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Abstract Modern particle physics suggests an intriguing vision of physical reality:

we are to imagine the symmetries of the world as fundamental, whereas the material

constituents of the world (such as particles and fields) are ontologically derivative of

them. This paper develops a novel ontology for non-relativistic quantum mechanics

which gives precise metaphysical content to this vision.

Keywords Symmetry � Fundamentality � Ontology � Quantum mechanics � State
space � Particle physics

1 Introduction

The goal of this paper is to develop a novel metaphysics for fundamental physics, a

new way to think about what physics tells us about fundamental physical reality—

one that challenges what is perhaps the default approach to theorizing about

ontology. According to this default view, a physical ontology tells us about the

fundamental material constituents of the world: roughly, things like particles or

fields; entities that are contained in physical spacetime and whose behavior is

determined by the laws of nature; objects from which everything else is built. This

kind of view is reflected in a wide range of influential positions in metaphysics and

philosophy of physics, such as Democritean atomism, Aristotle’s view of the world

as a plenum, the Lewisian notion of a Humean mosaic and the concept of a local

beable in the philosophy of physics.

& David Schroeren

david.schroeren@unige.ch

1 Department of Philosophy, University of Geneva, Rue de Candolle 2, 1211 Genève 4,
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But modern physics seems to suggest a very different vision of fundamental

reality, one that differs quite drastically from this default approach: according to this

vision, the world has no fundamental material constituents at all. This might seem

fairly counterintuitive: at no point in the history of science has fundamental physics

told us more about the material constituents of the world than it does today. To

some, the suggestion that physics is not fundamentally about the world’s material

constituents will come as something of a surprise.

However, this surprising vision and our astonishing achievements at describing

the world’s material constituents have the same source. In the second half of the

20th century, fundamental physics experienced a major breakthrough in the way

claims about the material constituents of the world could be derived. Physicists

noticed that almost everything about particles, their essential properties and their

dynamical behavior could be predicted just on the basis of claims about symmetries
(such as Leibniz shifts). This breakthrough amounted to nothing less than

revolution: ask not what the world contains but what its symmetries are.1

It is just this inferential success of symmetries that has been regarded as

underwriting the vision that material objects aren’t fundamental. We are to imagine

the most fundamental level of the physical world as involving symmetries, whereas

the physical entities that we would ordinarily have thought of as the fundamental

building blocks of the physical world—such as elementary particles or fields—are

ontologically derivative of these aspects. Call this thesis symmetry fundamentalism.

It has been echoed by influential physicists: for example, Steven Weinberg has

argued that ‘‘symmetries are fundamental’’2 and thus that ‘‘at the deepest level, all

we find are symmetries and responses to symmetries,’’3 whereas ‘‘matter [...] loses

its central role in physics.’’4 According to Werner Heisenberg, we should ‘‘replace

the concept of a particle’’ with ‘‘the concept of a fundamental symmetry’’, and

‘‘what we have to look for are not fundamental particles but fundamental

symmetries.’’5

The move from the inferential centrality of a notion to its metaphysical

fundamentality is familiar. When claims about a notion are ubiquitous and powerful

as an inferential tool, we are naturally tempted to consider whether this notion

should be regarded as metaphysically fundamental. Doing so would be a powerful

vindication of those inferential practices: on this line of thought, the notion of

symmetry is inferentially useful precisely because it is metaphysically fundamental

and so is involved in the bottom-line story of physical reality that fixes everything

else.

Nonetheless, it is far from obvious what picture of fundamental reality is

suggested by symmetry fundamentalism. Symmetries in physics are introduced as

1 See (Martin 2003) for a survey of the rich history of symmetry techniques in 20th century.
2 (Weinberg 1987, p. 79).
3 (Weinberg 1987, p. 80).
4 (Weinberg 1992, pp. 138-9). Steven Weinberg has confirmed in personal correspondence that these

remarks were intended as claims about fundamental physical reality, rather than merely about the

epistemic or pragmatic significance of symmetry techniques.
5 (Heisenberg 1973, p. 273). Cf. (Heisenberg 1976, p. 924) and (Ne’eman and Sternberg 1991, p. 327)
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part of the mathematical formulation of physical theories. But symmetry

fundamentalism is not the thesis that physical reality literally consists in

mathematical objects; it is a thesis about the physical constituents of fundamental

reality described in terms of those objects. To give precise content to symmetry

fundamentalism, we therefore need to provide a physical ontology: a hypothesis

about the physical objects, properties and relations that makes transparent which

physical entities correspond to symmetries and that illuminates how things like

particles and fields are ontologically derivative of these entities.

The goal of this paper is to do just that: I develop an ontology that gives

symmetry fundamentalism a precise metaphysical underpinning. I do this in the

context of non-relativistic quantum mechanics.6 The main reason for this choice is

that this framework involves much fewer technical challenges than more recent

theories of fundamental physics while exhibiting all the features on which the

relevant symmetry-fundamentalist claims are based. This highlights a key

advantage of the symmetry-fundamentalist approach to ontology. The relevant

inferences can be found not only in virtually every successful quantum theory

developed since the 1920s, but also in some of our best proposals for a quantum

theory of gravity. This suggests that a precise statement of a symmetry-

fundamentalist ontology for non-relativistic quantum mechanics can serve as a

template for ontological theorizing about future physics.

I said that our task is not just to articulate a symmetry-fundamentalist ontology,

but also to make good on the claim that things like particles or fields are

ontologically derivative of the physical counterparts of symmetries. I will do this by

demonstrating that every relevant proposition about the former can be defined by or

expressed in terms of a proposition that is only about the latter. By the ‘relevant’

propositions I just mean those propositions that are expressible in the relevant

materialistic theory, i.e. the theory according to which the material constituents of

the world (such as particles or fields) are fundamental. For the purposes of this

paper, I will assume that the relevant family of materialistic theories are those

whose only physical posit is a fundamental field corresponding to the wave function,

or wavefunction monist theories. The goal, then, is to show how every proposition

about this fundamental field expressible in the formalism of wavefunction monist

theories can be defined in terms of some fundamental proposition.

Note that this challenge is distinct from showing how claims about macro-level

objects such as tables, chairs, and measurement devices can be derived from a

fundamental ontology consistent with quantum mechanics. This is one of the guises

of the notorious quantum measurement problem, and I will have nothing new to say

about it in this paper. Since the symmetry-fundamentalist ontology I articulate

reproduces the more familiar wavefunction monist ontology, a symmetry-funda-

mentalist account of macro-ontology can be parasitic on any workable wavefunction

monist response to the quantum measurement problem.

I proceed as follows. Section 2 introdcues the notion of a state-space symmetry
and explains why this notion of symmetry is the target of symmetry

6 In (Schroeren 2020), I develop a symmetry-fundamentalist ontology for classical particle mechanics.
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fundamentalism. In Sect. 3 I develop ray substantivalism, an ontology for non-

relativistic quantum mechanics that vindicates symmetry fundamentalism. I then

taxonomize possible versions of ray substantivalism in Sect. 4. Section 5 contrasts

ray substantivalism with major existing views about the ontology of quantum

mechanics and addresses some potential objections.

2 State-space symmetries

The goal of this section is to introduce the notion of a state-space symmetry and to

explain why it is this notion of symmetry that is operative in symmetry

fundamentalism.

Abstractly, a symmetry of a mathematical space is a structure-preserving
automorphism on that space: a transformation which preserves the structure of that

space. For example: symmetries of Euclidean space are Euclidean isometries—

automorphisms of Euclidean space that preserve the Euclidean metric. And

symmetries of Minkowski space are automorphisms of Minkowski space that

preserve the Minkowski metric.

The symmetries operative in symmetry fundamentalism are structure-preserving

automorphisms of a different space altogether: the mathematical space that

characterizes state space, the space of possible instantaneous states of the world.

Automorphisms of this kind are also known as state space symmetries.7 In classical

particle mechanics, state space is characterized in terms of a mathematical space

known as phase space, and phase-space symmetries are symplectomorphisms:
phase-space automorphisms that preserve the symplectic structure of phase space. In

quantum mechanics, state space is characterized in terms of Hilbert space, and

symmetries of this space are unitary transformations: Hilbert-space automorphisms

that preserve the inner product.

State-space symmetry and dynamical symmetry are distinct notions: a dynamical

symmetry is a state-space symmetry that preserves the laws. More precisely: a state-

space symmetry T is a dynamical symmetry iff for every dynamically allowed

trajectory h, there is another dynamically allowed trajectory h0 such that every point

on h gets mapped by T to a unique point on h0. So, every dynamical symmetry is a

state-space symmetry, but not vice versa.8

7 The notion of a state-space symmetry is widely used by physicists, albeit occasionally under a different

name: physicists sometimes refer to them as Wigner symmetries in recognition of Eugene Wigner

(1931, 1968), the physicist who developed the first systematic account of this notion. Wigner symmetries

are even mentioned in textbooks; for example, (Strocchi 2005; Moretti 2013). The notion of a state-space

symmetry has also been deployed for philosophical purposes; for example, by John (2003, p. 341) and

Simon (1996, p. 242).
8 For example: suppose that the dynamical evolution of two classical particles (labelled A and B) in one

dimension is determined by the Hamiltonian H ¼ 1
2m ðp2A þ p2BÞ, where pA and pB denote the momentum

coordinate functions of particles A and B, respectively. Shifts in the momentum of particle A are

symplectomorphisms; and they are generated by the coordinate function qA representing A’s position

coordinate. Moreover, shifts in the momentum of A are a dynamical symmetry only if fqA;Hg ¼ 0. But

fqA;Hg ¼ pA

m , so momentum shifts of A are state-space symmetries but not dynamical symmetries.
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I should therefore explain why it is the notion of a state-space symmetry, rather

than the notion of a dynamical symmetry, that is operative in symmetry

fundamentalism. First of all, whether a given state-space symmetry is a dynamical

symmetry plays no role in the relevant symmetry-based inferences; and if a

dynamical symmetry figures in such an inference, it does so only in virtue of the fact

that it is a state-space symmetry. Two examples: First, the only symmetry-related

premise in the characterization of spin in non-relativistic quantum mechanics is that

rotations are state-space symmetries.9 Similarly, the only symmetry-related premise

in the classification of elementary particle kinds in terms of mass and spin is that

relativistic boosts, rotations, and shifts (also known as Poincaré transformations)
are state-space symmetries.10 Both are paradigmatic examples of symmetry-based

inferences that motivate symmetry fundamentalism; but neither requires an

assumption about whether the state-space symmetries in question also count as

dynamical symmetries.11

Moreover, note that the notion of a state-space symmetry is also distinct from the

notion of a spatial or spacetime symmetry: a symmetry of the physical space that

contains the material constituents of the world, such as particles, fields, tables and

chairs. We already encountered one kind of spatial symmetry: the symmetries of

Euclidean space. Other spaces of this kind are Minkowski space or (more generally)

Pseudo-Riemannian manifolds.

To be sure: there are special physical systems whose state-space, dynamical, and

spacetime symmetries coincide. For example, consider a classical Newtonian

particle world that contains exactly one particle in three-dimensional Euclidean

space and suppose that its dynamics are governed by a Hamiltonian of the form

H ¼ p2

2m þ VðxÞ, where V(x) is a spherically symmetric potential. In this world,

rotations are symmetries of all three kinds: rotations are spatial symmetries (since

they preserve the Euclidean metric); they are state-space symmetries (since they

preserve state-space structure); and they are dynamical symmetries (because they

leave H invariant).

These kinds of assumptions are often tacit in standard presentations of

mathematical connections on which the symmetry-based metaphysical theses are

based.12 However, these assumptions do not hold in most cases of interest. For a

classical n-particle world, one fairly generic kind of state-space symmetry is a

rotation of an individual particle that holds fixed all other particles. But rotations of

9 For example, the fact that spin is discrete follows from the Peter-Weyl theorem on the assumption that

rotations are state-space symmetries (i.e. unitary transformations); this is the only symmetry-related

assumption required by the theorem (Folland 2015, p. 136).
10 This classification is due to Eugene Wigner (1939).
11 There is good evidence that this observation will also hold in the context of quantum gravity. In loop

quantum gravity, for instance, the fundamental physical entities are mathematically characterized in terms

of spin networks: graphs whose links are each assigned a Hilbert space on which the rotation group SU(2)

acts unitarily. This state-space symmetry structure is then used to define the basic physical quantities area
and volume (Rovelli 2011). As before, no assumption about dynamical symmetries is required for this

definition.
12 For example, (Ballentine 2000, pp. 77).
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individual particles do not generally count as a dynamical symmetries: typical n-
particle Hamiltonians are not invariant under such transformations. (Intuitively, this

is confirmed by the fact that there are many ways of rotating an individual particle

that result in empirically distinguishable situations.)

Similarly, spatial rotations of individual particles in an n-particle world cannot be

subsumed under spatial symmetries of Euclidean space. A rotation of Euclidean

space about a fixed point can be thought of as a map that assigns to each point of

Euclidean space its image under that rotation; rotations are permutations of points in
Euclidean space. Think of a rotation of Euclidean space containing n particles as a

permutation of which locations are occupied by which of the n particles. Since

rotations preserve the Euclidean metric, these permutations do not change particle

distances. By contrast, a rotation of an individual particle changes the spatial

location of that specific particle while holding the spatial locations of other particles

fixed; so, rotations shift that particle both relative to the other particles and relative

to the points of the underlying Euclidean space. A fortiori, rotations that are state-

space symmetries are generally not equivalent to permutations of points of

Euclidean space. Rotations as state-space symmetries are equivalent to rotations of

Euclidean space only in the special case of rigid, uniform rotations of all n particles,

or in the special case of single-particle worlds. To illustrate: in a world containing

only a single classical particle in Euclidean three-space, changing the spatial

location of that particle by a rotation about some axis (a state-space symmetry) is

tantamount to a permutation of the points of Euclidean space (a spatial symmetry).

This is not true in general.

The upshot is twofold: first, although state-space symmetries have systematic

relationships with dynamical and spacetime symmetries in certain special cases, the

notions are distinct. Second, even in the special cases where these three notions

coincide, the fact that a given transformation figures in the relevant symmetry-based

claims is due only to its status as a state-space symmetry.

Let me stress again that state-space symmetries are mathematical functions:

structure-preserving automorphisms on the mathematical space that characterizes

state space. To vindicate symmetry fundamentalism, we need to articulate an

ontology that makes transparent what physical entities correspond to these

functions. This is what I turn to now.

3 Symmetry-fundamentalist ontology

In this section, I develop a symmetry-fundamentalist ontology for non-relativistic N-
particle quantum mechanics. The mathematical framework I take as the starting

point consists of two things: first, a Hilbert space used to characterize the quantum

states of the world. Second, a range of Hermitian operators that encode the physical

structure among quantum states; more on this in a moment. Call this formalism the
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Hilbert space framework.13 Some version of it is part of the formalism of virtually

every existing theory of non-relativistic quantum mechanics, including Bohmian

mechanics, Everettian quantum mechanics, and dynamical-collapse theories.

A Hilbert-space automorphism can be thought of as a relation among Hilbert

space vectors: the relation that obtains between vectors x and y iff the automorphism

maps x to y. A natural way to implement fundamentalism about state-space

symmetries is therefore to posit fundamental relations that correspond to these

automorphisms.

This suggests that the relata of those relations should be regarded as fundamental

entities as well. On a straightforward understanding of fundamentality, an entity is

fundamental if and because it figures in some fundamental proposition.14 Thus, if

the physical counterpart of a state-space symmetry is a fundamental relation, then

this is so because it occurs in some fundamental proposition. But the sorts of

propositions we express in terms of state-space symmetries also mention the relata
of those relations: whatever physical entities correspond to Hilbert space vectors.

On this line of thought, the fundamentality of the relations corresponding to state-

space symmetries implies the existence of a fundamental space whose points are the

relata of those relations.

It is natural to think of this fundamental space as state space, the space of

quantum states of the world. In the context of non-relativistic N-particle quantum

mechanics, this raises an important choice point. It is standard to assume that

quantum states correspond to Hilbert space rays rather than to Hilbert space vectors.

On this view, quantum state space corresponds not to linear Hilbert space but to

projective Hilbert space.

Notwithstanding this standard assumption, physicists and philosophers alike

routinely appeal to linear Hilbert space structure in their theoretical inferences;

indeed, reformulating the entire technical machinery of quantum mechanics in the

language of projective Hilbert spaces is a challenging task in its own right.15

Articulating an ontology that is fundamentalist about projective Hilbert space

therefore faces obstacles that go beyond the usual difficulties of metaphysical

theorizing about some theory of mathematical physics: it needs to engage with (and

perhaps even develop new aspects of) a mathematical machinery that is non-

standard in both physics and philosophy. In light of these considerations, some may

be moved to more seriously entertain a seemingly naı̈ve ontology that breaks with

orthodoxy and posits states that stand in one-to-one correspondence to Hilbert space

vectors.

Although the project of developing a state-space fundamentalist ontology for

projective Hilbert space is beyond the scope of this paper, the view I propose strikes

13 A further step involves the specification of a differential equation that determines which curves

through Hilbert space correspond to the dynamically allowed histories of the world: for example, the

Schrödinger equation or a dynamical-collapse equation. Since the symmetries at issue in symmetry

fundamentalism are state-space symmetries rather than dynamical symmetries, this aspect of the

formalism is not directly relevant to the project in this paper.
14 (Schaffer 2009; deRosset 2010; Audi 2012; Dasgupta 2014).
15 Cf. (Ashtekar and Schilling 1999).
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a compromise between this ambitious project and the unorthodox view. According

to the ontology I call ray substantivalism, there is a fundamental space that has the

structure of linear Hilbert space. But physical states are identified not with points in

this space but rather with certain mereological constructions out of these points—

entities that are in one-to-one correspondence with rays. To develop this view, I will

first give an explicit statement of the more simple-minded ontology, a view I call

vector substantivalism. This will serve as the basis for the subsequent articulation of

ray substantivalism.

It is worth stressing right at the start that vector and ray substantivalism are

importantly different from proposals that go by the label of wavefunction realism.

According to these proposals, the main role of Hilbert space is to characterize the

physical fields on some underlying fundamental space, fields that are represented by

the wavefunction. Within the Hilbert space framework, the wavefunction of an

abstract Hilbert space ‘ket’ jui is defined as uðq1; :::; qNÞ ¼ hq1; :::; qN jui, where
jq1; :::; qNi is a simultaneous eigenvector of the position operators and N is the

number of particles.16 Vector and ray substantivalists take a different view of the

role of Hilbert space: instead of being a vehicle for characterizing physical fields on

some underlying fundamental space, Hilbert space corresponds to a fundamental

space in its own right—the space whose points are in one-to-one correspondence

with abstract Hilbert space vectors.

3.1 Vector substantivalism

With those clarifications out of the way, we can move on to the first step: a precise

statement of vector substantivalism. I will proceed in analogy to the symmetry-

fundamentalist ontology for classical particle mechanics developed in (Schroeren

2020).

The classical account has two main elements: first, the specification of a

fundamental space with the structure of a classical phase space; and second, the

specification of a sparse collection of fundamental properties and relations such that

every relevant materialistic proposition (i.e. every proposition about the positions

and momenta of classical particles) can be defined in terms of those fundamental

properties and relations, together with the structure of the fundamental space. The

key elements in this collection are two dyadic relations that correspond to the

classical state-space symmetries of shifting the positions and momenta of individual

particles:

16 Strictly speaking, eigenvectors of unbounded Hermitian operators on H (such as those associated with

the position and momentum degrees of freedom) are not elements of H but of the rigged Hilbert space

associated with H; i.e the triple consisting of H, a dense subspace U � H, and its dual U� such that

U � H � U�. In this more rigorous setting, position and momentum eigenstates are ‘bras’, complex

linear functionals that live in U� and that combine with ‘kets’ to yield a complex number. Here, I will

follow the vast majority of discussions in the philosophy of quantum mechanics and ignore these

technicalities. However, none of these technical complexities seem insurmountable: there is no obvious

reason why it should not be possible in principle to specify ontological primitives that capture the

structure of a rigged Hilbert space. This is a project I will not pursue here.
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Classical position-almost-sameness. A dyadic relation. Relates two points iff

they agree about the momenta of all particles and about the positions of all but

one particle.

Classical momentum-almost-sameness. A dyadic relation. Relates two

points iff they agree about the positions of all particles and about the momenta

of all but one particle.

The scheme by which every materialistic proposition can be defined in terms of

these primitives exploits the mathematical correspondence, within Hamiltonian

mechanics, between position- and momentum phase-space coordinate functions of

individual particles on the one hand and the generators of momentum- and position-

shift phase-space symmetries on the other. The specifics of this scheme won’t

matter in what follows;17 for present purposes, I merely want to point out that the

central ontological primitives I’ll introduce in this paper are quite similar to

classical position- and momentum-almost sameness. Moreover, the scheme by

which the primitives of vector and ray substantivalism serve to define every relevant

materialistic proposition exploits an analogous mathematical correspondence

between the position- and momentum-variables of quantum systems (usually

encoded in terms of position- and momentum-operators) on the one hand and

unitary momentum- and position-shift symmetries on the other.

Just like its classical counterpart, vector substantivalism has two main elements:

first, a fundamental space with the structure of state space; and second, a sparse

collection of primitives such that every relevant materialistic proposition can be

defined in terms of them, together with the structure of the fundamental space.

To begin with, the vector substantivalist posits a range of Points—first-order

individuals that stand in one-to-one correspondence with Hilbert-space vectors—as

well as instants of time. Points are conceived of as quantum states; that is, they are

the sorts of entities that can be ‘actualized’ at various instants of time. This is

captured by the following posit:

Point actuality. A dyadic relation. Relates a Point x and an instant of time t iff
x is actualized at t.

For Points to behave like states, vector substantivalism includes the following basic

law: necessarily, for every instant of time there is exactly one Point that is

actualized at it.18,19

17 The relevant details can be found in (Schroeren 2020, pp. 12–21).
18 Since vector substantivalism quantifies over times, it presumes something like a B-theoretic account of

time. An A-theoretic variant of vector substantivalism can be obtained by replacing quantification over

instants of time with propositional tense operators such as ‘it will always be the case that...’, ‘it will at

some time be the case that...’ etc, and by replacing the Point actuality relation with a monadic property

‘...is actual’.
19 Conceiving of Points as first-order individuals is not the only way to implement fundamentalism about

the physical counterparts of Hilbert space vectors. The first alternative is to posit a fundamental first-order

individual, ‘the world’, and to think of Points as relations such that necessarily, for every instant of time,

there is exactly one such relation that obtains between the world and that instant. The A-theoretic version

of this view regards Points as fundamental monadic properties such that, necessarily, the world always

instantiates some Point (and no more than one Point). A second alternative is to regard Points as monadic
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Over and above Points, times, and Point actuality, the vector substantivalist

requires primitives that confer on Points the structure of a Hilbert space. A

nominalistic (or intrinsic) account of this structure is beyond the scope of this

paper.20 Here I will assume that, as far as state-space structure on Points is

concerned, we can help ourselves to ontological primitives that take complex

numbers as arguments. Together with standard Hilbert space axioms, the following

primitives confer Hilbert space structure on states:

1. Sum. A triadic relation. Relates Points x, y, and z iff x is the sum of y and z.
Write x ¼ y þ z.
2. Multiplication. A triadic relation. Relates Points x and y and a complex

number c iff x is a multiple by c of y. Write x ¼ cy.
3. Inner Product. A triadic relation. Relates Points x, y and a complex number

c iff c is the inner product of x and y. Write c ¼ ðx; yÞ.

The main challenge for the vector substantivalist is to show that every relevant

materialistic proposition can be defined by or expressed in terms of some

fundamental proposition about Points. The fundamental properties and relations that

capture Hilbert space structure among Points are insufficient for this task, since any

given pattern in these primitives is compatible with mutually exclusive materialistic

propositions. For example, a Hilbert space of appropriate dimensionality can be

used both to describe a world that contains physical systems with spin and a world

that contains no such systems.21 To define every relevant materialistic proposition in

fundamental terms, the vector substantivalist therefore requires further ontological

primitives. This is the second main element of vector substantivalism.

I will introduce these primitives in terms of their mathematical characterizations;

but it is important to emphasize that these characterizations are not metaphysical

definitions. It should go without saying that ontological primitives cannot be defined

in more fundamental terms, let alone in terms of their mathematical description. As

is common in metaphysical theorizing, novel fundamental posits must be justified

by their role in an account that highlights their explanatory and inferential

connections to more familiar notions. This is precisely my goal here: it will shortly

become clear that our primitives figure in an account according to which every

relevant proposition about the physical counterparts of wavefunctions is definable

by some proposition about these primitives.

To begin with, let me revisit a remark I made earlier: that Hermitian operators on

Hilbert space are used to encode the physical structure on quantum states. This idea

Footnote 19 continued

properties of instants of time such that, necessarily, for every instant of time there is exactly one such

property it instantiates. The A-theoretic version can be thought of as a kind of propositionalism: the view

that Points are propositions or states of affairs such that, necessarily, there is always some such propo-

sition (and no more than one such proposition) that is true or some such state of affairs that obtains. This

choice point raises deep foundational issues that are beyond the scope of this paper; cf. (Bacon 2019).
20 See (Chen 2018) for recent work on nominalizing quantum theory.
21 Indeed, as noted by Scott (1959, p. 53), it is doubtful whether there is any intrinsic difference between

distinct infinite-dimensional Hilbert spaces.
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is most transparent from the wavefunction realist perspective. We already saw how

the wavefunction is defined in terms of the eigenvectors of the position operators:

the wavefunction of any ket jui is uðq1; :::; qNÞ ¼ hq1; :::; qN jui, where jq1; :::; qNi
is a simultaneous eigenvector of the position operators. This procedure doesn’t just

define some particular wavefunction; it defines all possible wavefunctions.22 In

other words, it yields a range of wavefunctions that characterize the possible

instantaneous arrangements of the physical field over the fundamental space,

arrangements that possibly differ in the property that the field assigns to a given

location in this space. In this sense, Hermitian operators designated as ‘position

operators’ encode the physical structure of the fundamental field posited by the

wavefunction realist.

In the vector substantivalist setting, the thought is quite similar. Every Point can

be mathematically characterized in terms of a linear combination of eigenvectors of

the relevant Hermitian operators. This can be illustrated at the level of mathematical

description: a ket jui can be specified in terms of position eigenvectors as

jui ¼
Z 1

�1
jq1; :::; qNihq1; :::; qN juidq1:::dqN : ð1Þ

Every difference between distinct kets therefore corresponds to a difference in some

complex coefficients that figure in the expansions of those kets in terms of the

simultaneous position eigenvectors. This illustrates how Hermitian operators encode

physical relations among distinct Points: respects in which Points possibly differ

from each other.

According to vector substantivalism, these physical relations correspond to state-

space symmetries. To substantiate this thesis, we exploit a mathematical duality,

known as Stone’s theorem, between state-space symmetries and Hermitian

operators on Hilbert space.23,24 For ease of exposition, let me introduce some

terminology. Say that each of the N real numbers that figure in simultaneous

position eigenvectors such as jq1; :::; qNi are values of the position variables.
Correspondingly, for any jq1; q2; :::; qNi and jq0

1; q2; :::; qNi such that q1 6¼ q0
1, I will

say that the two vectors differ in the first position variable. This extends to arbitrary

linear combinations of eigenvectors. For example, the following vectors differ only

in the first position variable:

jui ¼
Z 1

�1
jq1; :::; qNihq1; :::; qN juidq1:::dqN ð2Þ

22 For systems with spin, the Hermitian operators corresponding to the spin degrees of freedom

characterize the kind of property that the fundamental field assigns to every point: namely, properties

mathematically specified in terms of spinors rather than in terms of complex numbers.
23 (Stone 1932).
24 The duality encoded in Stone’s theorem allows for a variant of vector substantivalism according to

which the fundamental physical relations among Points correspond to Hermitian operators rather than to

state-space symmetries. While potentially interesting, this version of vector substantivalism would not be

an instance of symmetry fundamentalism.
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j/i ¼
Z 1

�1
jq1 þ a; :::; qNihq1; :::; qN juidq1:::dqN : ð3Þ

Stone’s theorem says that there is a one-to-one correspondence between one-pa-

rameter unitary transformations and Hermitian operators. The mathematical details

do not matter for our purposes; what’s important is that, if p̂ is a momentum

operator then

UðaÞ ¼ eiap̂ ð4Þ

is the unitary operator that implements a shift by amount a in the corresponding

position variable. Similarly, if q̂ is a position operator then

VðkÞ ¼ eikq̂ ð5Þ

is the unitary operator that implements a shift by amount k in the corresponding

momentum variable. For example, the unitary operator U1ðaÞ that acts on the

simultaneous position eigenvector jq1; q2; :::; qNi as U1ðaÞjq1; q2; :::; qNi ¼ jq1 þ
a; q2; :::; qNi implements a shift in the first position variable. The action of shift

operators on eigenvectors determines their action on arbitrary linear combinations

of eigenvectors. For example, it is immediate from equations (2) and (3) that

j/i ¼ U1ðaÞjui: ð6Þ

This suggests two relational primitives for vector substantivalism that are quite

similar to the primitives of classical symmetry fundamentalism reviewed earlier.

The idea is that we posit one fundamental relation that obtains between two Points

when they are related by a shift in some position variable and one fundamental

relation that obtains between two Points when they are related by a shift in some

momentum variable:

4. Position-almost-sameness. A dyadic relation. Relates two Points just in

case they agree about all position variables except for a shift in one position

variable.

5. Momentum-almost-sameness. A dyadic relation. Relates two Points just in

case they agree about all momentum variables except for a shift in one

momentum variable.

I will now show that, for systems without spin, these two relations (together with the

relations that confer Hilbert space structure on Points) are sufficient for specifying a

range of fundamental propositions such that, for every proposition about the

ontological counterparts of wavefunctions, one of these fundamental propositions

defines it.

My strategy takes inspiration from the above-mentioned mathematical definition

of wavefunctions in terms of kets: /ðq1; :::; qNÞ ¼ hq1; :::; qN j/i. The main idea is

that, for any fixed ket, this expression can be thought of as capturing a relation

between simultaneous eigenvectors and the complex numbers. At the ontological

level, the corresponding idea is that the physical counterpart of the wavefunction is

some specific pattern in the inner product relation. To implement this idea, we need
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to define two pieces of derivative ontology: first, a property instantiated by a Point

just in case its mathematical representative is a simultaneous eigenvector; second,

physical entities whose surrogates are points of configuration space and points of

momentum space, respectively.

I start with the ontological counterpart of a simultaneous eigenvector. Let a

position-almost-same subspace be a space of Points such that any two Points in it

are position-almost-same; and let a momentum-almost-same-subspace be a space

such that any two Points in it are momentum-almost-same. Points in a given

position- or momentum-almost-same subspace differ about the same position or

momentum variables. Let y, z be Points that are position-almost same to some Point

x, and suppose that the differences between x, y and the differences between

x, z concern different position variables. It follows that y, z differ about more than

one position variable and so at most one of y and z can be in the same position-

almost-same subspace as x. (Similarly for momentum-almost-same subspaces.)

Next, we observe that, if jpi is an eigenvector of a momentum operator p̂ then it

is also an eigenvector of the unitary operator U(a) that implements shifts in the

corresponding position variable:

UðaÞjpi ¼ eiapjpi ð7Þ

A similar fact holds for position eigenvectors: if jqi is an eigenvector of a position

operator q̂ then it is also an eigenvector of the unitary operator V(k) that implements

shifts in the corresponding momentum variable:

VðkÞjqi ¼ eikqjqi ð8Þ

In other words: kets that are eigenvectors of some momentum operator are such that

the corresponding spatial shift operator maps them to complex scalar multiples of

themselves; and momentum eigenvectors are the only kets with this property.

Similarly, kets that are eigenvectors of some position operator are such that the

corresponding momentum shift operator maps them to complex scalar multiples of

themselves; and position eigenvectors are the only kets with this property. We can

use this fact to define the following physical properties that correspond to the notion

of an eigenvector:

A. Position-eigenpoint. A monadic property. Instantiated by a Point x iff for

some momentum-almost-same subspace containing x, every Point in that

subspace is a multiple of x.
B. Momentum-eigenpoint. A monadic property. Instantiated by a Point x iff

for some position-almost-same subspace containing x, every Point in that

subspace is a multiple of x.

The properties of being a position- or momentum-eigenpoint are instantiated by

Points whose mathematical surrogates are eigenvectors of at least one position or

momentum operator: for example,
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jq1;u2; :::;uNi ¼
Z 1

�1
jq1; q2; :::; qNiu2ðq2Þ:::uNðqNÞdq2:::dqN ð9Þ

is an eigenvector in the first position variable but not necessarily an eigenvector in

other position variables. But to define the intrinsic counterparts of position and

momentum wavefunctions, we also need properties instantiated by Points when

their mathematical surrogates are simultaneous eigenvectors of all position or all

momentum operators. These can be defined as follows:

C. Simultaneous position-eigenpoint. A monadic property. Instantiated by a

Point x iff every Point momentum-almost-same to x is a multiple of x.
D. Simultaneous momentum-eigenpoint. A monadic property. Instantiated

by a Point x iff every Point position-almost-same to x is a multiple of x.

The second task is to define entities whose mathematical surrogates are points of

configuration space and points of momentum space, respectively. It may be

tempting to think that simultaneous position- and momentum-eigenpoints are good

candidates for this role. This temptation should be resisted: there are too many

simultaneous position and momentum eigenpoints. This is most transparent at the

level of mathematical description. Given some fixed coordinate system on

configuration space, there is a one-to-one correspondence between points of

configuration space and the eigenvalues of the simultaneous position-eigenvectors

of position operators along the axes of this coordinate system. But there are many

more distinct simultaneous position eigenvectors than there are distinct position

eigenvalues: for any complex number c, jq1; q2; :::; qNi and cjq1; q2; :::; qNi are not

just both simultaneous position eigenvectors; they are eigenvectors with identical

position eigenvalues. This problem can be sidestepped using tools from mereology:

E. Configuration space point. A monadic property. Instantiated by q iff q is a

fusion of Points and every atomic part of q is a simultaneous position

eigenpoint and any two atomic parts of q are related by a complex scalar

multiple.

F. Momentum space point. A monadic property. Instantiated by p iff p is a

fusion of Points and every atomic part of p is a simultaneous momentum

eigenpoint and any two atomic parts of p are related by a complex scalar

multiple.

This gives the right result: for every position/momentum eigenvalue, there is a

unique configuration/momentum space point: the point such that any two of its

atomic parts have this eigenvalue.

We are almost ready to define the ontological counterparts of wavefunctions. The

last observation we need to make is that wavefunctions are defined in terms of

normalized simultaneous eigenvectors, rather than in terms of their complex scalar

multiples. For example, we define the wavefunction of j/i in terms of vectors like

jq1; q2; :::; qNi rather than in terms of cjq1; q2; :::; qNi where c 6¼ 1.

It is important that we take note of this fact. Recall: our strategy is to identify

wavefunctions with certain specific patterns in the inner product relation. But

whereas wavefunctions assign a complex number to every point of configuration or
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momentum space, the inner product takes Points as arguments rather than the

fusions of Points. This means that, for any given Point x and configuration space

point q, the atomic parts of q differ in the complex number assigned to them by the

inner product. This raises the question as to which complex number the putative

ontological counterpart of a wavefunction should assign to q. The answer is

suggested by the mathematical observation in the previous paragraph: it is the

number that bears the inner product relation to every normalized atomic part of q.
More precisely, let a Point x be normalized iff there is some complex number c of

unit modulus such that c ¼ ðx; xÞ. The ontological counterparts of wavefunctions are
then defined as follows:

G. Configuration-space field of x. A dyadic relation. Relates a complex

number c and a configuration space point q just in case, for every normalized

atomic part y of q, c ¼ ðy; xÞ.
H. Momentum-space field of x. A dyadic relation. Relates a complex number

c and a momentum space point p just in case, for every normalized atomic part

y of p, c ¼ ðy; xÞ.

According to vector substantivalism, the non-fundamental proposition we express

when we specify the wavefunction of some Point x is the proposition that details the

pattern in the configuration-space field of x: the proposition that specifies, for every

configuration space point q, the complex number that is the value of the

configuration-space field of x at q. (Similarly for momentum.) Since the

configuration-space field of x is defined in terms of the primitives (1-5), it follows

that every non-fundamental proposition about the ontological counterparts of

wavefunctions statable in the Hilbert space framework can be defined by (or

expressed in terms of) some fundamental proposition about relations whose

mathematical surrogates are state-space symmetries. Vector substantivalism is

therefore an instance of symmetry fundamentalism.

3.2 Ray substantivalism

Vector substantivalism entails that Points are quantum states and is therefore at odds

with the orthodox view that quantum states correspond to Hilbert space rays rather

than to Hilbert space vectors. In this section, I sketch ray substantivalism, an

ontology that respects this consensus. This view is not an attempt at the more

ambitious project of fundamentalism about projective Hilbert space. Instead, it is the

view that quantum states are identified with certain mereological fusions of Points.

Ray substantivalism is a fairly straightforward modification of vector substan-

tivalism. The fundamental first-order posits are identical: they consist in Points and

instants of time. Moreover, the ray substantivalist follows the vector substantivalist

in positing Hilbert space structure (1–3) among Points as well as the relations of

position- and momentum-almost-sameness (4,5). The central difference between the

two views is the identification of the sorts of entities that can be actualized at

various instants of time; that is, the entities that are identified with quantum states.

Let a fusion s of Points be a State iff for any two atomic parts x, y of s, x is a
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multiple of y. According to the ray substantivalist, actuality is a fundamental

relation between instants of time and States:

State actuality. A dyadic relation. Relates a State s and an instant of time t iff
s is actualized at t.

In addition, the ray-substantivalist version of the basic law governing the actuality

relation says that necessarily, for every instant of time there is exactly one State that

is actualized at it.

The only other feature of vector substantivalism that the ray substantivalist needs

to modify is the definition of configuration- and momentum-space fields. Definitions

G and H associate a field with every Point. But for the ray substantivalist, this is too

fine-grained: the physical entity that corresponds to wavefunctions should be such

that there is one such entity for every State rather than one for every Point. The idea

behind the following modified definitions is that the ray-substantivalist field of a

State s is the vector-substantivalist field of the normalized atomic part of s.

G0. Normalized configuration-space field of s. A dyadic relation. Relates a

complex number c and a point of configuration space q just in case c is

assigned to q by the configuration-space field of the normalized atomic part of

s.
H0. Normalized momentum-space field of s. A dyadic relation. Relates a

complex number c and a point of momentum space p just in case c is assigned

to p by the momentum-space field of the normalized atomic part of s.

This completes the outline of ray substantivalism. According to this view, at every

instant of time, the propositions about the normalized configuration- and momen-

tum-space fields statable in the Hilbert space framework are entailed by which State

is actual at that instant, together with the proposition that details the pattern of

properties of and relations among the atomic parts of the actualized State and other

Points. Ray substantivalism agrees with vector substantivalism about the funda-

mental first-order posits, as well as about the fundamental structure on Points. But

the two views disagree about the nature of quantum states as well as about the

physical counterparts of wavefunctions.

Like vector substantivalism, ray substantivalism is an instance of symmetry

fundamentalism: almost-sameness relations are fundamental relations that corre-

spond to state-space symmetries; and every relevant proposition about the physical

counterparts of wavefunctions is defined by some fundamental proposition about

these relations.

Some readers might object that ray substantivalism does not seem like a genuine

advance over vector substantivalism. Recall that the central motivation for the

orthodox view (according to which quantum states correspond to rays rather than to

vectors) is to avoid a problematic underdetermination implied by the competing

view: since no experiment can distinguish between states of a quantum system that

differ only by a global phase, the thesis that quantum states correspond to Hilbert

space vectors implies that it is in-principle empirically inaccessible which quantum

state is actual. However, it seems as if ray substantivalism achieves consistency with

the standard view only at the cost of reproducing the underdetermination at the level
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of the atomic parts of States. On ray substantivalism, the actualized State contains a

rich structure among its parts, a structure which seems in-principle empirically

inaccessible. But this worry is misplaced. According to ray substantivalism, there is

no in-principle experimental underdetermination of which State the world is in at

any given instant of time. And given that the State of the world at some instant of

time is known, the structure among its atomic parts can be inferred simply from the

linear Hilbert space structure among Points. Ray substantivalism does not feature

the sort of underdetermination that spells trouble for vector substantivalism.

4 A taxonomy of ray-substantivalist views

The ontology I just outlined is not the only version of ray substantivalism. The goal

of this section is to provide a taxonomy of the available options.

The range of possible ray-substantivalist views mirrors the varieties of

wavefunction realism. There are two important respects in which the latter differ.

The first concerns the fundamental space that is the container of the physical field

characterized by the wavefunction. Configuration-space realists say that the

fundamental field lives on configuration space, the 3N-dimensional space whose

points we can intuitively think of as each fixing a distribution of N classical point

particles in Euclidean three-space. Multi-field realists, by contrast, say that the

fundamental field assigns a property to every N-collection of points of Euclidean

three-space.25 The second line of disagreement is about whether fundamental reality

is exhaustively described by the wavefunction. Wavefunction monists say ‘yes’. The

most influential theories that answer this question in the negative are what I’ll call

local beable theories. According to them, fundamental reality additionally consists

in local beables: roughly, physical objects that are confined to a bounded region of

the fundamental space.26

For example, GRW0 is a configuration-space-realist version of wavefunction

monism according to which the dynamical evolution of the fundamental field is

given by a collapse equation.27 Bohmian mechanics is a local beable theory that has

both a configuration-space-realist as well as a multi-field-realist variant. According

to the former, there is a single ‘world-particle’ in configuration space. According to

the latter, there are point-particles in three-space.28 The two theories agree that the

evolution of the particulate content of the world is determined by the fundamental

25 The term ‘wavefunction realism’ was originally reserved for the configuration-space realist variant of

the view. More recently, usage seems to have expanded to include any view according to which the

wavefunction represents something ‘‘objective and mind-independent’’ (Chen 2019). Here, our discussion

is limited to variants of wavefunction realism that posit a real physical field on some fundamental space.
26 The theories I call ‘local beable theories’ are distinct from theories proposed from as part of the so-

called primitive ontology approach. According to the latter, the local beables are the only fundamental

material constituents of the world, whereas the wavefunction is understood as part of the nomological

structure of the world; cf. (Allori 2013).
27 (Albert 1996; Loewer 1996; Ney 2012; North 2013).
28 (Belot 2012; Chen 2017; Hubert and Romano 2018); cf. (Forrest 1988).
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field which itself evolves according to the Schrödinger equation.29 GRWf and

GRWm, understood as local beable theories, have a configuration-space-realist and a

multi-field-realist variant. Both variants posit physical entities (flashes or mass

densities) distributed over the fundamental arena whose temporal evolution is

determined by the fundamental field. Finally, there are two wavefunction monist

options for Everettian quantum mechanics (EQM): a configuration-space-realist one

and a multi-field-realist one.30

This taxonomy can be transposed more or less directly to ray substantivalism.

The view I articulated in the previous section can be regarded as configuration-
space-realist monistic ray substantivalism. It is monistic in the following sense: at

every instant of time, physical reality is determined entirely by which State is

actualized at that time, together with relations between the atomic parts of the

actualized State and other Points. Moreover, the view is configuration-space realist:

for every State, the ontologically derivative entity that corresponds to the

wavefunction is a field on configuration space. Another possible monistic view is

multi-field-realist ray substantivalism, in which the main ontologically derivative

entity is a multi-field on physical three-space. Both versions of monistic ray

substantivalism can be combined with dynamical laws of either the dynamical-

collapse or the Schrödinger sort, resulting in variants of GRW0 and EQM,

respectively.

There are also ways to supplement monistic ray substantivalism with local

beables. Here, I will focus on two Bohmian versions of this approach. The first

version is what you might call configuration-space-realist Bohmian ray substan-
tivalism: the view which (over and above the ray substantivalist primitives) posits a

fundamental configuration space as well as a single Bohmian ‘world-particle’

located in it. An alternative is multi-field-realist Bohmian ray substantivalism, a

view which includes the primitives of monistic ray substantivalism and additionally

posits a fundamental physical three-space as well as a collection of point particles

located in it. On both views, the dynamical evolution of the fundamental

particle(s) are determined by the actualized State according to the guidance

equation; and the dynamical law governing States is given by the Schrödinger

equation. These views differ from monistic ray substantivalism in both their

fundamental and their derivative ontology: they posit fundamental particles as well

as points of the respective fundamental spaces and therefore have no need to lay

down definitions of these fundamental spaces in terms of Points.

Although Bohmian versions of ray substantivalism are coherent candidate

ontologies, there are three reasons to be skeptical. First, they have costs that they

29 Note that there are versions of Bohmian mechanics that are not wavefunction realist. According to one

proposal, the wavefunction has nomological status; on another, the wavefunction corresponds is a sui
generis entity; (Maudlin 2013); cf. (Chen 2019).
30 Although the official ontology for EQM is spacetime-state realism (more on which below), EQM has

often been introduced, developed, and criticized on the assumption of a configuration-space-realist

wavefunction monist ontology; for example, (Brown and Wallace 2005; Saunders 2010; Maudlin 2010;

Ney 2013). To my knowledge, a multi-field-realist wavefunction monist ontology for EQM has not been

explicitly developed in the literature, though it is identified as a theoretical possibility in (Chen

2019, p. 10).
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don’t share with their wavefunction-monist competitors. The Bohmians we’re

imagining posit two fundamental spaces: the space of Points, plus whatever space

contains the local beables. Wavefunction-realist Bohmians, by contrast, get by with

positing just one fundamental space: the arena which contains both the Bohmian

particles and the fundamental field. Both kinds of Bohmian ray substantivalism

therefore seem less ontologically parsimonious than their wavefunction-realist

counterparts.

Second, neither version of Bohmian ray substantivalism is an instance of

symmetry fundamentalism. To be sure: these views posit almost-sameness relations

among Points and are therefore consistent with the first conjunct of symmetry

fundamentalism. But they are inconsistent with the second conjunct. The Bohmian

particles are supposed to be ontologically primitive, metaphysically fundamental,

not ontologically derivative of anything else. So, it is not the case that every relevant

proposition about Bohmian particles can be defined in terms of some proposition

about almost-sameness relations.

Third, there is a systematic relation between the symmetries of the fundamental

space that contains the Bohmian particle(s) on the one hand and the relevant state-

space symmetries on the other. For example, it is routine to define unitary actions of

the rotation group SO(3) on Hilbert space in terms of an action of this group as

Euclidean isometries.31 To be sure: the existence of this kind of mathematical

definition does not force the Bohmian ray substantivalist to lay down a

corresponding metaphysical definition of the relevant sameness relations on state

space. But it does imply that these views face the additional burden of explaining

how the almost-sameness relations on the space of Points hang together with the

symmetries of the fundamental container of the local beables.

5 Discussion

This section is devoted to contrasting ray substantivalism with three of the most

influential approaches to the ontology of quantum mechanics: wavefunction realism

in both its monistic and local beable varieties, as well as spacetime state realism. I

also respond to some objections that may be leveled against views along the lines of

ray substantivalism.

First, it is important to note that none of the three approaches is consistent with

symmetry fundamentalism. Recall that symmetry fundamentalism is the conjunction

of two claims: first, that state-space symmetries correspond to fundamental aspects

of physical reality; and second, that the kinds of things we would have ordinarily

regarded as the fundamental building blocks of the world, such as particles or fields,

are ontologically derative from these fundamental aspects.

31 Consider a single-particle system in three-dimensional Euclidean space, characterized in terms of R3,

and let x̂ be the position operator with eigenvalues in R3: if x̂jx~i ¼ x~jx~i then x~2 R3. The standard action

of SO(3) on R3 is a map / : SOð3Þ � R3 ! R3, ðR; x~Þ7!/ðR; x~Þ ¼ Rx~where R are real invertible 3� 3

matrices such that RRT ¼ 1 and detR ¼ 1. A unitary action U : SOð3Þ � H ! H, ðR; jwiÞ7!UðRÞjwi on
the one-particle Hilbert space H is then defined via UðRÞjx~i ¼ jRx~i.
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Existing proposals are inconsistent with the first conjunct: they do not posit

fundamental entities that correspond to state-space symmetries. The most straight-

forward case is wavefunction realism in both monistic and local beable form.

Theories of this type posit a fundamental physical field on the relevant fundamental

arena, plus (perhaps) the distribution of local beables over this arena. On these

views, nothing in the ontology corresponds to state-space symmetries.

Another proposal for the ontology of quantum theory is known as spacetime-state

realism, one that differs quite significantly from wavefunction realism. We are to

imagine fundamental physical reality as involving a distribution of physical

properties over regions of spacetime: the quantum states of those regions.32

Mathematically, each region i is assigned a Hilbert space Hi and the Hilbert space

H of the world is given by the tensor product of these Hilbert spaces:H ¼ biHi. If

the quantum state of the universe at time t is given by the density operator q on H,

then the quantum state of spacetime region i at t is given by the partial trace

qi ¼ Tri 6¼jq.
There are at least two ways to understand this view. The first is more serious

about the idea that quantum states are represented by operators on Hilbert spaces.

On this line of thought, for every spacetime region i we posit a fundamental space

corresponding toHi as well as a fundamental relation on this space corresponding to

qi. This version of spacetime-state realism collapses into a form of ray

substantivalism: an ontology according to which there is a collection of spaces of

Points, together with certain privileged relations among those Points.

The similarity between ray substantivalism and this version of spacetime-state

realism becomes even more transparent once we take notice of an observation made

by Ismael and Schaffer (2020). Understood as fundamental entities, the quantum

states assigned to spacetime regions smaller than the entirety of spacetime are

ontologically redundant: as the above derivation of qi from q suggests, the quantum

state of any spacetime region is completely fixed by the state of the world as a

whole, but not vice versa. According to what Ismael and Schaffer refer to as

‘spacetime-state realism streamlined’, the fundamental ontology includes only the

quantum states of the world as a whole: exactly what the ray substantivalist refers to

as States.

So, ray substantivalism and this version of spacetime-state realism are very

similar indeed. The main difference concerns the nature of the physical structure on

state space: according to ray substantivalism, this structure consists in almost-

sameness relations; according to ‘spacetime-state realism streamlined’, it consists in

the physical properties and relations on state space that correspond to certain

Hermitian operators on Hilbert space.33 Hermitian operators, however, are not

themselves state-space symmetries but generators of state-space symmetries. So

this version of spacetime-state realism is not an instance of symmetry

fundamentalism.

32 (Wallace and Timpson 2010); cf. (Swanson 2018).
33 (Wallace 2012, p. 296).
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This is not the version of spacetime-state realism intended by its main

proponents.34 According to the official version of the view, the fundamental

properties assigned to spacetime regions correspond to abstract operator algebras.

Their technical definition is not important here; what matters is that the operators in

these algebras need not be construed as operators acting on a Hilbert space.35 While

this version of spacetime-state realism is therefore not at risk of collapsing into ray

substantivalism, the absence of Hilbert spaces from this formulation makes it hard

to see how the operators that encode the relevant physical properties can be thought

of as ‘acting’ on anything, much less as being state-space symmetries.

To be sure: for every Hilbert-space automorphism that counts as a state-space

symmetry within the Hilbert-space framework, there is an automorphism of the

relevant operator algebra within the spacetime-state realist formalism, and vice

versa. However, once the relevant operator algebras have been specified, their

symmetries are physically redundant, in the sense that the relevant physical

structure is already exhaustively specified in terms of the operator algebra alone. Let

me illustrate this point by analogy to a fact about the Hilbert-space framework we

encountered earlier. Recall that, in this framework, the relevant physical structure

on Hilbert space can be specified either in terms of self-adjoint operators or in terms

of the unitary transformations they generate. But once we have made the choice (for

example) to characterize the physical structure in terms of self-adjoint operators,

Stone’s theorem implies that nothing is added by also specifying the corresponding

unitary transformations: all the physical structure is already fixed by the self-adjoint

operators. The situation with regard to the operator-algebraic variant of spacetime-

state realism is similar: once the relevant operator algebras have been specified,

there is simply no job to be done by the symmetries of the algebra. Spacetime-state

realism therefore cannot properly be understood as an instance of symmetry

fundamentalism.

The result is that none of the major extant proposals for the ontology of quantum

theory are instances of symmetry fundamentalism.36 Insofar as compatibility with

symmetry fundamentalism is concerned, monistic ray substantivalism therefore has

some claim to be the only game in town. Those in the market for a view that

provides a precise ontological basis for symmetry fundamentalism should seriously

entertain monistic ray substantivalism as a candidate ontology for non-relativistic

quantum mechanics.

Second, there are aspects of monistic ray substantivalism that might make it less

attractive than its competitors. A minimal adequacy condition for an ontology for

34 For example, David Wallace explicitly rejects what he refers to as ‘Hilbert-space-vector realism’

(Wallace 2021, p. 69) and ‘Hilbert space realism’ (Wallace 2013, p. 216).
35 Cf. (Wallace and Timpson 2010; Swanson 2018).
36 Moreover, note that it would not help to put such entities in ‘by hand’, as it were. Wavefunction realist

and spacetime-state realist theories are constructed to be ontologically complete in the sense that every

relevant non-fundamental proposition is fixed by some proposition that is just about the fundamental

physical field, and perhaps also about the local beables. The physical counterparts of symmetries would

therefore be ontological ‘danglers’: propositions about them would not be required to fix the non-

fundamental.
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quantum theory is that it be compatible with what is sometimes referred to as the

‘manifest image’: the familiar world of medium-sized dry goods, such as tables,

chairs, and measurement devices. If an ontology does not satisfy this constraint, it is

plainly inconsistent with the empirical evidence. However, some philosophers have

suggested that we should impose more demanding constraints on ontological

theorizing. Any candidate ontology must not just be consistent with the manifest

image, it must also be reflective of certain important aspects of this image.

According to local beable approach to physical ontology, for example, the relevant

feature to be reflected in a fundamental ontology is that macroscopic objects are

local beables. For a hypothesis to be admissible and intelligible as a fundamental

ontology, it must therefore posit local beables as fundamental entities.37

Those who subscribe to constraints of this sort are unlikely to be attracted to

monistic ray substantivalism. It’s not just that the fundamental ontology does not

include local beables. Since there is no fundamental physical spacetime, the notion

of a spatiotemporally localized entity is not even expressible in fundamental terms.

However, this is a predicament that should be familiar from discussions of

configuration-space-realist wavefunction monism.38 Both views posit a fundamental

space that is nothing like the space of our ordinary three-dimensional experience:

ray substantivalism posits a space of Points isomorphic to Hilbert space and

wavefunction monism posits fundamental configuration space. Moreover, neither

view posits fundamental local beables. The challenges facing monistic ray

substantivalism and configuration-space wavefunction monism are thus rather

similar: it must be shown how the manifest image can be recovered from a

fundamental picture that is quite unlike it.

The question of whether a fundamental ontology for non-relativistic quantum

mechanics is capable of recovering the manifest image is part of a broader family of

issues known as the ‘quantum measurement problem’: roughly, the challenge of

providing a picture of fundamental physical reality according to quantum theory that

is consistent with and explains our total macroscopic evidence, including the

behavior of measurement devices.39 As we saw earlier, monistic ray substantivalism

is capable of expressing all relevant propositions about the physical field that the

wavefunction monist regards as fundamental. This suggests that if wavefunction

monism succeeds in solving the quantum measurement, then so does monistic ray

substantivalism.40

Third, I’d like to address a few objections that might be levelled against the kind

of ontology articulated in this paper. Although the view that Hilbert space

corresponds to a fundamental space in its own right has occasionally been

37 (Maudlin 2019).
38 (Albert 1996; Ney 2012; North 2013).
39 (Wallace 2008; Myrvold 2018).
40 There are at least two prominent wavefunction-monist approaches to the quantum measurement

problem. First, notwithstanding his opposition to wavefunction realism (Wallace 2021), David Wallace’s

many-worlds theory (Wallace 2012) can be straightforwardly understood in terms of a wavefunction-

monist ontology. Second, the original version of GRW-dynamical collapse theory is wavefunction

monist; (Ghirardi et al. 1986). (Ney and Albert 2013) contains further discussions.
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mentioned in the literature, an ontology that gives precise content to this view has

not yet been articulated. One reason might be that views of this sort have been

regarded as ‘‘unmotivated’’.41 As I hope to have shown in this paper, this is untrue:

ray substantivalism is the natural result of ontological theorizing that is metaphys-

ically serious about the recent paradigm shift towards symmetry techniques in

physics. To be sure: ray substantivalism departs significantly from more familiar

ways of thinking about the ontology of quantum mechanics. This might explain why

views along the lines of ray substantivalism have been dismissed as ‘‘bizzare’’ in the

literature.42 But it should come as no surprise that metaphysical theorizing about

fundamental physics might fail to validate the pre-theoretical intuitions that are

informed by our exposure to the macroscopic realm—especially when it comes to a

notion so far removed from our everyday experience as that of a fundamental state-

space symmetry.

A more specific worry, due to Jill North, is that a fundamental space

corresponding to abstract Hilbert space does not have enough structure from which

‘‘to recover the ordinary world of our experience.’’43 The thought is that ‘‘Hilbert

space does not support an objective, structural distinction between positions and

other physical properties, like spin, in the way that the wavefunction’s space

does.’’44

This charge is ineffective against ray substantivalism: after all, the view builds in

the requisite structural distinction between positions and momenta at the level of the

ontological primitives. To be sure: there’s something right about North’s

observation. Ray substantivalism privileges neither the normalized configuration-

space nor the normalized momentum-space fields in the way that wavefunction

realism does; they are ontologically on a par. But this does not imply that ray

substantivalism does not have the resources to recover the manifest image—or at

least, it does not follow that ray substantivalism fares worse in this regard than (for

example) configuration-space wavefunction monism. In particular, it would be

incorrect to say that ray substantivalism has too little structure: as we have seen,

every relevant proposition that is fundamental according to the wavefunction monist

can be defined in ray-substantivalist terms. If anything, it may appear as if ray

substantivalism has surplus structure: in addition to the propositions about the

configuration-space field taken as fundamental by the wavefunction monist, every

proposition about momentum-space fields statable in the Hilbert space framework

can also be defined in ray-substantivalist terms. But this appearance is misleading.

As we saw earlier, the ray-substantivalist definition of the configuration-space field

of some State essentially involves the notion of momentum-almost-sameness:

namely, via the definition of a simultaneous position-eigenpoint. Momentum

structure is not ontologically redundant within ray substantivalism.

41 (Wallace 2013, p. 216); (Wallace 2021, p. 70). But note some favorable mentions of such views in

(Ladyman 2010, p. 157) and (French 2013, p. 86). Cf. (Bueno 2011, p. 93n13).
42 (Hawthorne 2010, p. 145).
43 (North 2013, p. 192).
44 ibid.
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Fourth, let me address the seemingly modal nature of vector and ray

substantivalism. In physics, instantaneous states are introduced as exhaustive and

maximally specific descriptions of the fundamental properties of the material

constituents of the world at an instant. A physical state can therefore be thought of

as representing an instantaneous way the world could be and therefore seems quite

similar to a possible world.45 Since the space of Points has the structure of a state

space—Hilbert space—this might seem to imply that vector and ray substantivalism

are committed to a form of modal realism.

This impression is incorrect. According to vector or ray substantivalism, states

aren’t maximally specific and exclusive descriptions of anything: they are

fundamental, ontologically primitive entities. Whatever modal intuitions we might

have had about states qua exhaustive and maximally specific descriptions, they no

longer apply once we regard states as fundamental entities. Both vector and ray

substantivalism conceive of the space of Points as a fundamental space, as the

fundamental arena in which the history of the world unfolds. If Points (or relevant

mereological fusions of them) are deserving of a characterization in modal terms—

e.g. by referring to unactualized states as ‘merely possible’ states—this is due to the

basic law according to which the world can be in no more than one state at any

instant of time.

Whether ray substantivalism is ultimately preferable to its competitors as an

ontology of quantum theory is a question that can only be answered through a

careful evaluation of the trade-offs between various metaphysical, epistemic, and

pragmatic considerations. This question is unlikely to have easy answers. For

example, it is not obvious whether ray substantivalism is ontologically simpler and

more parsimonious than wavefunction monism.46 As we have seen, ray substan-

tivalism involves some fairly significant ontological commitments: a fundamental

space with the structure of Hilbert space as well as fusions of points in this space;

State actuality; and the two fundamental almost-sameness relations on this space.

But so does wavefunction monism. According to the only detailed intrinsic

formulation of this view to date (Chen 2018), the fundamental posits include three-

dimensional Euclidean space; N-membered collections of points in this space called

N-regions, where N is the number of (non-fundamental) particles; as well as four

primitive relations among N-regions: a dyadic relation ‘Amplitude-Geq’; a triadic

relation of ‘Amplitude-Sum’; a triadic relation of ‘Phase-Clockwise-Betweenness’

and a tetradic relation of ‘Phase-Congruence’. While Chen’s proposal involves a

greater number of primitive relations among (constructions out of) points of the

fundamental space than does ray substantivalism, this is likely to be outweighed by

the greater relational complexity required for an intrinsic account of Hilbert space—

not developed in this paper—compared to axiomatizations of Euclidean space such

as those by Tarski and Hilbert.47 These observations illustrate that comparing

individual proposals even along a single dimension is not trivial. The question

45 The parallels between possible worlds and instantaneous states are examined in (Williamson 2016).
46 I thank an anonymous reviewer for inviting me to elaborate on this issue.
47 (Hilbert 1899; Tarski 1959).
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whether ray substantivalism achieves a better balance of the relevant metaphysical,

epistemic and pragmatic considerations than its competitors strikes me as open.

6 Conclusion

In this paper, I developed ray substantivalism, an ontology for non-relativistic

quantum mechanics that vindicates symmetry fundamentalism. According to this

ontology, state-space symmetries correspond to fundamental relations, whereas the

entities we would ordinarily regard as the fundamental material building blocks of

the world are ontologically derivative of these relations.

To some readers it might seem that we could have accomplished this much more

quickly: simply by pointing to the relevant state-space automorphisms in the

mathematical formalism and announcing that symmetry fundamentalism targets the

physical entities (whatever they may be) to which these transformations correspond.

This seems to be a common approach to ontological theorizing, and it essentially

involves identifying the objects in the mathematical language of physics that are

physically or representationally significant, in the sense of corresponding to some

ontological item or other—by contrast to the ‘redundant’ mathematical entities,

those that have no representational role to play.48 It is implicit in this approach that

identifying which mathematical items are representationally significant is all that

can be said by way of specifying an ontology: nothing further is to be gained by

going ‘beyond’ the mathematical formulations in the way exhibited in this paper.

The approach I have taken is more ambitious: the relevant ontological primitives

were specified directly, as it were, rather than by merely pointing to some

mathematical items and saying that something or other corresponds to them.49 This

approach doesn’t just highlight the distinctiness of the relevant physical items from

their mathematical representations; it also vindicates the appropriateness of those

representations for characterizing these items. This approach has clear advantages.

First, we discovered that the physical structure of a non-relativistic quantum system

without spin can be captured just in terms of two physical primitives: the almost-

sameness relations that correspond to unitary spatial and momentum shift

transformations. This is simpler than we might have expected: when it comes to

position and momentum shifts, it seems natural to think that we would require one

fundamental relation for each spatial direction and each shift amount, resulting in an

enormous multiplication of ontological primitives. It seems likely that the

significant gains in simplicity would have escaped us had we focussed just on

determining which mathematical notions are representationally significant.

48 (Maudlin 2018). For a criticism of this approach from a different angle, see (Dewar 2017).
49 This approach is inspired by nominalistic constraints on ontological theorizing, according to which

physical ontology must be specified without invoking mathematical entities at all; cf. (Field 1980;

Arntzenius and Dorr 2012; Chen 2018). However, limitations of space prevent me from fully complying

with nominalistic strictures in this paper. Instead, I have provided a nominalistic characterization of

merely one part of the ontology: the part concerned with the fundamental items corresponding to

mathematical symmetry transformations.
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Second, when it comes to elucidating symmetry fundamentalism, the standard

approach simply would not have provided us with anything close to the

metaphysical insight we are looking for. There are settings in which we are

sufficiently in control of the metaphysical background assumptions and the

supporting intuitions to safely follow the representationalist strategy. I take it that

most of us would have a fairly clear picture of what is being asserted by someone

who tells us that the fundamental arena in which the history of the world unfolds is

characterized by a three-dimensional manifold with a Euclidean metric. The claim

that symmetries are fundamental and that every material object is ontologically

derivative of them is quite different. Being told that a range of symmetry

transformations are representationally significant and that they ‘correspond to’

physical items does not come close giving us to a clear picture of what the world

would have to be like for that claim to be true. Indeed, the proponent of symmetry

fundamentalism might run the risk of being profoundly misunderstood: it may seem

like what’s being asserted is a form of pythagoreanism according to which the

physical world is literally constituted by mathematical objects such as symmetry

transformations. One way to avoid problems of this kind is to specify the relevant

ontological primitives in the way I did in this paper.

This also illustrates the contrast between the results of this paper and an

influential intellectual tradition known as ontic structural realism. At face value,

ontic structuralism and the project of this paper have a lot in common. Roughly,

ontic structuralists conceive of fundamental reality as populated by ‘structure’ rather

than by individual objects such as particles, and symmetries are regarded as

paradigm instances of this fundamental structure.50 However, ontic structuralist

proposals suffer from the fact they are too often specified almost entirely at the level

of the mathematical language given to us by physics. Indeed, while structuralists are

quite liberal in their use of metaphysical notions such as necessitation,51

supervenience,52 determinables and determinates,53 constitution,54 ontological

dependence,55 fundamentality,56 metaphysical grounding,57 and essence,58 these

notions are ostensibly applied to straightforwardly mathematical objects. A few

examples: French (2014, p. 283) proposes that ‘‘the Poincaré group is a deter-

minable’’. Roberts (2011, p. 50) argues for the claim that ‘‘the existing entities

described by quantum theory are organized into a hierarchy, in which a particular

symmetry group occupies the top, most fundamental position.’’ And McKenzie

50 (Ladyman 1998; Castellani 1998b; Brading and Castellani 2003; Kantorovich 2003; Ladyman et al.

2007; Roberts 2011; French 2014; McKenzie 2014a; Brading et al. 2017).
51 (Berenstain and Ladyman 2012).
52 (Ladyman et al. 2007; Wolff 2011; Nounou 2012).
53 (French 2014, Section 10.7-8).
54 (Castellani 1998a).
55 (Wolff 2011; McKenzie 2014b).
56 (Ladyman 1998; Ladyman et al. 2007; Roberts 2011; McKenzie 2014b, a; French 2014).
57 (French 2014, pp. 169,283).
58 (McKenzie 2014b).
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(2014a, pp. 21-2) entertains the hypothesis that ‘‘the Poincaré group [...] forms part

of [an elementary particle’s] essence’’ which implies ‘‘the dependence of relativistic

particles on the Poincaré group’’.

This is not the place for a thorough assessment of these claims in particular or of

the structuralist project in general. I merely want to register that those looking for an

elucidation of a metaphysical vision along the lines of symmetry fundamentalism

are unlikely to be satisfied with claims of this sort. Presumably, the subjects of the

metaphysical attributes are not mathematical objects but the physical entities to

which they correspond. But we are left in the dark as to what those physical entities

are supposed to be. What we require isn’t more mathematical physics, but a

transparent, precise and complete specification of the physical items to which the

relevant mathematical items correspond. This is what I have endeavored to do in

this paper.

Ray substantivalism is a novel ontology for non-relativistic quantum mechanics,

one that is inspired by mathematical structures that have been and continue to be at

the core of our best theories of fundamental physics. Although this is a significant

result of its own, the explanatory power and theoretical utility of symmetry-

fundamentalist ontological theorizing is likely to become fully transparent only once

it is applied to the more sophisticated settings of quantum field theory and quantum

gravity. For example: a symmetry-fundamentalist approach promises a metaphys-

ical underpinning of the so-called ‘classification of elementary particle kinds’ in

terms of the irreducible representations of Poincaré group as well as similar schemes

involving the specification of color and flavor charge in terms of the group SU(3). It

also provides a blueprint for the development of a fundamental ontology that details

the physical counterparts of spin networks in loop quantum gravity.59 Although the

scope of this paper was limited to non-relativistic quantum mechanics, its results are

an important basis for future work on the symmetry-fundamentalist metaphysics of

our best quantum theories.
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