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Abstract The basic Bayesian model of credence states, where each individual’s

belief state is represented by a single probability measure, has been criticized as

psychologically implausible, unable to represent the intuitive distinction between

precise and imprecise probabilities, and normatively unjustifiable due to a need to

adopt arbitrary, unmotivated priors. These arguments are often used to motivate a

model on which imprecise credal states are represented by sets of probability

measures. I connect this debate with recent work in Bayesian cognitive science,

where probabilistic models are typically provided with explicit hierarchical struc-

ture. Hierarchical Bayesian models are immune to many classic arguments against

single-measure models. They represent grades of imprecision in probability

assignments automatically, have strong psychological motivation, and can be nor-

matively justified even when certain arbitrary decisions are required. In addition,

hierarchical models show much more plausible learning behavior than flat repre-

sentations in terms of sets of measures, which—on standard assumptions about

update—rule out simple cases of learning from a starting point of total ignorance.

Keywords Bayesian epistemology � Bayesian cognitive science � Probability �
Credal imprecision � Philosophy of cognitive science � Hierarchical Bayesian

models � Bayesian networks

1 Introduction

Consider the following two scenarios:

& Daniel Lassiter

danlassiter@stanford.edu

1 Department of Linguistics, Stanford University, 450 Serra Mall, Building 460, Stanford, CA

94305, USA

123

Philos Stud (2020) 177:1463–1485

https://doi.org/10.1007/s11098-019-01262-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s11098-019-01262-8&amp;domain=pdf
https://doi.org/10.1007/s11098-019-01262-8


(1) Two teams, A and B, are about to compete in a soccer game. You’ve seen

them compete many times, and you are certain that they are evenly matched.

What probability should you assign to the sentence ‘‘A will win’’?

(2) Two teams, A and B, are about to compete at soccer. You know nothing at all

about these two teams. What probability should you assign to the sentence ‘‘A

will win’’?

If pushed, most people will give the same answers to these questions: ‘‘50%’’. But

our reason for giving these answers is obviously different in (1) and (2). In (1), we

have a lot of relevant information to justify making this choice with confidence. In

(2), our choice is made in ignorance: we just don’t have any reason at all to favor

one team over the other. Obviously, there is an epistemologically relevant

difference, and it would be a mistake to represent our information identically in (1)

and (2). But the basic Bayesian model of credence states seem not to distinguish our

precise, confident opinion in (1) from our imprecise, uncertain opinion in (2)—or so

it has been claimed.1

To fix terminology, call the phenomenon in question ‘‘credal (im)precision’’. If

someone has a definite opinion about some event, perhaps based on rich

information—as you might when assigning ‘‘A will win’’ probability .5 in scenario

(1)—they are in a state of credal precision with respect to that event. If their

probability assignment is highly uncertain and far from definite—as yours would

presumably in scenario (2)—they are in a state of credal imprecision with respect to

that event.2

This paper considers two formal models of credal precision and imprecision. The

first takes ordinary probability to be inadequate as a representation of agents’

credence states, and opts for a richer model using sets of probability measures.3 The

second approach tries to explain the possibility of precise or imprecise probability

estimates in terms of a probability model that incorporates hierarchical structure—

such as that of a Bayesian network (Pearl 1988; Spirtes et al. 1993) or a

probabilistic program (Tenenbaum et al. 2011). The need to include hierarchical

structure in probabilistic models already enjoys considerable psychological,

philosophical, and computational motivation.4 There is an obvious gain in

theoretical simplicity, then, if we can apply this independently motivated class of

models to address objections that have been raised to representing credences by a

1 See, for example, Halpern (2003) and Joyce (2005, 2010).
2 Note that the term ‘‘imprecise credences’’ is sometimes used to designate a specific formal model of

belief based on sets of probability measures, rather than the phenomenon being modeled. To avoid

confusion between model and the thing modeled, I will avoid the term ‘‘imprecise credences’’ altogether,

using ‘‘credal imprecision’’ as a name for the phenomenon and ‘‘sets-of-measures’’ for the formal model

under discussion.
3 Representations based on probability intervals or on upper and lower probabilities can for present

purposes be treated as a special case of sets-of-measures models.
4 In addition to references just cited, and among many others: Spirtes et al. (1993), Pearl (2000),

Glymour (2001), Woodward (2003), Sloman (2005), Koller and Friedman (2009), Russell and Norvig

(2010), Goodman et al. (2016), Danks (2014) and Icard (2017).
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single measure. I will argue that we can, and that the hierarchical approach is also

superior in learning behavior to the flat, set-based representation.

None of this calls directly into doubt whether further phenomena might motivate

the use of sets of measures in epistemology or psychological modeling. Nor does it

bear on the rather different question of whether these representations are useful in

modeling epistemic phenomena that extend beyond the minds of individuals, such

as group belief or conversational common ground. My claim is rather that certain

phenomena which appear to problematize the basic Bayesian model of individual

agents’ informational states, and to support sets-of-measures models, can be given a

more illuminating explanation within standard probability models that incorporate

explicit hierarchical structure.

2 Credal precision and imprecision

In what I will call the ‘‘basic Bayesian model’’ of credence states, each agent a is

associated with a unique probability measure Pa—sometimes also called a’s

‘‘credence function’’. Pa is required to obey the usual laws of probability (non-

negativity, normalization, and countable additivity: Kolmogorov 1933). For any

proposition C, PaðCÞ is a’s degree of belief that C is true.

The basic Bayesian model has many useful features for cognitive modeling and

epistemological purposes, and is also subject to many kinds of objections. One well-

known objection involves experimental evidence suggesting that ordinary people

make systematic errors in probabilistic reasoning (e.g., Tversky and Kahneman

1974; Kahneman et al. 1982). While this kind of critique is surely relevant, I want to

set it aside here with a few quick comments. First, there are many additional

experiments in which people seem to reason appropriately with probabilities (e.g.,

Gigerenzer 1991). Second, experiments in which people are asked to reason

explicitly about probabilities may be less theoretically revealing than those in which

probabilistic reasoning is implicit in the way that uncertainty informs judgment and

action (e.g., Griffiths and Tenenbaum 2006; Trommershäuser et al. 2008). The logic

is essentially the same as that which motivates cognitive scientists of many

persuasions, from linguists to psychophysicists, to give greater weight to people’s

unreflective behavior and judgmental processes than to their metalinguistic or

metacognitive judgments. Third, recent work has suggested a measure of

reconciliation, where at least some errors and biases in probabilistic reasoning

may be explicable in terms of performance factors, interactions among cognitive

systems, or traces of strategies for efficient approximation (Griffiths et al. 2012; Vul

et al. 2014).

The objections that have motivated a rejection of the basic Bayesian model

among many epistemologists are primarily of a different kind. Kahneman and

Tversky assumed that the basic Bayesian model provides a normatively correct

standard for learning and reasoning, and argued that ordinary people’s credence

states are defective to the extent that they are not consistent with this model. In

contrast, many arguments for rejecting the basic Bayesian model in favor of a sets-

of-measures model call into question its normative appropriateness, rather than its
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descriptive adequacy. These arguments purport to show (a) that it would be

normatively inappropriate in many cases for an agent to have a credence state that is

well-represented by a single probability measure, and (b) that an accurate

psychological model of (normatively appropriate) credence states cannot have the

form of a single probability measure. Scenario (2) is a typical example: two teams

compete in a game, and you know nothing at all about their relative skills. Joyce

(2005, 2010) argues that, in such a scenario, you are making a mistake if you have

any precise credence in team A winning. What possible grounds could you have for

such ‘‘extremely definite beliefs ...and very specific inductive policies’’, when ‘‘the

evidence comes nowhere close to warranting such beliefs and policies’’ (Joyce

2010, p. 285)? Depending on the teams’ relative skills, the right credence to have

might be any value in the range [0, 1]! You don’t know enough to exclude any of

these.

This objection is closely related to the problem of insufficient expressiveness that

we began with. When asked for a probability estimate in scenarios (1) and (2), I

might produce ‘‘50%’’ in both cases—but confidently in (1), and with hesitation and

confusion in (2). Similarly, I would immediately reject an uneven bet on either team

in (1), but might have a harder time making up my mind in (2). Either way, the basic

Bayesian model seems to miss at least two important differences between these

judgments: differences in their evidential basis, and in their phenomenology. If a

single probability measure is all we have to work with, any two events to which I

assign probability 0.5 would seem to be probabilistically indistinguishable—both

just have probability 0.5, end of story. As a result, the basic Bayesian model is not

fine-grained enough to represent the full richness of my credence states. Halpern

(2003, p. 24) summarizes the objection succinctly: ‘‘Probability is not good at

representing ignorance’’.

3 Credal imprecision: a sets-of-measures model

The proposed alternative is to represent an agent a’s information not by a single

probability measure Pa, but by a set of probability measures Pa (e.g., Levi 1974;

Jeffrey 1983; Bradley 2014). This is often called an ‘‘imprecise probability model’’.

(We have to be careful here not to confuse this controversial formal model with the

uncontroversially real phenomenon of ‘‘credal imprecision’’, as exemplified by

scenario (2).) The set of measures itself is sometimes called a’s ‘‘representor’’ (van

Fraassen 1990). The sets-of-measures model has no expressive difficulty in the

sporting examples. In the first scenario, where I am confident that the teams are

evenly matched, my representor contains only measures P such that

PðA winsÞ ¼ 0:5. In the second scenario, where I have no relevant information,

my representor contains, for every r 2 ½0; 1�, a measure P such that PðA winsÞ ¼ r.

In the first case I have an ‘‘extremely definite belief’’ (Joyce 2010) that

PðA winsÞ ¼ 0:5, and I am right to. In the second I have no definite belief about

the value of PðA winsÞ, and I am right not to.

Despite this apparent success, some important objections have been made to the

use of sets of measures as a formalization of credal imprecision. One is that it is
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difficult to frame a plausible decision theory using sets of probability measures.

Elga (2010), in particular, canvasses a number of options and shows that each makes

pathological predictions in certain cases; see also White (2010). A second kind of

objection involves examples where imprecise models seem to predict, rather oddly,

that learning a proposition B can lead to a loss of information about a different

proposition A, even in some cases when B is intuitively irrelevant to A.5 These

particular objections are two of many, and they are still a matter of active

controversy in the epistemological literature. I don’t want to take a stand on whether

they are decisive, but I do think they give plenty of reason to look for an alternative

model of credal imprecision that fits naturally with well-understood, well-behaved

Bayesian models of learning and decision. First I will discuss a third puzzle that also

introduces some of the motivation for the hierarchical alternative.

The most troubling objection to sets-of-measures models of credence, to my

mind, is the observation that they ‘‘preclude[] inductive learning in situations of

extreme ignorance’’ (Joyce 2010, p. 290; see also White 2010; Rinard 2013). For

example, consider a biased coin example analogous to scenario 2 above. Suppose I

am maximally uncertain about the bias p of a certain coin, which could in principle

be anywhere in [0, 1]. On any given toss, the probability of getting heads—

PðheadsÞ—is equal to p, which is a fixed fact about the world determined by the

coin’s objective properties. My uncertainty about PðheadsÞ reduces to uncertainty

about the value of p.

If we represent my credences with a single probability measure, we would model

the scenario by placing a prior distribution on p—say, a Beta distribution. If I

wanted to be maximally noncommittal, I might use a Betað1; 1Þ distribution, which

puts equal prior probability on every bias p 2 ½0; 1� (see Fig. 1, left). Given this

model, conditioning on n heads and m tails yields a Betað1 þ n; 1 þ mÞ posterior.6

So, for example, if I had a maximally noncommittal Betað1; 1Þ prior, after observing

150 heads in 300 tosses my beliefs about the bias p would be updated to a

Betað151; 151Þ distribution. This prior-to-posterior mapping is pictured in Fig. 1.

The quite reasonable prediction is that, after observing 150/300 heads, I can be quite

confident that the coin’s bias p is close to 0.5—even if I was maximally

noncommittal about p to begin with.

Not so in the sets-of-measures model with the standard update rule of pointwise

conditioning (e.g., Levi 1974; van Fraassen 1990; Grove and Halpern 1998). This

rule maps any set of measures P and evidence E to the set

fPð� j EÞ j P 2 P ^ PðEÞ[ 0g, filtering out measures that cannot be conditioned

on E because they assign it probability 0, and conditioning the rest on E. Since I

have no idea about the probability of heads to begin with, my initial representor P0

should contain, for every r 2 ½0; 1�, a credence function P such that PðheadsÞ ¼ r.

5 This is called ‘‘probabilistic dilation’’: see Seidenfeld and Wasserman (1993), van Fraassen (2006) and

White (2010). While this feature of sets-of-measures models is intuitively bizarre, Pedersen and Wheeler

(2014) discuss important subtleties that may help to improve its plausibility.
6 In general, conditioning a Betaða; bÞ prior on n heads/successes/wins and m tails/failures/losses yields a

Betaðaþ n; bþ mÞ posterior: see e.g. Griffiths et al. (2008) and Hoff (2009).
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For example, P0 might contain, for every possible Beta prior, a measure that

encodes a binomial model with that prior.

P0 ¼ fP j PðpÞ�Betaða; bÞ; 8a; b 2 ½0;1Þg

(Using only Beta priors is a significant restriction relative to Joyce’s (2005, 2010)

philosophical desiderata, but using the full range of possible distributions on p
would only make the problem worse.) Now, suppose I observe 150/300 heads and

update P0 to P1 by pointwise conditionalization, discarding measures that assign

probability 0 to the observations and so cannot generate the sequence. In this case,

the latter condition requires us to discard any Beta prior with a 0 in either position,

which could only generate ‘‘all heads’’ or ‘‘all tails’’ sequences. All other measures

in P0 assign positive probability to the observed sequence of 150 heads and 150

tails, and survive in conditionalized form as Betaðaþ 150; bþ 150Þ measures:

P1 ¼ fP j PðpÞ�Betaðaþ 150; bþ 150Þ; 8a; b 2 ð0;1Þg
¼ fP j PðpÞ�Betaða0; b0Þ; 8a0; b0 2 ð150;1Þg

When we look at a few of these distributions, it is clear that something has gone

wrong. Alongside reasonable-ish posteriors like Betað160; 200Þ [so PðheadsÞ � :44]

and Betað200; 160Þ [so PðheadsÞ � :56], the posterior belief state contains a

Betað150:1; 1014Þ posterior [where PðheadsÞ\10�10] and a Betað1014; 150:1Þ pos-

terior, where PðheadsÞ is indistinguishable from 1. This is truly remarkable, since

the probability that we would have seen 150 or more heads in 300 if PðheadsÞ ¼
10�10 is around 10�87—but this failure of prediction is not taken into account in

update by pointwise conditioning. In fact, for every r in the open interval (0, 1),

there is a measure in P1 such that PðheadsÞ ¼ r. As far as the spread of probabilities

for heads is concerned, all that we have gained from our observations is to contract

the interval [0, 1] to (0, 1), ensuring that both heads and tails are possible outcomes.

We have learned nothing else about the probability of heads.

In reality, a sequence of 150 heads and 150 tails can and should teach us a lot,

even if we know nothing at all about the coin to begin. The coin is almost certainly
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Fig. 1 Prior-to-posterior mapping for an agent with precise credences and a Beta(1,1) prior, after
observing 150 heads/successes out of 300 trials. The dashed red line indicates the expected value of the
parameter p, which does not change with this evidence even though our uncertainty about the estimate
(i.e., the variance of p) decreases dramatically. (Color figure online)
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either fair or very close to fair. Inductive learning is possible from a starting point of

ignorance, and our theory of belief must make room for this fact.

Several responses are possible here. Most obviously, we could search for an

alternative to pointwise conditioning as an update rule. It is of course not possible to

rule out a priori the possibility that this search will be successful. However, the

candidates that I am aware of do not seem to offer promising solutions. For

example, Grove and Halpern (1998) canvas a number of alternative update rules for

sets of probabilities, all of which are weaker than pointwise conditioning. What we

need, though, is a stronger rule—one that allows us to privilege measures on which

the likelihood of the data is high over those on which it is very low. Another update

rule is proposed by Walley (1996), who describes a general method of updating sets

of probability measures using a model with a single free parameter. However, many

of the philosophical objections to the single-measure model apply equally to

Walley’s, and indeed many of the numerous commentaries on his article (collected

in the same issue of Journal of the Royal Statistical Society) note that his solution to

the problem of updating sets of measures is neither assumption-free nor uniquely

justified. If Walley’s approach is any guide, it seems that the search for a stronger

update rule for sets of measures might well locate something that works well enough

in practice. However, a solution along these lines would likely succeed precisely by

smuggling in additional assumptions that are not compatible with the philosophical

motivations for sets-of-measures models that Joyce and others have elaborated.

A second kind of response to the learning problem would be to rule out a priori

representors where PðheadsÞ may fall anywhere in [0, 1] or (0, 1). This would avoid

the narrow problem addressed here: if the representor contains only measures with

a\PðheadsÞ\b for some a[ 0 and/or b\1, pointwise conditioning will contract

the interval over which PðheadsÞ is distributed. However, this solution is sorely

lacking in conceptual and philosophical motivation. If the sets-of-measures model

of credal imprecision was motivated in the first place by considering justified belief

under ignorance, how can we justify dealing with theoretical problems by

pretending to know something that we don’t? Surely the fact that it is the only

way to generate plausible learning behavior is not sufficient motivation—unless we

already know for sure that the sets-of-measures model is the only game in town.

A third option, discussed with some sympathy by Joyce (2010), is to conclude

that it is in fact not possible to learn in a rational way from a starting point of total

ignorance. However, real people employ non-rational heuristics to help them get by

psychologically, such as restricting attention to measures that give high enough

probability to the observed evidence. The solution is, unfortunately, much worse

than the problem it is meant to solve. For each of my beliefs, there was presumably

some point at which I had no evidence relevant to this belief. Indeed we all began

life in a situation of extreme ignorance about most or all topics that are currently of

interest to our adult selves. On Joyce’s analysis, the only rational response to such a

lack of evidence is to adopt a representor that is maximally noncommittal regarding

every belief. But then it follows that none of our beliefs are rationally held, since

learning is impossible from a starting point of ignorance.

Another way to make the point is that Joyce’s argument for the sets-of-measures

model of credal imprecision, if taken seriously, implies that the only rational
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starting point of learning for a new lifeform is the set of all probability measures.

But my current credence state could not possibly have resulted by starting with the

set of all probability measures, and pointwise conditioning this set on my total

evidence. This set contains too many bizarre measures (for example, for each

possible world w it includes a measure that assigns probability 1 to fwg, so that no

non-trivial conditionalization is possible). This observation is closely related to

something that psychologists, statisticians, and machine learning researchers have

been reminding us for many years: assumption-free learning is simply not possible

(e.g., Wolpert 1996). In the probabilistic case, this means that we have no choice but

to start the learning process with a non-trivial prior distribution. The need for

inductive biases to get learning off the ground holds equally for other formats for

knowledge representation and learning, though. A recent machine learning text

states the problem pithily: ‘‘one cannot learn rules that generalize to unseen

examples without making assumptions about the mechanism generating the data’’

(Simeone 2017, p. 12). This is, of course, just Hume’s problem of induction in

another guise. The key question is whether it is better to adopt a purist model that

implies that rational belief is practically impossible, or a pragmatic model that

allows us to make some assumptions—perhaps not uniquely justified—to allow

learning to proceed. I will return to this issue briefly in Sect. 6 below, when

discussing the objection to single-measure models from the lack of uniquely

justified priors.7

My preferred response is to reject sets of probability measures as a model of

individual credence. To plump for this option, let me point out the key technical

difference between our single-measure and sets-of-measures models of the coin

with unknown bias: whether we placed a probability distribution on top of the set of

credence functions in P0. Sets-of-measures models decline to assign probabilities to

the elements of P0, leaving it as an unstructured set, or a ‘‘flat’’ representation of the

set of candidate data-generating models. If we did put a distribution on P0, we

would end up with a single-measure model with a hierarchical structure, as I will

describe in the next section. In this case, many kinds of (hyper-)priors on P0 would

yield plausible results with ordinary conditioning. We can see why this small

change makes a difference if we break down conditioning using Bayes’ rule. With a

distribution on the measures in P0, the posterior probability of each P 2 P0 would

be proportional to the product of the prior and the likelihood, where the latter is the

probability that we would have observed the data if P were the true distribution.

Conditioning re-ranks credence functions to take into account such facts—e.g., that

150/300 heads is moderately likely under a Betað160; 200Þ distribution, and

astronomically unlikely under a Betað150:1; 1014Þ distribution. In contrast, sets-of-

measures models do not represent information about the relative plausibility of the

7 A fourth way to deal with the inability of sets-of-measures models to allow serious learning from a

starting point of ignorance is suggested by Rinard (2013): we can conclude that a precise formal model of

belief states is not possible. This might well be correct, but it would be defeatist to draw this conclusion

simply because sets-of-measures models cannot account for simple cases of inductive learning. In

particular, the hierarchical approach that I will sketch momentarily gives us another reason not to

abandon hope for a formal model of belief.
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measures in the representor (a prior), and update by pointwise conditioning does not

take into account how well the measures in P0 fare in the goal of predicting the data

(a likelihood term). This is why sets-of-measures models fare so poorly when

confronted with simple examples of inductive learning.

In order to extract a plausible treatment of learning from information given by a

set of probability measures, we need to put a distribution on the measures

themselves so that we can (a) apply ordinary conditioning, and so (b) take into

account each measure’s ability to account for the data when reassessing its

plausibility in light of evidence. In other words, we need a prior on our priors, which

is the basic idea of hierarchical models.

4 Credal imprecision: a hierarchical model

This is, to be sure, a roundabout way of getting to a simple objection. We just don’t

need sets of measures to represent the difference between credal precision and

imprecision—between clear, definite probability assignments and assignments made

on the basis of weak and partial information. Arguments against single-measure

models based on a supposed failure to represent this distinction are misdirected,

because the distinction has an illuminating treatment with a well-developed and

strongly motivated class of single-measure models—those with an explicit

hierarchical structure.

Recall Joyce’s (2010, p. 285) objection to precise models quoted above: in a

situation of ignorance, it is not justifiable for you to have ‘‘extremely definite beliefs

...and very specific inductive policies’’, because ‘‘the evidence comes nowhere close

to warranting such beliefs and policies’’. Already in the coin-bias example, though,

this objection is partly misplaced.8 If your prior on the bias parameter p is a

Betað1; 1Þ distribution—see again Fig. 1, left panel—your belief is anything but

definite. It is true that p has a precise expected value 0.5, and also that your marginal

belief about PðheadsÞ is therefore 0.5. However, you are extremely uncertain about

both of these beliefs: depending on what evidence you receive, you could come to a

very definite conclusion that p and PðheadsÞ are both 0, both 1, or anywhere in

between. For example, after observing 0/300 heads, your posterior distribution on p
would be Betað1; 301Þ, with PðheadsÞ indistinguishable from 0. This would be an

‘‘extremely definite’’ opinion, with very low variance on the estimate of p—and a

definite opinion that is justified by the evidence. Similarly, after seeing 150/300

heads, you have a fairly definite opinion that p and PðheadsÞ are close to 0.5 (Fig. 1,

right). Even though the summary estimate PðheadsÞ ¼ 0:5 (Fig. 1, dashed line) does

not change from prior to posterior when you observe 150/300 heads, the transition

8 The part that still hits home is the accusation that precise credence models give rise to ‘‘very specific

inductive policies’’ which are not justified by evidence. This is closely related to the impossibility of

assumption-free learning noted above, as well as the question of whether and how rules like the Principle

of Indifference can be used to justify certain choices of priors. We will return to this issue in Sect. 6

below.

Representing credal imprecision: from sets of measures to... 1471

123



from the information state described by the left of Fig. 1 to the one on the right

clearly represents a significant change in your beliefs about PðheadsÞ.
More generally, I suggest—building on observations made in a somewhat

different context by de Finetti (1977) and Pearl (1988, p. 357ff.)—that many of the

intuitive arguments for sets-of-measures models discussed above can be accounted

for in a better-motivated way once we take into account the hierarchical structure of

belief. Our beliefs are interconnected, and probability estimates involving one

variable usually depend on uncertain beliefs about others. Uncertainty about one

variable—e.g., the bias p of a coin—may influence our uncertainty about a

probability estimate of interest—e.g., the probability that the coin will come up

heads on a given flip. Given the richness of our belief systems, there will usually be

many layers of uncertainty. Even though such a model will always yield a precise

numerical probability for any event of interest, this numerical value does not have

any special place in the model: it is just what you get when you marginalize over

your uncertainty about other relevant variables. In a hierarchical model, probability

estimates can vary enormously in how ‘‘definite’’ they are, and we have standard

tools for measuring the definiteness of an estimate—for example, its spread,

variance, and the width of its high confidence intervals.

Hierarchical models are used in many modern applications in psychology,

philosophy, artificial intelligence, and statistics. In these models, probabilities are

derived from graphs representing statistical or causal relations among variables,

together with the conditional distribution on each variable given its parents.

Uncertainty about one variable may influence the kind and degree of uncertainty in

the value of another. For simplicity I will focus on Bayesian networks (‘‘Bayes

nets’’), a simple propositional language for describing hierarchical models.9 I will

impose a causal interpretation on the Bayes nets described in this paper. While this

is not obligatory, it helps to gain intuitions about their meaning, and it is crucial to

their psychological motivation (e.g., Glymour 2001; Sloman 2005).

The sporting example that we began with allows us to illustrate Bayes nets and

their ability to represent credal precision and imprecision alike. Formally, a Bayes

net B consists of an event space (set of possible worlds) W together with:

1. A set of variables V 2 V, where each V is a partition of W. A cell is a ‘‘value’’

of V.

2. A set of arrows, i.e., an acyclic binary relation on V. The inclusion of an arrow

from Vi to Vj indicates that Vi is immediately causally relevant to Vj.

3. A set of conditional probability tables which assign a distribution PBðV j
ParentsðVÞÞ to each V 2 V, where ParentsðVÞ ¼ fV 0 j hV 0;Vi 2 Vg.

A probability measure P is compatible with Bayes net B if and only if P and PB

agree on all conditional probability assignments, and P satisfies the Markov

9 For discussion of richer languages based on probabilistic programming principles that can describe

hierarchical Bayesian models with uncertainty over individuals, properties, relations, etc., see for example

Milch et al. (2007) and Goodman et al. (2008, 2016), Tenenbaum et al. (2011), Goodman and Lassiter

(2015), Pfeffer (2016) and Icard (2017).
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condition: each V 2 V is independent in P of its nondescendents in B, given its

parents in B.

To situate the hierarchical modeling concept within our sporting examples,

consider: In case (2), when asked to reason about the competition between unknown

soccer teams A and B, did you really know nothing at all about these teams? I doubt

it. Most likely, you brought to bear on the problem a rich network of relevant

background knowledge. You knew that the outcomes of soccer matches are

determined largely by the performance of the teams; that teams are composed of

players who have different roles; that they have latent characteristics like skill and

consistency; that not all teams are equally skilled or consistent; and so forth. In

addition, your experience may have provided you with relevant population statistics

which can help you to make an informed guess about the distribution of these

characteristics among soccer teams, even without any specific knowledge of the

team. All of this background knowledge enabled you to make a reasonable guess

about how a randomly chosen team would perform, and what factors you should

attend to if you want to use observations to improve your forecast of a team’s

performance.

As a start in modeling the richer background knowledge that we implicitly bring

to bear on such problems, consider the simplified representation in Fig. 2.10 This

model represents two key features of teams that are relevant to their performance:

their skill and their consistency. Performance of team i is modeled as a Gaussian

(normal) distribution with parameters li (skill) and ri (consistency). As a result, the

team’s performance in any given competition is a noisy reflection of the team’s true

skill. Skill and consistency are, in turn, objects of uncertainty that we are trying to

estimate when observing the outcomes of competitions. This means that we must

place a prior on them as well. In a realistic model, these variables might be

connected to many further factors—e.g., the team’s composition, quality of

coaching, motivation, etc. To simplify the example, I will summarize all of these

sources of uncertainty with simple priors on the parameters: lA and lB are both

distributed as Nð0; 1Þ, and rA ¼ rB ¼ :1.

In this model PðA winsÞ is equal to Pðperf A [ perf BÞ—the probability that A’s

noisy performance exceeds B’s. Note that this model does not generate a single,

determinate prediction about A’s performance in any given match. Instead it

generates for each team a distribution over an infinite set of performance values

ð�1;1Þ. A few of these distributions are shown in the top left of Fig. 3. As a

result, the model encodes a distribution over an infinite set of values for PðA winsÞ,
which could be turn out to be anywhere in (0, 1) depending on subsequent

observations.

While the model does yield a precise best guess about the performance

difference—and so about PðA winsÞ—this guess has no special status in the model:

it is merely the result of marginalizing over our uncertainty about the parent

10 The model is directly inspired by the Microsoft Trueskill system that is used to rank Xbox Live players

in order to ensure engaging match-ups in online games: see Bishop (2013). It is conceptually close to the

more complex tug-of-war model, with quantification and inference over individuals and their properties

and relations, that is explored by Gerstenberg and Goodman (2012) and Goodman and Lassiter (2015).
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variables (skill and consistency). Indeed, two models that generate the same

probability estimate for this event—say, PðA winsÞ ¼ :5—may vary considerably

in how confident (‘‘precise’’, ‘‘definite’’, ‘‘determinate’’) the probability estimate is

(Fig. 3, bottom row). A key factor is, of course, how much evidence the estimate is

based on.

Consider our two leading examples again. In case (2), we ‘‘know nothing’’—i.e.,

only general domain knowledge is available. As a result, the variance of the

Fig. 2 Hierarchical model of a match between teams A and B
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estimated performance difference is high, and confidence in the estimate

PðA winsÞ ¼ :5 is low (Fig. 3, bottom left). In case (1), there is ample evidence

to indicate equal skill—many previous matches, with each team winning an equal

number. In this case, the variance of the estimated performance difference is low,

and confidence in the estimate PðA winsÞ ¼ :5 is high. The bottom right panel of

Fig. 3 shows the model’s predictions about PðperfA [ perf BÞ once we have

observed each team winning 15 of 30 matches. Here we can infer that the teams

have roughly equal skill, and that we should forecast roughly equal performance in

the next game: PðA winsÞ ¼ :5.

To summarize the point of this example, I can’t do better than to quote Judea

Pearl (1988, pp. 361–362):

[B]y specifying a causal model for predicting the outcome ...we automatically

specified the variance of that prediction. In other words, when humans encode

probabilistic knowledge as a causal model of interacting variables, they

automatically specify not only the marginal and joint distributions of the

variables in the system, but also a particular procedure by which each

marginal is to be computed, which in turn determines how these marginals

may vary in the future. It is this implicit dynamic that makes probabilistic

statements random events, admitting distributions, intervals, and other

confidence measures.

In a hierarchical model, statements about probabilities—say, ‘‘PðA winsÞ ¼ :5’’’—

are just marginals. They are themselves objects of uncertainty and inference, and are

sensitive to changes in our beliefs about other causally related variables. These

models directly falsify Joyce’s (2010, p. 283) claim that ‘‘[p]roponents of precise

models ...all agree that a rational believer must take a definite stand by having a

sharp degree of belief’’ in any proposition whatsoever. While Joyce is right that

taking a ‘‘definite stand’’ in case of ignorance is unreasonable, hierarchical models

allow us to encode an imprecise (� high-variance) probability estimate when this is

appropriate, and a precise (� low-variance) estimate when appropriate. Precise

probability estimates can be extracted from hierarchical models as desired, but these

models do not generally imply a ‘‘definite stand’’ on these estimates.

Bayes nets offer a precise credence model that represents the distinction between

credal precision and imprecision in a straightforward way. The need to represent

this distinction does not, therefore, give us a reason to abandon single-measure

models of belief in favor of a more complex representation that also introduces

difficult new problems involving learning and decision. The apparent problem with

precise models—that radically different credal states could generate the same

probability estimate PðA winsÞ ¼ :5—was not due to any expressive limitation.

Instead, the problem was generated by our habit as theorists of forgetting that these

numerical estimates give only a narrow window into the rich structure of a

probability distribution.
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5 Objections from behavioral limitations and psychological plausibility

Many authors have argued that the basic Bayesian model of belief is psycholog-

ically implausible. One argument along these lines is the claim, discussed in some

detail in the last section, that the model implies that agents maintain a ‘‘definite’’

real-valued credence for every proposition represented in their belief states (Joyce

2005, 2010). However, I showed in the last section that this objection does not

create problems for hierarchically structured Bayesian models. Beyond this, there

are quite a few distinct arguments that can be extracted from the literature, some of

which may still apply.

– (Self-report) When asked, agents often find it difficult or impossible to report a

real value representing their credence in a proposition.

– (Betting) Agents are not always able to assign fair betting odds, or to assess the

relative desirability of a range of bets. In addition, their betting behavior is

sometimes inconsistent with the basic Bayesian model together with a standard

decision theory.

– (Completeness) Single-measure representations imply ‘‘a certain superhuman

completeness’’ of belief (Jeffrey 1983, p. 137), in that the question whether A is

more likely than B for some agent a should always have a determinate answer.

In reality, though, we frequently find ourselves unable to compare the likelihood

of two options (e.g., Keynes 1921).

5.1 Self-report

The argument from self-report is fairly common in the literature. For instance, van

Fraassen (2006, p. 403) writes:

Our subjective probabilities are not usually very precise. Rain does seem more

likely to me than not, but does it seem more than p times as likely as not? That

may not be an answerable question.

Hájek and Smithson (2012) expand on the ‘‘answerable’’ part of this reasoning:

What is your degree of belief that the Democrats will win the next presidential

election in the USA? If you report a sharp number, we will question you

further. For example, if you report a credence of 0.6, we will ask whether you

really mean 0.6000, sharp to infinitely many decimal places. If you are

anything like us, your credence is sharp only up to one or two decimal places.

And in that case, you are not an ideal Bayesian agent. For such an agent

assigns perfectly sharp credences to all propositions.

The issue of whether a question is answerable should not, of course, be confused

with the question of whether a question has a determinate answer. In the case at

hand, it is easy to think of reasons why an agent would be unable to answer such

questions even if they had perfectly precise credences. For example, there is much

evidence that introspective access to our cognitive states is quite limited in many
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domains (e.g., Nisbett and Wilson 1977; Wilson 2004). Given this, the series of

questions that Hájek and Smithson (2012) suggest posing to their subjects is

unlikely to be illuminating about the cognitive state that they are probing. The mere

fact that people are often unable to answer questions about some hypothetical

feature of their mental states does not imply that the feature in question does not

exist. Indeed, this point is made very aptly by Levi (1985)—no friend of the basic

Bayesian model—in the course of making the crucial distinction between

imperfectly introspected and genuinely indeterminate credences.

As an analogy, suppose that someone were to claim that the highly precise

quantitative models employed in psychophysics can be shown on philosophical

grounds to be psychologically implausible. The evidence that our theorist offers in

support of this surprising claim is the observation that people are unable to give

precise quantitative answers—or, more likely, any answer at all—to verbal queries

about their absolute and relative perceptual discrimination thresholds. This

argument would be impossible to take seriously: neither an ordinary participant

nor a highly trained psychophysicist could answer such questions on the basis of

introspection. Instead, the answers emerge after experimental testing and interpre-

tation of the results against a substantial background of psychological theory and

statistical analysis. Similarly, I would expect that van Fraassen’s question ‘‘Is rain

more then p times as likely as not, according to your credence state?’’ could be

answered only against a background of extensive (self-)experimentation, combined

with sophisticated psychological theorizing about the way that responses to the

questions employed reflect the various mental states and processes involved in their

generation.

Similarly, it is a truism in linguistics that ordinary people have no conscious

access to features of the grammar of their language. We implicitly command

complex grammatical structures, but cannot answer even simple questions—‘‘How

many relative clauses in your last utterance?’’—without substantial linguistic

training. Few theorists would take this obvious point to count against the

psychological reality of relative clauses. Yet analogous reasoning about our ability

to self-report credences has been given significant weight in the literature.

I see no reason to think that our introspective access to features of our credence

states should be of a different character from our introspective access to features of

our perceptual or grammatical mechanisms. Given this, our ability or lack of ability

to report features of these mechanisms or to make overt judgments about them

cannot be used as evidence. The argument from self-report would go through only if

we were to adopt a thesis about the transparency of our mental lives that is known to

be empirically false.

5.2 Betting

A related argument against single-measure models, focusing on betting behavior, is

given by Joyce (2010, pp. 282–283):

As many commentators have observed ..., numerically sharp degrees of belief

are psychologically unrealistic. It is rare, outside casinos, to find opinions that
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are anywhere near definite or univocal enough to admit of quantification. An

agent with a precise credence for, say, the proposition that it will rain in

Detroit next July 4th should be able to assign an exact ‘‘fair price’’ to a wager

that pays $100 if the proposition is true and costs $50 if it is false. The best

most people can do, however, is to specify some vague range.

The mistake in this argument is very close to the mistake in arguments from self-

report. Why should an agent with a precise credence in A be able to assign a precise

fair value to some wager on A? This would follow only if we assume that the agent

has perfect introspective access to her own subjective probability in A, and the

ability to use this information to assign fair prices to the wager in question without

noise or error. Neither of these assumptions is especially psychologically plausible.

There is a straightforward explanation of why someone with a precise probability in

A might not be able to do better than (say) ‘‘somewhere between $80 and $100’’

here: she may not have explicit knowledge of her credence in A, and may also not

know how to translate her imperfect self-knowledge into a fair bet. None of this

impugns the theory that she has a perfectly precise probability for A, and a well-

functioning set of decision-making mechanisms. All that it entails is that she has

limited conscious access to features of her credences and decision-making

mechanisms, of the kind that would be required to formulate verbal responses to

such questions. While explicit verbal responses are not necessarily unilluminating,

they are handled with considerable care in psychological work on decision-making,

and expected-value assignments that are implicit in action choice are generally

thought to provide stronger evidence for or against a theory of decision (see, for

example, Körding and Wolpert 2004; Trommershäuser et al. 2008).

Ellsberg cases (Ellsberg 1961) provide a more convincing betting argument

against single-measure models (cf. Levi 1985). While hierarchical models do not

have any difficulty in representing the distinction between known and unknown

probabilities, as I emphasized above, they do not offer any straightforward

explanation of the Ellsberg cases if we utilize a standard decision theory. On the

other hand, some theorists have suggested that sets-of-measures models can be

supplemented with a decision theory that can make sense of the patterns of

preference in Ellsberg cases (see Bradley 2014 for discussion). However, the details

of a plausible decision theory with sets of measures are far from clear, with many

extant options being subject to clear counter-examples (Elga 2010). In addition,

some theorists continue to question whether the Ellsberg cases are actually

problematic for single-measure models with a standard decision theory (Al-Najjar

and Weinstein 2009). The upshot of the Ellsberg cases for the debate at hand is

correspondingly unclear. However, framing a decision theory that is able to cope

with them is a significant outstanding challenge for the hierarchical approach and

the sets-of-measures approach alike.

5.3 Completeness

A third kind of common objection is exemplified by Jeffrey’s (1983, p. 137) claim

that the basic Bayesian model requires ‘‘a certain superhuman completeness’’. This
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objection goes back at least to Keynes (1921), and it can be interpreted in either of

two ways, one less troubling and one more so. The less troubling reading is closely

related to the objections just canvassed: people are not always able to render a

confident judgment about whether they find some event A more likely than event

B. This is true, but not necessarily very revealing. Here again, without making

strong assumptions about our introspective access to features of our cognitive states,

we cannot draw strong conclusions about the structure of the underlying states from

such a failure of self-report.

However, there is a related but more complex argument that has more bite. The

issue is not just that we don’t always know whether we find A more likely than

B. Rather, the issue is that the situations in which we are hesitant about making such

a judgment seem to be precisely the situations in which we are in a state of credal

imprecision, in the sense that there are many assignments of probability that seem

plausible. While both the hierarchical model and the sets-of-measures model have

the resources to model credal imprecision, at first blush it seems that only the sets-

of-measures model gives us an obvious explanation for the correlation between

credal imprecision and incompleteness. As I will argue, though, the hierarchical

approach actually does better here as well.

Consider, for example, the soccer examples that we began with. Under credal

precision, with much evidence of evenly matched teams, we might answer the

question ‘‘Is A more likely to win than B is?’’ with a confident ‘‘No: they are equally

likely to win’’. Under credal imprecision, with no specific evidence about either

team, we would, I take it, rather be inclined to answer ‘‘I don’t know’’. The sets-of-

measures model can explain this difference by adding a simple supervaluationist

response rule: answer ‘‘yes’’ or ‘‘no’’ only if all measures in your representor agree

on that response. Otherwise, answer ‘‘I don’t know’’. This accounts for the

correlation immediately. In a state of credal precision, all of the measures in our

representor have P(A wins) = P(B wins) = .5, and so they all agree on a ‘‘No’’

answer to the question of whether A is more likely to win than B is. Under credal

imprecision, some of the measures in our representor answer ‘‘Yes’’, and some

answer ‘‘No’’. Since they disagree, the appropriate answer is ‘‘I don’t know’’. By

enriching the sets-of-measures theory with this modest linking hypothesis tying the

theory to behavioral data, we have a neat explanation of why credal imprecision

should lead to uncertainty about the comparative probability of events.

While this looks like a success for the sets-of-measures model, a similar—but

more general and independently motivated—account is available within the

hierarchical model. The key is Pearl’s (1988) insight, quoted above, that

hierarchical models allow us to treat estimates of probabilities as being themselves

random variables, with variance properties, etc. In the model described above, the

distribution on likely performance values for unknown teams A and B was given by

two identical Gaussian distributions, which themselves reflected uncertainty about

the upstream variables skill and consistency. As a result, PðA winsÞ and PðB winsÞ
are themselves associated with identical distributions.

Compare this situation to an experimental scenario where we are asked to make a

comparative judgment that does not involve probabilities directly—say, which of

two stimuli is louder or brighter, which of two bowls of water is hotter, which of two
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cities is larger, which of two items is more expensive, etc. This is an unusual

experiment, though, where we don’t get to perceive the items compared directly,

and indeed we don’t have any information about the items except that they both

come from the same class. (Note that the experiment is meant to be precisely

analogous to soccer example (2), where we have no information about the teams.)

For example, we have just been asked to guess which of two cities is larger, and all

we know about them is that they are in Germany, and that one has been labeled

‘‘City A’’ and the other ‘‘City B’’. The appropriate answer to the question ‘‘Is City A

larger than City B?’’ would presumably be ‘‘I don’t know’’. In contrast, if we were

in a situation where we had estimates of A’s and B’s sizes that were sufficiently

differentiated—without yet being certain—a ‘‘yes’’ or ‘‘no’’ answer would be

appropriate. In other words, this scenario displays the same kind of correlation

between likely response patterns and confidence in our estimate of a random

variable that we are trying to account for in the probability-comparison case.

But note that the supervaluationist linking theory that served the sets-of-measures

model so well in the probability-comparison example does not help us to understand

why the same kind of correlation exists here. Both kinds of uncertainty models

being compared here would treat our uncertainty about the sizes of Cities A and B

as a distribution over degrees of size, and not as a flat set of options to which a

supervaluation rule could be applied. Given this, we are dealing with a classic signal

detection problem (Macmillan and Creelman 2005), where the signal in question is

a mental variable—our probabilistic estimates of the sizes of two cities. Accounting

for the hypothetical response pattern described above would require us to frame a

linking hypothesis to behavioral data that fits the following (non-exhaustive) set of

rough rules:

– If the distributions Pðsize of AÞ and Pðsize of BÞ are identical as in Problem 1

in Fig. 4, or very close to identical, then answer ‘‘I don’t know’’.

– If the distribution Pðsize of BÞ is clearly separated from and probabilistically

greater than the distribution Pðsize of AÞ, as in Problem 3 in Fig. 4, then answer

‘‘B is larger’’.

– ...
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Fig. 4 Three detection problems involving comparing the sizes of two cities on the basis of probabilistic
estimates of the true values. Discrimination is impossible in problem 1, difficult in problem 2, and easy in
problem 3
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For intermediate cases like Problem 2 in Fig. 4 we need a more complex linking

theory. People might, for example, make their best guess in a probabilistic way, or

hedge, or say ‘‘I don’t know’’ depending on their level of risk-aversion and other

factors. While the resulting theory will be quite complex, this is presumably what is

needed in a general theory of how people make such judgments under uncertainty.

Framing a precise quantitative theory of discrimination is no trivial task, but it is

obviously necessary independent of the concerns of this paper. With such a theory

in hand, though, the hierarchical theory is able to explain the correlation between

credal imprecision and refusal to render a probability judgment. Situations of

extreme credal imprecision are precisely analogous to Problem 1 in Fig. 4, where

the discrimination task that the participant is being asked to perform is impossible

because they have no information that would allow them to distinguish the two

distributions. The right response is thus ‘‘I don’t know’’, exactly as in the case of

judging the relative sizes of two unknown German cities.

While the problem of accounting for incomplete comparative probability

judgments seemed at first to be a strong argument in favor of the sets-of-measures

model, I suggest that it actually provides a further argument in favor of the

hierarchical approach. In order to account for response behavior, the sets-of-

measures theorist is forced to posit an ad hoc response rule that applies only to

comparative probability judgments. In contrast, hierarchical models can account for

failures of comparative judgment without any special-purpose machinery, appealing

only to the general theory that is needed to explain how people make comparative

judgments in general in (for example) signal detection tasks. This is a desirable

theoretical unification that is made possible by the fact that probability estimates can

be treated as random variables in hierarchical models.

6 Objections from the need for arbitrary priors

This section turns to a final objection to single-measure models, argued eloquently

by Joyce (2005, 2010). Earlier I quoted Joyce’s primary objections to single-

measure models: in a state of credal imprecision, one should not have any particular

precise credence because one has no justification for such ‘‘extremely definite

beliefs ...and very specific inductive policies’’. Simply put, ‘‘the evidence comes

nowhere close to warranting such beliefs and policies’’ (Joyce 2010, p. 285).

In Sect. 4 I argued that Joyce’s first objection is misplaced: the most successful

way of spelling out single-measure Bayesian models, using hierarchical structures,

does not generally give rise to the kinds of ‘‘extremely definite’’ beliefs that Joyce

finds objectionable. However, I did not address the equally important objection from

‘‘specific inductive policies’’. In brief, this objection involves the fact that our

evidence typically underdetermines what a rational prior would be for a single-

measure model. If there were a uniquely rational prior, then it would encode a

specific policy for updating our evidence via conditionalization given any incoming

stream of evidence—thus, ‘‘inductive policies’’. If this objection is compelling, it

does problematize hierarchical Bayesian models. However, I will argue that the use
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of ‘‘arbitrary’’ priors, even if rationally objectionable, is far better than the

alternative.

While Joyce focuses his discussion of this point on his rejection of the Principle

of Indifference (e.g., Jaynes 2003), he rightly points out that it applies to any single-

measure model. For the sake of argument, I will simply grant that the Principle of

Indifference is unworkable. I will also grant, more generally, that there is no general

principle that determines, given a body of evidence, a unique rational credence

distribution. (I am making these concessions simply because, if they are not true,

then the issues discussed in this section do not arise.)

Let’s return briefly to the discussion of learning in Sect. 3 above. Recall that a

sets-of-measures model—at least, one spelled out according to Joyce’s desiderata—

is unable to treat simple examples of inductive learning. As we discussed, the reason

relates to the familiar point that learning is impossible without inductive biases.

From this perspective, Joyce’s objection can be reframed along the following lines:

in any non-trivial probability model, there will always be an infinite number of

distinct probability distributions P. Each P is a candidate prior for a Lewisian

superbaby—a distribution that a Bayesian agent could have in advance of observing

any evidence. But, having no evidence to work with, a superbaby could not even in

principle choose among this infinite set of distributions on the basis of evidence.

Unfortunately, this is what Joyce’s strictures demand: inductive policies are

rationally required to be chosen on the basis of evidence. So, a Bayesian agent is

condemned either to be rational, but unable to learn—or irrational, but able to learn

from experience and navigate the world.

If an agent chooses the pragmatic option of functional irrationality, she

overcomes the learning paradox by adopting inductive biases. While these are not

warranted by evidence per se, this does not mean that they are necessarily arbitrary.

Humans have a long evolutionary history that has presumably led to sharp

constraints on the kinds of candidate priors that are available in the development of

a normal infant. Evolutionary pressure presumably leaves many options still on the

table, though. Is it necessary to have a rational justification for choosing among

them? Why would it be? Evolution tends to create bodies and brains that are

designed to get the job done. They may not be the best possible bodies and brains

for some purpose, and they are sharply constrained by evolutionary history,

environmental factors, physical laws, and the workings of chance. However, they

are good enough to allow organisms to survive and reproduce, at least often enough.

Our minds presumably work this way as well.

To the extent that a broadly Bayesian perspective on belief and learning is

psychologically plausible at all, we have every reason to expect that our

evolutionary history would have enabled us to make arbitrary but useful choices

among priors. Imagine yourself as a Bayesian superbaby surveying a range of

candidate priors that are all equally (un)attractive. If you choose one arbitrarily, you

can proceed to learn and pursue your goals. If, like Buridan’s ass, you refuse—citing

the lack of a rational justification for any particular choice—you will be unable to

learn and navigate the world, and your genes will quickly disappear from the gene

pool. When the alternative to choosing arbitrarily is guaranteed failure, making an

arbitrary choice is the only rational choice.
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7 Conclusion

Representations of credal imprecision in terms of sets of probability measures have

considerable intuitive and philosophical appeal. However, they encounter severe

problems as a representation of individual-level uncertainty, particularly in the

limits that they place on learning from a starting point of ignorance. I argued that a

hierarchical picture of belief states gives us a better model of learning while also

accounting for many of the puzzles that have motivated the rejection of the basic

Bayesian (single-measure) model of credence states. In particular, hierarchical

models already account for the distinction between credal precision and imprecision

that been used to motivate sets-of-measures models, and they excel at tasks where

sets-of-measures models fail: explaining our ability to learn rapidly from limited

data and form abstract generalizations. Hierarchical models have access to an

independently motivated account of incomplete probability judgments based on

models of discrimination from psychophysics. I discussed this along with several

other objections that I argued are not real problems, or that (in the case of the

Ellsberg cases) problematize both theories equally.

Nothing in this conclusion should be taken as an argument against the use of

representations involving sets of probability measures for representing group belief,

conversational common ground, in robust Bayesian analysis in statistics, as

interesting objects of mathematical study in their own right, and so forth. The

conclusions of this paper are directed only at the use of sets of measures to model

individuals’ psychological states.
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