ek�1 such that vi; viþ1 2 ei for all i 2 f1; 2; . . .; k � 1g.

• A cycle is a path containing at least two vertices and such that v1 ¼ vk.
• A set V of vertices in a hypergraph are connected iff there is a path between

every two distinct vertices u; v 2 V .

• A hypergraph G1 is a subgraph of another hypergraph G2 if the vertices of G1 are

vertices of G2 and the edges of G1 are edges of G2.

• A connected set is moreover non-trivially connected iff it is has at least two

members.

• A hypergraph is connected if the totality of its vertices is.

• A component of a hypergraph G is a connected subgraph of G that is not a proper

subgraph of another connected subgraph of G. A component is non-trivial if it

contains at least two vertices.

• The disjoint union of two hypergraphs is the hypergraph created by taking the

union of the vertices of the two hypergraphs as the set of vertices and the union

of the edges of two hypergraphs as the set of edges, under the assumption that

the two hypergraphs share no vertices (otherwise the operation is undefined).

The kind of hypergraphs we are interested in have vertices that are labeled by

signed formulas X or by single element sequents, i.e. expressions of the form [[X]].

There are two kinds of vertices: groundee vertices (denoted by an arrowhead) and

ground vertices (denoted by an arrowtail). The visualization is specified in Table 3.

There are three kinds of edges, closing edges, disjunctive grounding edges and

conjunctive grounding edges 7 (if we speak of grounding edges simpliciter, we just

mean either kind of grounding edge). Closing edges contain exactly two vertices, a

ground vertex and a groundee vertex with the same signed formulas as their labels.

We represent them by drawing the groundee vertex’s arrowhead inside the ground

7 To avoid confusion, it may be useful to clarify that the conjunctive/disjunctive grounding edges have

nothing to do with ways of grounding the conjunction/disjunction connective in the object language.

Conjunctive here refers to the fact that partial grounds form a full ground by conjoining them, while

disjunctive refers to the fact that, in cases where such edges are applied, we ground an open ground vertex

by means of multiple open groundee vertices of a same connected graph. We will see that multiple

groundee vertices in one connected graph will together represent (parts of) sequents, which are

understood here in a disjunctive way. So the kind of grounding involved in this special case is not

conjunctive but disjunctive. If the disjunctive notion does not become more transparent throughout the

paper, this is not a problem, because this kind of edges will here only be introduced by the contraction

rules (GCon) and (SCon), in which case they are rather easily understood. One might even plainly call

them contraction edges for the purpose of this paper. However, if one also wants to design graphs for non-

classical logics with intensional connectives, like intuitionistic or linear logic, a more operational notion

of disjunctive grounding, represented by disjunctive grounding edges, becomes very useful.
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vertex’s Y-shape, and by mentioning the common label only once (see Table 4).

Vertices adjacent to a closing edge are called closed and the others open.

Grounding edges will be represented by stars of straight lines, as illustrated in

Table 5. In the generic visualizations of graphs and their rules, the diamond-shaped

nodes are used to represent vertices (open or closed) and the boxes represent

hypergraphs. The lines are dashed in the case of disjunctive grounding edges and

full in the conjunctive case. A star is a bold point from which a line leaves to each

member of the edge; if the edge has just two vertices as members, the star will look

like an ordinary straight line between the two vertices, often utilized to visualize an

edge in ordinary (non-hyper) graph theory. Singleton edges will not occur in our

graphs. Grounding edges express a grounding relation between the labels of the

ground vertices adjacent to them on the one hand and the labels of the adjacent

groundee vertices on the other. In case there are multiple groundee vertices with a

label of the form [[X]], the groundee is the sequent made up out of the combination

of all those labels.

Definition 4 [S-element, justified vertex, justified hypergraph] An s-element
vertex is an open groundee vertex of the form [[X]]. An s-element is justified if it is

adjacent to a grounding edge and fully justified if there is moreover no path to an

open ground vertex. A hypergraph is fully justified if all its s-element vertices are

fully justified.

Definition 5 [Flat and sequent hypergraphs] A hypergraph with at least one

s-element vertex is called a sequent hypergraph and one that has one open groundee

vertex labeled by a signed formula is called flat.

Sequent hypergraphs are very different from flat hypergraphs if it comes to their

purpose and interpretation. Flat ones express ways in which sentences having truth

Table 3 Graph-theoretic calculus: notation for open vertices

Table 4 Graph-theoretic calculus: notation for closed vertices
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values can be grounded (corresponding to gounding sequents like X1; . . .;Xn\Y)

while sequent hypergraphs express ways in which the validity or enthymematic

validity of sequents can be grounded (corresponding to grounding sequent like

X1; . . .;Xn\½½Y1; . . .; Ym��). Every open groundee vertex of a flat one is labeled by a

signed formula, while in a sequent one they are labeled by signed formulas enclosed

by double square brackets, expressing the formula qua premise or conclusion. It

makes no sense to have multiple open groundee vertices in a flat hypergraph: one

want to ground one fact (that a sentence has a truth value), no a multitude of them.

Table 5 Graph-theoretic calculus: notation for grounding edges
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Closed vertices can be seen as vertices that are no longer of interest when one

wants to extract the basic grounding and validity information from the labeled

hypergraph. They have fulfilled their duty as intermediates, and are only represented

in the graph to be able to trace back how we found the connections. The open

groundee vertices are grounded in all the other open vertices that are (directly or

indirectly) connected to them.

We introduce the notion of a logical hypergraph, a hypergraph that has the right

structure to represent grounding and entailment relations. This will give us the

means to define a graph-theoretic version of the (relevant) grounding calculus. First

consider some useful visualization machinery in Table 6.

Definition 6 [Logical hypergraph] A logical hypergraph is a hypergraph in the

above sense, constructed according to the operational axioms in Table 7 and the

structural rules in Table 8.

Some structural rules are restricted to sequent hypergraphs as they simply make

no sense when applied to flat hypergraphs. If a rule can multiply the number of open

groundee vertices and we allow it to apply it to flat hypergraphs, we risk the

meaningless outcome that a graph would express a grounding claim for two or more

formulas each having some specific truth value, which makes no sense in our

interpretation. Either we have multiple groundees, in which case we deal with

Table 6 Graph-theoretic calculus: notation for graph abbreviation
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sequents, who can have multiple premises and conclusions, represented by signed

formulas between double square brackets, or we have a simple claim about what

grounds a single formula having a truth value. Hybrids of this make no sense and

have no purpose in our framework. The contraction rule for grounds (GCon) applies

to any graph that expresses a grounding relation, whether it is a sequent graph or

not, as soon as there are two same-labeled open ground vertices. The other

contraction rule expresses that two copies of a same premise or conclusion may be

reduced to just one. This does not make any sense for flat graphs, as they do not

have premises or conclusions.

Definition 7 [Analytic logical hypergraph] A logical hypergraph is recursively

defined to be in stage 1 if its construction only involves (GCon) and axioms, in

stage 2 if it is in stage 1 or it is the result of applying (Trans\) or (GCon) to stage

2-graphs, in stage 3 if it is in stage 2 or the result of applying (Bind), (GCon), or

(SCon) to stage 2-graphs, in stage 4 if it is in stage 3 or the result of applying

(Amalg) to stage 3-graphs and, finally in stage 5 if it is in stage 4 or the result of

applying (\W) to stage 4-graphs. An analytic logical hypergraph is a logical

hypergraph which is in one of the five stages mentioned above (or, equivalently, in

stage five).

Table 7 Graph-theoretic calculus: operational axioms
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In what follows we will only consider analytic logical hypergraphs. Whenever

we speak of logical hypergraphs, we only refer to the ones that are analytic. It is

quite plausible that the specificity of the analytic kind only concerns the

construction process and that the two categories are therefore extensionally

equivalent. We have not proven this conjecture. In any case, the analytic graphs

have the same proving power as the more general kind of graphs in view of the

parallels with the (analytic) GLKa-derivations, so this restriction (if it really is one at

all) is logically innocent.

Proposition 1 Each logical hypergraph is either a sequent hypergraph or a flat
hypergraph, and never both.

Table 8 Graph-theoretic calculus: structural rules
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Proof By induction.

The base case. All hypergraphs introduced by the operational axioms are flat and

those introduced by (Ent) are always sequent hypergraphs.

Induction step. Assume that the premise graphs of each rule are flat or sequent

but not both. We prove that the same holds for the conclusion graphs of each rule.

(Trans \). By the induction hypothesis the second premise graph is flat and so it

has only one groundee vertex. In the conclusion graph this groundee vertex is

closed, so the groundee vertices of the conclusion graph are identical to those of the

first premise graph, which is flat or sequent but not both by the induction hypothesis.

(Bind). The premise graphs need to be sequent graphs, so all the groundee vertices

are sequent-labeled. The groundee vertices of the conclusion graph are a subset of

the groundee vertices of the two premise graphs combined and, consequently, also

the conclusion graph is a sequent graph and not flat. (GCon). This rule does not

change the groundee vertices so the induction hypothesis justifies that the

conclusion graph is also either sequent or flat but not both. (SCon). Both premise

and conclusion graph are sequent and the conclusion is not flat because the premise

is not by the induction hypothesis and no new open groundee vertex emerges in the

rule-application. (\W) and (Amalg). Both rules transform sequent graphs into other

sequent graphs. The premise graphs cannot be flat in view of the induction

hypothesis, and so the conclusion graphs are not flat either because no new signed-

formula-labeled groundee vertices can be introduced by these rules. h

Verifying whether a given hypergraph is indeed a logical hypergraph can go as

follows. One breaks down the graph step by step, by applying the structural rules,

phase by phase in reverse, until no further structural rules can be applied in reverse

to any of the hypergraphs that result from this decomposition procedure. To see that

this method can be transformed into a deterministic procedure, consider that all

hypergraphs are finite and that there are only a finite number of rules such that the

hypergraph can be the result of its application. Because each rule makes the

hypergraphs strictly more complex, the application in reverse results in ever simpler

graphs. We can thus exhaustively try out every way in which the hypergraph can be

broken down into simpler graphs (in an arbitrary predetermined order8) and, if the

current full breakdown does not result in axiomatic basic hypergraphs, we backtrack

the process and try the other ways to break it down (the fact that we apply the rules

in phases does not make a difference here, given that we do an exhaustive

breakdown). The original hypergraph was then a logical hypergraph iff all the

obtained hypergraphs after decomposition are of the form of one of the hypergraphs

that can be obtained by applying the axioms.

Just like the GLKa-calculus, the logical hypergraphs constitute a calculus for

proving grounding claims.

Definition 8 [Proving grounding claims] A flat logical hypergraph is said to prove
U\X if (i) the members of U are the labels of the open ground vertices and (ii) X is

8 The only thing that matters is that all rules are tried out (in reverse) until the graph is broken down into

a set of primitive graphs, if this is indeed possible.
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the label of its open groundee vertex. A sequent logical hypergraph proves U\½½W��
if (i) the members of U are the labels of the open ground vertices and (ii) the

members of W are the labels of the s-element vertices of the hypergraph, put inside

double square brackets. We also say that it is a logical hypergraph for U\X resp.

U\½½W��.

Proposition 2 [Adequacy] There is a GLKa-derivation for U\X iff there is a
logical hypergraph that proves U\X.

Proof Definition 8 allows finding the grounding claim proven by a hypergraph

solely based on the labels of open vertices in logical hypergraphs. If one merely

focuses on the open vertices, the rules for forming logical hypergraphs out of other

hypergraphs are identical to those for deriving correct grounding claims out of other

correct grounding claims in analytic GLKa-derivations.

We will only discuss this process for the (Bind)-rule in the two calculi. The

reader can easily verify that the other rules also match perfectly with their GLKa-

counterparts. In GLKa, (Bind) allows for removing A� as a partial ground from one

grounding claim and Aþ as a partial ground from another before merging those two

claims into one. This is also done by the graph rule (Bind): the resulting hypergraph

contains the very same open vertices as G1 and G2 taken together, except that an

open Aþ-labeled ground vertex from G1 and an open A�-labeled ground vertex from

G2 are closed in the resulting graph. h

It is important to realize that, despite the fact that the rules for constructing

logical hypergraphs resemble the rules to go from correct grounding sequents to

other correct grounding sequents, logical hypergraphs contain much more

information; they constitute entire proofs for the grounding sequent they prove.

There are no logical hypergraphs for incorrect grounding sequents, and so, if we can

construct a logical hypergraph, the grounding sequent for which it is a logical

hypergraph is correct.

Logical hypergraphs do not only serve to prove grounding claims. They are also

ways to represent (possibly unfinished or failed) attempts of proving sequents.

Definition 9 [Logical hypergraph for sequents] A logical hypergraph G is a logical
hypergraph for a sequent if the s-elements of the sequent, put inside double square

brackets, are the labels of the s-element vertices of G. Any number of open ground

vertices is allowed here.

It is perfectly possible that a logical hypergraph for a sequent does not prove the

sequent in question (consider that a logical hypergraph for p�\½½pþ�� is also a

logical hypergraph for the sequent ½½pþ��, which is obviously not valid). Only valid
hypergraphs prove the sequent for which they are logical hypergraphs. What

validity means for a logical hypergraph is developed in Sect. 5.
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4 Some examples of logical hypergraphs

As a first example, we construct a logical hypergraph that corresponds to the GLKa-

derivation given in Sect. 2, which showed how \½½p _ s�; p�;:p _ q�; q ^
rþ;:rþ�� can be obtained from basic grounding principles.

To represent this proof as a logical hypergraph, we first create, by means of the

axioms of the system, the stage 1-logical hypergraphs consisting of one grounding

edge that corresponds to an axiom in the GLKa-derivation. The result is represented

in Fig. 1.

Next we connect the stage 1-logical hypergraphs step by step by first applying the

(Trans\)-rule resulting in stage 2-logical hypergraphs. Here we need to do this four

times by connecting two disjoint hypergraphs by means of a closing edge. We

obtain 4 stage 2-hypergraphs. These steps correspond to the applications of

(Trans\) in the GLKa-derivation. In the third stage we apply the (Bind)-rule three

times, reducing the number of stage 3-logical hypergraphs from 4 to 3, from 3 to 2,

from 2 to 1, in the end creating one connected stage 3-logical hypergraph.

Afterwards the (\W)-rule allows us to add the isolated ½½p _ s���-labeled groundee

vertex to the graph. This corresponds to the application of Weakening in the last

step of the GLKa-derivation. The result is a logical hypergraph in which the labels

of the s-element vertices correspond exactly to the s-elements of the sequent whose

zero-groundedness is proved by the GLK-proof. It is visualized in Fig. 2.

A second and somewhat more complex example is visualized in Fig. 3. The

complexity lies here in the fact that we here have at three points in the graph

construction two grounds or groundees with the same label that need to be

contracted into one new ground/groundee vertex connected to both. Concretely,

premise ½½r _ s��� occurs as the label of two s-element vertices before the last

(SCon)-application, but it is then reduced to only one by (SCon). In an earlier stage

Fig. 1 Example 1: eight logical hypergraphs in stage 1
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of the construction, we also twice need a case of ground contraction, dealt with by

(GCon). First the two copies of the partial ground pþ are contracted into only one

and then the same is done for the two copies of qþ. In the visualization, the dashed

lines (indicating disjunctive grounding edges) show where these contractions are

situated.

5 Graphs and validity

Logical hypergraphs are, just like GLKa-derivations, interesting tools to prove and

represent grounding relations, but here we are mostly interested in their capacity to

represent ground-connections between s-elements in a valid sequent. We aim to

capture what it is that makes sequents valid, i.e. what makes the difference between

a graph that does not establish the validity of its sequent and a graph that does.

A logical hypergraph for a sequent only becomes a proof for that sequent if it has

a non-trivial component without open ground vertices. Such a component makes the

hypergraph valid.

Definition 10 [Validity-maker, basis] A logical hypergraph G1 is a validity-maker
of a logical hypergraph G2 if G1 is a fully justified component of G2. A set V of s-

element vertices in G is a basis for G if there is a validity-maker G0 of G such that V

exactly contains the s-element vertices in G0.

Definition 11 [Validity of a graph] A logical hypergraph is valid if it has a

validity-maker.

Proposition 3 There is a valid logical hypergraph for all and only the classically
valid sequents.

Fig. 2 Example 2: logical hypergraph proof for \½½p _ s�; p�;:p _ q�; q ^ rþ;:rþ��
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Proof Valid sequent ) valid graph. Proposition 2 and the fact the classically

valid sequents are exactly those that are zero-grounded according to GLKa entail

that there is a graph without open ground vertices for each classically valid sequent.

Given that the construction of that graph must have started with an axiom, and

because edges are never removed, it has at least one non-trivial component. Because

this component has no open ground vertices it is fully justified and therefore a

validity-maker.

Valid graph ) valid sequent. A valid graph has a validity-maker. This

validity-maker has no open ground vertices and is therefore on its own a

hypergraph for the zero-groundedness of a subsequent of the sequent for which the

graph is a logical hypergraph. Because the zero-grounded sequents are the

classically valid ones, that subsequent will be classically valid. Hence the entire

sequent for which the graph is a logical hypergraph is a Weakening thereof and so it

is equally valid. h

Fig. 3 Example 3: logical hypergraph proof for \½½p _ q�; r _ s�; p ^ rþ; p ^ sþ; q ^ rþ; q ^ sþ��

2380 P. Saint-Germier et al.

123



Given the notion of a validity-maker and a basis, we can directly see which

s-element vertices actually contribute to the validity.

Definition 12 [Contribution in a hypergraph] An s-element vertex contributes to

the validity of a logical hypergraph G iff it is a member of a basis for G. A set V of s-

element vertices jointly contributes to the validity if it is a subset of a basis for G and

sufficiently contributes to the validity if V is the union of some set of bases for G.

Figure 4 illustrates these notions. It represents a single logical hypergraph

divided into its components in frames 1–6. To know for which sequent it is a logical

hypergraph, we just need to gather the labels of all the s-element vertices, i.e.

½½p���; ½½q���; ½½p���; ½½q���; ½½p _ q���; ½½p ^ qþ��; ½½pþ��; ½½qþ��; ½½q ^ rþ��; ½½r _ :rþ��;
and ½½rþ��, which gives the sequent

½½p�; q�; p�; q�; p _ q�; p ^ qþ; pþ; qþ; q ^ rþ; r _ :rþ; rþ��. Components 1, 2, 3,

and 5 are validity-makers. In each of them the set of their s-element vertices jointly

and sufficiently contributes to the validity. Each of their proper subsets contributes

jointly but not sufficiently. All the s-element vertices in any of these validity-makers

contribute. Components 4 and 6 are not validity-makers because 4 contains open

ground vertices and 6 lacks a grounding edge. Their s-element vertices do not

contribute at all. Because there is at least one validity-maker, the graph is valid,

which means that it can count as a proof for the main sequent, but also for the

sequents corresponding to subgraphs that also contain a validity-maker, such as the

valid combination of components 2 and 6 (hypergraph for \½½p�; pþ; rþ��) and the

valid hypergraph consisting only of component 1 (hypergraph for \½½r _ :þ��). The

hypergraph consisting of hypergraphs 4 and 6 has no validity-maker whence it is not

Fig. 4 This figure represents a logical hypergraph for pþ; rþ\½½p�; q�; p�; q�; p _ q�; p ^
qþ; pþ; qþ; q ^ rþ; r _ :rþ; rþ�� divided into its components 1–6
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valid and therefore it does not count as a proof for the (invalid9) sequent

½½p _ q�; q ^ rþ; rþ��. The combination of components 1 and 5, which is a logical

hypergraph for ½½p�; q�; p ^ qþ; r _ :rþ�� only contains validity-makers. All its s-

element vertices therefore sufficiently contribute to the validity, but they do not

contribute jointly as a whole. Component 1 is nothing but a validity-maker for its

sequent ½½r _ :rþ��.

6 Joint-contribution visualized

Now that we have represented GLKa in graph-theoretic terms, we have everything at

our disposal to finally explicate and visualize how exactly premises and conclusions

contribute to the validity. The basic idea is that an s-element contributes to the

validity of a sequent by establishing a certain kind of connection between its partial

grounds and the partial grounds of other s-elements within a validity-maker; we will

say that such s-elements are bound by their partial grounds.

For what follows, to obtain the most interesting structure for the remainder of the

analysis, it is best to undo the applications of the (SCon)-rule at the end of the

logical hypergraph construction, which means that distinct s-element vertices with

the same label that play a distinct role are always individually analyzed.

The relevant sort of binding connection essentially involves what we call

bridges.10

Definition 13 A bridge is a subgraph of a logical hypergraph consisting of nothing

but two groundee vertices with labels Aþ and A�, for some formula A, and a

conjunctive grounding edge containing exactly those two vertices. A path that

includes a bridge will be said to cross that bridge. A path from v1 to v2 is said to

cross an X-Y-bridge if it crosses a bridge with vertices labeled X and Y, in order of

occurrence in the path.

Note that bridges are always introduced in logical hypergraphs by the (Bind)-rule

and every (Bind)-rule introduces a new bridge in the graph. They are always of the

form .

As an illustration, the graph depicted in Fig. 4 contains 6 bridges. In component 2

of that graph there is only one bridge; the central edge with its two adjacent

groundee vertices labeled p� and pþ.

9 Here the invalid hypergraph is a logical hypergraph for an invalid sequent, but of course we can also

have invalid hypergraphs for valid sequents. In such cases, however, there will be another hypergraph for

that sequent that is valid. To be sure that the sequent is invalid, we need to have tried out every possible

hypergraph for that sequent. This may seem intractable, but given the analytic nature of the hypergraphs,

it is doable in a finite time.
10 The term ‘bridge’ is sometimes used in graph theory to denote an edge between two subgraphs, that

would be separate components if the edge were removed. While the notion here is somewhat related (at

the moment right after the application of the (Bind)-rule, removing it creates two new components in the

graph), it should not be confused with our usage.

2382 P. Saint-Germier et al.

123



Definition 14 [Partial ground-reception] An s-element vertex v1 receives partial
ground X from another s-element vertex v2 (in symbols: RecXðv1; v2Þ) if there is a

path from v1 to v2 that crosses exactly one bridge, an X-Y bridge.11

Definition 15 [Binding] We say that two s-element vertices v1 and v2 are bound,

i.e. Boundðv1; v2Þ, if there is some X such that RecXðv1; v2Þ. Two sets of s-element

vertices V1 and V2 are bound if a member of V1 is bound with a member of V2. We

also say that two s-element vertices or two sets of s-element vertices are bound by
partial ground (Ax=A�x) if they are bound and the X that is received is either Ax or

A�x.

The following proposition explains why we speak of partial grounds when we say

what binds s-element vertices.

Proposition 4 If an s-element vertex labeled ½½X1�� receives partial ground Ax from
an s-element vertex labeled ½½X2�� then Ax is a partial ground of ½½X1�� (i.e. there is a
U such that U;Ax\½½X1��) and A�x is a partial ground of ½½X2�� (i.e. there is a U such
that U;A�x\½½X2��).

Proof If an s-element vertex v1 labeled ½½X1�� receives partial ground Ax from an

s-element vertex v2 labeled ½½X2��, then there is a single bridge between the two

vertices. This bridge must have been introduced by an application of the (Bind)-rule

in the construction of the graph. Because there is only one bridge in between v1 and

v2, we can reconstruct the graph construction in such a way that the (Bind)-rule

application was such that the premise graph G0 containing v1 itself contains no

bridges, whence it is in Phase 2. Because Phase 2-graphs never have more than one

groundee, the G0 premise graph of that (Bind)-rule application must have had ½½X1��
as the label of its only open groundee vertex and Ax as the label of one of its ground

vertices. This premise graph therefore proves some grounding claim of the form

Ax;W\½½X1��. By Proposition 2 this grounding claim is correct and so Ax is a partial

ground of ½½X1��. h

With the conceptual machinery now at our disposal, we can characterize an

interesting notion of strong joint-contribution of a set of fully justified s-element

vertices as the property of being binding-interwoven, i.e. the property that each two

exclusive and exhaustive subsets of a strongly jointly contributing set are bound.

The difference between joint-contribution simpliciter and strong joint-contribution

is that a set of s-element vertices V that are together in a validity-maker, but in

which a pair of subsets of V are only indirectly bound via other s-element vertices

that are not in V count as jointly contributing to the validity but not strongly so. The

intuition here is that, while they are part of the team that is responsible for the

validity, some subsets are divided without direct bridge; so they cannot do work

together to obtain validity. One could say that they do not form a contributing

fraction of the validity-maker.

11 Note that, by the definition of a bridge, Y ¼ A�x when X ¼ Ax.
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Definition 16 [Interwoven by a binary relation] Let R be a binary relation over a

set a. We say that a is R-interwoven iff, for each two non-empty mutually exclusive

and together exhaustive subsets a1 and a2 of a, R(x, y) holds for some x 2 a1 and

y 2 a2.

As an example: the set of natural numbers is Succ-interwoven where Succðx; yÞ
iff x ¼ yþ 1 or y ¼ xþ 1. Note that this does not mean that each subset of the

natural numbers would be Succ-interwoven: as a counterexample take the set

f1; 2; 4; 5g of which the two mutually exclusive and together exhaustive subsets

f1; 2g and f4; 5g fail to have members (one from each set) that stand in the Succ-

relation.

Definition 17 [Strong joint-contribution] A set of fully justified s-element vertices

strongly jointly contributes to the validity of a logical hypergraph iff it is Bound-

interwoven.12

Proposition 5 A set V of s-element vertices is a basis of the hypergraph iff it
contributes sufficiently and (strongly) jointly to the validity of G.

Proof A basis of a hypergraph contains exactly the s-elements in a validity-maker.

According to Definition 12, s-elements of a sequent contribute sufficiently iff it is

the union of multiple bases, so a sufficiently contributing set is always a (proper or

improper) superset of a basis. Definition 12 also stipulates that s-elements of

sequents contribute jointly iff they constitute a (proper or improper) subset of a

basis. Consequently, a set of s-elements that contributes both sufficiently and jointly

is both a superset and a subset of a basis, and so it is a basis for the hypergraph. For

strong joint-contribution (cf. Definition 17) just consider that the difference between

strong and normal joint contribution evaporates when the set of s-element vertices is

sufficiently contributing, because, in that case, there cannot be a divide in the

subsets of a set of s-element vertices. h

To visualize all this, we will simplify the logical hypergraphs and their

visualization a bit. First we will introduce the admissible rules given in Table 9,

which allow for the omission of the closing edges and streamlining combinations of

many applications of (SCon) and (GCon). The aspects that are skipped over with

such shortcut rules are important for reconstructing the proof that it is a correct

logical hypergraph and therefore this simplification takes away the quality of

simplified logical hypergraphs as full-blown proofs from the axioms, but it

visualizes more economically the binding connections of interest. All this

12 Incidentally, this idea of the interwovenness of a set of s-vertices via binding can be used as inspiration

to propose an improved criterion of variable-sharing for MSET-MSET sequents. Variable-sharing is

broadly accepted as a good necessary condition for something to count as relevant: a premise relevantly

entails a conclusion only if they at least share some variable. It is not trivial how to generalize this to

MSET-MSET format, but one of the ways to do this is saying that each subset of premises and

conclusions should share a variable with the rest of the sequent. This is defined as the property that it has

only one s-element or it is Share-interwoven, where Share is the property of sharing a variable. Share-

interwovenness basically means that each subsequent shares a variable with the rest of the sequent. One of

the advantages is that cases of mere sufficient contribution of all s-elements, like in ½½p�; q�; pþ; qþ�� are

excluded as candidates for relevance.
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information is also present in the original hypergraphs we just presented, but at this

point it may be useful to focus only on how premises and conclusions are

interconnected by their ultimate grounds.

The first rule in Table 9 is a way to apply several axioms and instances of the

(Trans\)-rule together at the same time without keeping the vertices that were

closed off at intermediate stages. We thus compress graphs in such way that we no

Table 9 Graph-theoretic calculus: admissible rules
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longer see why certain signed formulas are indirect grounds of others, but

immediately go down to the level of (indirect) grounding at which we can bind

s-elements. If we only want to visualize the way in which s-elements are bound

together, it is not useful to, for example, know that p� is a ground of :pþ and that

:pþ and qþ are grounds of :p ^ qþ, when all we need to know is that some

conclusion :p ^ q is bound to some premise by means of its ground p�. To avoid

the unnecessary information about intermediate direct grounding steps, we draw a

grounding edge directly connecting :p ^ qþ to its indirect grounds p� and qþ.

In the simplification we maximally apply these admissible rules to obtain simpler

graphs. Once this is done we also visualize bridges and the adjacent vertices, cutting

edges and disjunctive grounding edges more efficiently by abbreviating a recurring

pattern by a triangle notation as specified in Table 10. A triangle with label

A expresses that its pointy end contributes Aþ and its flat basis contributes A� to the

graph. If the triangle (seen as an arrow) goes from a premise to a conclusion, it

expresses that the premise offers the information A to enable the derivation of the

conclusion.

Figure 5 illustrates how the graph from Fig. 2 can be simplified. We can read a

lot of useful information off of this graph. We directly see the grounding relations:

½½p��� is fully grounded by p�, ½½:p _ q��� is fully grounded by pþ and q�, ½½q ^ rþ��
is fully grounded by qþ and rþ and finally ½½:rþ�� is fully grounded by r�. But, more

importantly, we see what each s-element in the sequent contributes to the validity:

Table 10 Abbreviating binding patterns to visualize simplified graphs
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p _ s� contributes nothing, premise p contributes pþ to allow the third premise to

contribute qþ to the conclusion q ^ r. This conclusion is moreover only possible

thanks to the contribution of rþ by the other conclusion. We also observe that the

different s-element vertices are bound by the truth/falsity of the formulas that

figure in the triangles to which they are connected.

In Fig. 6 the simplified version of the hypergraph in Fig. 3 is represented.

Fig. 5 Efficiently drawing the arrow paths in Fig. 2 by means of triangles

Fig. 6 Efficiently drawing the arrow paths in Fig. 3 by means of triangles
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7 From graphs back to sequents

We have now said a lot about graphs having validity-makers and about how their

s-element vertices contribute to the validity of the graph. But we were first and

foremost interested in the contribution of premises and conclusions to valid

sequents. Although the translation is rather straightforward, we here list the most

important ways in which the talk of graphs and their s-element vertices can be

translated into talk of sequents and their s-elements.

Definition 18 The following properties of (multisets of) s-elements of sequents are

direct counterparts of the corresponding properties of (sets of) s-element vertices in

logical hypergraphs.

• A multiset R of s-elements of a sequent is a validity-maker of the sequent if there

is a logical hypergraph for the sequent and R is the multiset of labels of a basis

of the graph.

• A multiset R of s-elements of a sequent (strongly) jointly contributes to the

validity of the sequent if they are the labels of s-element vertices (strongly)

jointly contributing to the validity of a logical hypergraph for the sequent.

• A multiset of s-elements sufficiently contributes to the validity of a sequent if it

is the union of some set of validity-makers of the sequent.

• An s-element ½½X1�� of some sequent receives its partial ground Y from s-element

½½X2�� in the same sequent if there is a logical hypergraph for the sequent in

which an ½½X1��-labeled s-element vertex receives Y from an ½½X2��-labeled s-

element vertex. We say that X1 and X2 are bound and write BindðX1;X2Þ.
• An s-element [[X]] contributes Y to a valid sequent if it is the label of an

s-element vertex v in the basis of a logical hypergraph for that sequent and

v receives Y from another s-element vertex.

Let us go back to our sequent . Its s-elements are

½½p _ s���, ½½p���, ½½:p _ q���, ½½q ^ rþ��, and ½½:rþ��. Its only validity-maker is

ff½½p���; ½½:p _ q���; ½½q ^ rþ��; ½½:rþ��gg. This set and some of its non-singleton

subsets strongly jointly contribute to the validity: s1 ¼ f½½p���; ½½:p _ q���g,

s2 ¼ ff½½:p _ q���; ½½q ^ rþ��gg, s3 ¼ ff½½q ^ rþ��; ½½:rþ��gg, s4 ¼ s1 [ s2,

s5 ¼ s2 [ s3, s6 ¼ s3 [ s4, s7 ¼ s4 [ s5, s8 ¼ s6 [ s7. Only the entire validity-maker

(strongly) jointly and sufficiently contributes to the sequent’s validity. ½½p��� and

½½:p _ q��� are bound by their partial ground (p�=pþ). The sets of s-elements

ff½½p���; ½½:p _ q���gg and ff½½q ^ rþ��; ½½:rþ��gg are bound by their partial ground

(q�=qþ). ff½½:p _ q���gg and ff½½p���; ½½q ^ rþ��; ½½:rþ��gg are bound by their partial

grounds (pþ=p� and q�=qþ). ½½:p _ q��� receives its partial grounds pþ and q� from

½½p��� and ½½q ^ rþ��. Together these partial grounds form a full ground for that

premise. ½½p _ s��� contributes nothing to the validity of the sequent. ½½p���
contributes p�, ½½:p _ q��� contributes pþ and q�, ½½q ^ rþ�� contributes qþ and rþ,

and ½½:rþ�� contributes r�.
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8 Conclusion

In this paper we have presented a graph-theoretic representation of joint-

contribution based on partial-ground binding, as presented in (Saint-Germier

et al., 2024). The logical hypergraphs and their visualization nicely clarify how

exactly premises and conclusions together contribute (or not) to making the sequent

they occur in valid. We showed how they do this by being bound by their partial

grounds. We explained that certain graphs are fully connected (in the sense that

there is a path from each vertex to each other), while others have (connected)

components that are logical graphs themselves, but also contain vertices that are not

connected to such a component. Some of these components are validity-makers, in

the sense that they, on their own, suffice for validity. We concluded that the

s-element vertices in such a validity-maker are jointly and sufficiently contributing

vertices. Their labels together form a subset of the sequent that is responsible for its

validity. Parts of the sequent that are not contained in such a validity-maker do not

contribute to the validity and are mere bystanders.

We believe that the graphical/diagrammatic system we presented could be of

pedagogical and explanatory value for logic teaching. In virtue of their visual

elegance, the graphs may provide an easy and insightful method for proving

classical logic validity. The only thing that needs to be done for establishing the

validity of a given argument is matching the right kind of atomic hypergraphs as

much as needed in such a way that the only s-elements that can be found are among

the premises and the conclusions of the argument. Besides a proof method for

classical logic, it also provides a visual explanation of why certain arguments appear

counterintuitive (such as explosion and other cases where parts of the argument do

no work) although they are valid.

Finally, it is worth mentioning that the graphs provide visual guidance for the

theorem-proving process, in the sense that the open ground vertices of an unfinished

logical hypergraph suggest ways in which the user can continue with the proof.

Open ground vertices could be seen as open problems whose resolution may lead to

finding a proof.
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