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Abstract According to a widespread view in metaphysics and philosophy of sci-

ence (the ‘‘Dependence Thesis’’), all explanations involve relations of ontic

dependence between the items appearing in the explanandum and the items

appearing in the explanans. I argue that a family of mathematical cases, which I call

‘‘viewing-as explanations’’, are incompatible with the Dependence Thesis. These

cases, I claim, feature genuine explanations that aren’t supported by ontic depen-

dence relations. Hence the thesis isn’t true in general. The first part of the paper

defends this claim and discusses its significance. The second part of the paper

considers whether viewing-as explanations occur in the empirical sciences, focusing

on the case of so-called fictional models (such as Bohr’s model of the atom). It’s

sometimes suggested that fictional models can be explanatory even though they fail

to represent actual worldly dependence relations. Whether or not such models

explain, I suggest, depends on whether we think scientific explanations necessarily

give information relevant to intervention and control. Finally, I argue that coun-

terfactual approaches to explanation also have trouble accommodating viewing-as

cases.
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This paper is about a certain mathematical phenomenon, and its implications for a

widely held view about the metaphysics of explanation. I’ll say more about the

mathematical phenomenon shortly. The widely held view is this:

Dependence Thesis: All explanations reflect relations of ontic dependence

between the items appearing in the explanandum and the

items appearing in the explanans.

I plan to argue that a family of mathematical cases, which I’ll call ‘‘viewing-as

explanations’’, are incompatible with the Dependence Thesis. These cases, I claim,

feature genuine explanations that aren’t supported by ontic dependence relations.

Hence the Dependence Thesis—which has achieved something approaching

consensus status in metaphysics, philosophy of science and elsewhere—is not true

in general.

The paper is organized as follows. Section 1 briefly describes the tension

between Dependence and viewing-as explanations, and Sect. 2 presents some

further examples from the mathematical literature. Section 3 looks more closely at

the Dependence Thesis, the challenge posed by the mathematical cases, and several

possible responses to the challenge. Section 4 considers whether viewing-as

explanations are possible in the empirical sciences, focusing on the case of so-called

fictional models. Section 5 briefly argues that the counterfactual approach to

explanation also has trouble accommodating view-as cases. Finally, I offer some

concluding remarks in Sect. 6.

1 Setting up the problem

It may seem strange to turn to pure mathematics for insights about explanation,

since the literature is mostly populated with examples from metaphysics and

empirical science. This is beginning to change; for instance, Lange (2016) and

Reutlinger and Saatsi (2018) are recent high-profile works that engage extensively

with noncausal explanations, in mathematics and elsewhere. But there’s more

progress to be made on this front, and ‘‘intramathematical’’ explanation in particular

deserves more attention than it gets.1 I hope this paper will help show that

mathematics and the mainstream explanation debate have plenty to say to one

another.

Here, then, is an example of my target phenomenon. Suppose you want to show

that the sum of the first n odd natural numbers is n2. One approach is to use

mathematical induction: clearly the statement is true for n ¼ 1, and applying the

induction hypothesis gives

1 Recent works on the subject include Steiner (1978), Resnik and Kushner (1987), Detlefsen (1988),

Sandborg (1998), Hafner and Mancosu (2005), Harari (2008), Mancosu (2008), Lange (2014), Pincock

(2015), D’Alessandro (2017) and Lange (2017).
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Xnþ1

k¼1

2k � 1ð Þ ¼
Xn

k¼1

2k � 1ð Þ þ 2 nþ 1ð Þ � 1

¼ n2 þ 2nþ 1

¼ nþ 1ð Þ2;

as needed.

This gets the job done, logically speaking; the proof is certainly sound. But it

seems not to explain the result. The fact that we can shuffle 1s and 2s and ns around

until they assume the right form gives no clue about why sums of odd numbers

might have anything to do with perfect squares. (Indeed, in the view of some

mathematicians and philosophers, inductive arguments like this one are generally

unexplanatory; cf. Lange 2009.)

Here’s a different sort of proof, the key idea of which is to view numbers as

arrangements of dots. Start with 1, the first odd number, which can be regarded as a

square array of side 1 (and hence of area 12). The second odd number is 3, and we

can think of adding 3 to 1 as augmenting the original square array so as to make a

new one of side 2 (and hence of area 22). Similarly, adding 5 to 1 þ 3 gives a square

array of side 3, and so on, as in the diagram.

It’s easy to see that the pattern will hold in general—for any n� 1; the sum of the

first n� 1 odd numbers corresponds to a square array of side n� 1 and area

n� 1ð Þ2
, and adding the next odd number can be viewed as augmenting this array to

produce a new one of side n and area n2. Hence the diagram shows that the sum of

the first n odd natural numbers is n2. What’s more, this sort of proof is plausibly
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explanatory.2 It shows that a fact about natural numbers—namely, the fact thatPn
k¼1 2k � 1ð Þ ¼ n2—is explained by a fact about arrangements of dots—namely,

the fact that certain augmentations of square arrays are themselves square arrays of

the appropriate size. Call this case NUMBERS-DOTS.

NUMBERS-DOTS illustrates a common practice. Often, and for a variety of reasons,

mathematicians view one mathematical object as another. Viewing-as frequently

has explanatory benefits, as in the above case: by viewing numbers as arrangements

of dots, we’re put in a position to explain why the sum of the first n odd numbers is

n2. And this identity seemed hard to account for otherwise.

It’s not hard to see why some viewing-as explanations might seem to conflict with

the Dependence Thesis. After all, Dependence says that explanatory relationships are

always grounded in ontic dependence relations between the relevant entities. But

viewing-as explanations need not satisfy this condition. Numbers, after all, evidently

aren’t arrays of dots, nor are they composed of them, constituted by them or causally

influenced by them. The two classes of object are similar in certain ways, but mere

similarity is neither a form of dependence nor an explanation-backing relation. So it’s

hard to see how to reconcile Dependence with cases like NUMBERS-DOTS. (Of course, it

remains to be shown that this tension is actually insoluble. There may be some other,

less obvious form of dependence at work in such cases. Or perhaps there’s some way of

analyzing the cases that removes the appearance of conflict. These possibilities will be

discussed at length in Sect. 3 below.)

Philosophers have yet to look carefully at viewing-as and its role in explanation,

but the phenomenon hasn’t gone entirely unnoticed. Indeed, it appears already in

Mark Steiner’s landmark 1978 paper, which kicked off the recent literature on

explanation in mathematics. Steiner mentions ‘‘Hardy’s explanation of the lawless

behavior of a certain numerical function [obtained] by regarding it, a la Ramanujan,

as a ‘snapshot’ at each n of the resultant of infinitely many sine waves of

incompatible periods and decreasing amplitudes’’ (Steiner 1978, 148). (Unfortu-

nately Steiner doesn’t discuss this case, or the general phenomenon, in detail.)

Questions about the metaphysical underpinnings of mathematical explanation

aren’t limited to cases of viewing-as, of course. What it takes for one piece of

mathematics to explain another remains a difficult open question. But it’s worth

noting that many kinds of mathematical explanation seem compatible with

Dependence. Consider the following, for instance.

1. It’s often claimed that some mathematical properties are relatively natural or

fundamental while others are relatively unnatural or derivative.3 Assuming this

is true, there’s plausibly an asymmetrical dependence of some less natural

2 Gullberg (1997) gives a similar dot-diagram proof that the sum of the first n natural numbers is

n nþ 1ð Þ=2, and claims that ‘‘the figure shows why’’ the identity holds (289). Hanna (1990) contrasts the

inductive proof of this identity with the dot-diagram proof, claiming that the latter but not the former is

explanatory (10–11). Steiner (1978) makes the same comparison with the same conclusion (136–137).

See chapter 8 of Giaquinto (2007) for a discussion of the epistemology of dot-diagram arguments,

including a thorough defense of the claim that the images used in such arguments count as genuine

proofs.
3 See for instance Maddy (2000), Corfield (2005), Tappenden (2008) and Lange (2015).
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properties on more natural ones. For instance, the graph of a quadratic

polynomial f xð Þ crosses the x-axis twice just in case f xð Þ has two distinct real

zeroes. But the latter property is arguably more fundamental than the former; it

seems correct to say that the graph of f xð Þ crosses the x-axis twice because f xð Þ
has two real zeroes, but wrong to attribute the existence of the zeroes to the

behavior of the graph.4

2. Many philosophers hold that sets depend ontologically on their members.5 As

£ystein Linnebo writes: ‘‘According to the prevailing iterative conception, sets

are ‘formed from’ their elements. The relation between a set and its elements is

thus asymmetric, because the elements must be ‘available’ before the set can be

formed, whereas the set need not be, and indeed cannot be, ‘available’ before its

elements are formed. A set thus appears to depend on its elements in a way in

which the elements do not depend on the set’’ (Linnebo 2008, 72). The same

presumably goes for at least some other set-theoretic structures.

3. It might also be, as some proponents of structuralism think,6 that the reverse

pattern of dependence sometimes holds—i.e., that some mathematical objects

depend on the structures to which they belong. Consider abstract groups, for

instance, whose elements have no determinate properties except those imposed

on them by the group multiplication table. Since the elements can’t be

characterized or identified independently of the group, it’s plausible that the

former depend ontologically on the latter. (Cf. Linnebo 2008, Section VI.)

4. Some mathematical explanations that don’t involve set membership may

nevertheless feature other ‘‘composition’’- or ‘‘building’’-style relations.7 For

instance, we can often explain properties of natural numbers in terms of

properties of their prime factors, and this is plausibly because numbers are in

some sense ‘‘composed of primes’’. [As the mathematician Jordan Ellenberg

writes, ‘‘primes are the atoms of number theory, the basic indivisible entities of

which all numbers are made’’ (Ellenberg 2014, 139)]. Similar building-like

relations might be thought to hold between a finite group and its simple

composition factors, a polynomial and its irreducible factors, and likewise for

any object that admits factorization (especially when the factors are unique).

5. Chris Pincock has proposed ‘‘a new kind of dependence relation that can obtain

in the absence of any essential composition relation’’ (Pincock 2015, 11), which

he calls ‘‘abstract dependence’’. Abstract dependence is closely related to

instancehood. Roughly, an object X abstractly depends on an object Y just in

case X is an instance of Y, and Y is in fact the least abstract object having X as an

instance (in the sense that there’s no intermediate object Z such that X is an

4 A more sophisticated example: in a discussion of the Hadwiger conjecture in graph theory, Paul

Seymour says that ‘‘the real reason’’ why a given graph is 4-colorable may be that it contains no K5 minor

(Seymour 2016, 418). This suggests that the latter property is more fundamental, and that it provides the

metaphysical ground for 4-colorability.
5 E.g. Fine (1995), and many of the subsequent contributors to the literature on metaphysical grounding.
6 E.g. Resnik (1981) and Shapiro (1997).
7 The notion of building is Karen Bennett’s; cf. Bennett (2017). For more on the relationship between set

membership and other kinds of composition, see Fine (2010).
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instance of Z and Z is an instance of Y). Pincock argues that some mathematical

explanations are backed by abstract dependence relations. For instance, he

thinks polynomial equations metaphysically depend on their Galois groups,

which is why facts about groups can explain facts about the solvability of

equations. [‘‘What makes a given polynomial equation solvable, we should say,

is that its Galois group is solvable’’ (Pincock 2015, 11).]

Each of these cases, it seems, involves ontological dependence of a type that’s

suitable for underwriting explanations.8 So it’s far from true that mathematical

explanations in general are incompatible with the Dependence Thesis. If there are

mathematical counterexamples to the thesis, as I plan to argue, then the existence of

such cases is interesting and non-obvious.

The next section presents several cases of this sort. Before moving on, however,

let me fix some terminology. When an object X is being viewed as an object Y, I’ll

refer to X as the source object and to Y as the target object. Also, following standard

mathematical practice, I’ll use the phrases ‘‘view X as Y’’, ‘‘regard X as Y’’, ‘‘think

of X as Y’’, and ‘‘interpret X as Y’’ interchangeably. It’s worth noting, however,that

‘‘seeing X as Y’’ traditionally has a different, distinctively perceptual meaning. The

classic case of seeing-as, or ‘‘aspect perception’’, is Wittgenstein’s duck-rabbit9, and

the literature on this phenomenon has centered on questions of attention, perceptual

content and the like.10 Although seeing-as and viewing-as are similar in some

respects, and although seeing-as has its place in mathematical cognition11, I take the

two phenomena to be importantly distinct. (For instance, viewing-as sometimes

involves perception or visualization, but it needn’t do so in general.) I intend to

focus on viewing-as here.

There’s a great deal to be said about the nature of viewing-as and its role in

mathematical practice. Unfortunately I can’t say much about these broader issues

here. For readers wondering how the viewing-as phenomenon fits into mainstream

cognitive theory, however, it’s perhaps worth mentioning that the notion of frames

offers a promising starting point.12 In particular, viewing an object X as an object

8 I don’t mean to take a stand on the genuineness of each of these purported dependence relations, or on

the significance of the associated forms of mathematical explanation. My point here is just that many

cases of mathematical explanation are plausibly underwritten by one or another type of metaphysical

dependence.
9 See Part II, Section xi of Wittgenstein (2009).
10 For recent work on seeing-as, see for instance Day and Krebs (2010), Kemp and Mras (2016) and

Beaney et al. (2018). Although the usage I’ve mentioned is standard, seeing-as is sometimes taken to

encompass non-perceptual ‘‘perspectival’’ phenomena like metaphor, as in Camp (2008).
11 See for instance Coliva (2012) on the role of seeing-as in reasoning with Euclidean diagrams, and

Floyd (2010) on Wittgenstein’s ideas about seeing-as in logic, probability and other mathematical

subjects.
12 The notion of frame has a long history in psychology and the social sciences, the general idea being

that of an interpretative system that structures thought, perception or communication in some domain.

Earlier research on frames focused mostly on their (often negative) effects in the social, political and

economic spheres. The phenomena at issue include stereotypes (cf. Herald 2010), ‘‘spin’’ in politics and

journalism (cf. Entman 2007), psychological effects involving people’s (often seemingly irrational)

sensitivity to differing descriptions of a decision problem (cf. Tversky and Kahneman 1981), and the like.
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Y is something very much like adopting Y as a frame for thinking about X. This sort

of cognition is useful in mathematics, as in science, because frames often structure

thought in beneficial ways—by imposing useful taxonomies, raising important facts

to salience, introducing comparisons whose consequences can be pursued in fruitful

directions, and so on. For more on the varieties of frames deployed in scientific

inquiry and the cognitive benefits they confer, see Elisabeth Camp’s enlightening

recent work (Camp forthcoming).

2 Viewing-as explanations: some cases

At the outset of the paper, I presented a case in which viewing one thing (numbers)

as another (arrays of dots) led to an explanatory insight (about why the sum of the

first n odd numbers is n2). That case is typical of the kind of explanation I want to

discuss. But further examples will, I hope, help make the phenomenon more vivid.

So I’ll present some additional cases, again drawn from the mathematical literature,

that exemplify the link between viewing-as and explanation.

Consider first an example discussed by Timothy Gowers, concerning a famous

identity due to Euler:

X1

n¼1

1

n2
¼ 1 þ 1

4
þ 1

9
þ 1

16
þ � � � ¼ p2

6
:

As Gowers notes, this looks mysterious at first: ‘‘What on earth, one might

wonder, has p to do with adding up reciprocals of squares? This is a perfectly

legitimate question’’ (Gowers 2008, 261). He then shows how to answer the

question using ideas from Fourier analysis, in the following way. First, given a

periodic function f : R ! C with period 2p, define the nth Fourier coefficient of f—

denoted an—by the formula

an :¼
1

2p

Z p

�p
f xð Þeinxdx:

Then the theorem known as Plancherel’s identity describes the sum of the squared

moduli of the Fourier coefficients:

1

2p

Z p

�p
f xð Þj j2dx ¼

X1

n¼�1
anj j2:

Now let f be the function such that f xð Þ ¼ 1 when 2n� 1
2

� �
p� x� 2nþ 1

2

� �
p for

some integer n, and f xð Þ ¼ 0 otherwise. (Note that f has period 2p.) Combining

Plancherel’s identity with some calculation and manipulation, we get the formula
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p2

8
¼1 þ 1

32
þ 1

52
þ 1

72
þ � � �

¼
X1

n¼1

1

n2
�
X1

n¼1

1

2nð Þ2

¼ 3

4

X1

n¼1

1

n2
:

Finally, multiplying both sides by 4
3

gives the original statement,
P1

n¼1
1
n2 ¼ p2

6
. After

going through this argument, Gowers writes:

Now we have a reason for the appearance of p: it comes up in the formula for

the Fourier coefficients. What is more, its appearance there can be explained

as well. A periodic function on R is more naturally thought of as a function

defined on the unit circle. The Fourier coefficient an is a certain average

defined on the unit circle, so we have to divide by the length of the circle,

which is 2p. (262)

Gowers’ reasoning, then, seems to be as follows. We wanted to know at first why p

shows up in the identity
P1

n¼1
1
n2 ¼ p2

6
. This turns out to involve a result from Fourier

analysis: namely, the fact that Plancherel’s theorem applied to a certain periodic

function f gives a closely related identity involving p and reciprocals of squares.

What’s more, we can explain why p appears here by viewing f as a function g

defined on the unit circle, and noting that the Fourier coefficients are a type of

average involving the values of g. Since taking this average involves dividing by the

circumference of the circle, the appearance of p is no surprise.

This looks like a case where viewing-as makes a crucial contribution to a

mathematical explanation. The function f is defined to have domain R and range C,

and it’s not obvious what p has to do with averaging a function like that. It’s only

when we regard f as a quite different object—the function g defined on the unit

circle—that we find the explanation we were after.

A second example comes from Laptev and Rozenfel’d’s account of develop-

ments in nineteenth-century geometry. The relevant passage occurs during a

discussion of Lobachevky’s discovery of hyperbolic geometry, and in particular the

efforts by him and others to prove its consistency. Lobachevsky himself was only

partially successful at this. But later authors, notably Poincaré and Minkowski,

discovered an interpretation of the hyperbolic plane that not only showed it to be

consistent, but also explained certain similarities between hyperbolic and spherical

geometry. As Laptev and Rozenfel’d write:

[T]he geometry of the hyperbolic plane [with Gaussian curvature � 1
q2] can be

realized on a sphere of imaginary radius qi in a subspace of complex space,

whose points have rectangular x- and y-coordinates that are real

x ¼ �x; y ¼ �yð Þ, and z-coordinates that are purely imaginary z ¼ ��zð Þ. This

subspace can be regarded as a real affine space in which the distance d
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between the points with rectangular coordinates x1, y1, z1 and x2, y2, z2 is

defined by the formula

d2 ¼ x2 � x1ð Þ2þ y2 � y1ð Þ2þ z2 � z1ð Þ2:

...The sphere of radius qi in this space has the form of a hyperboloid of two

sheets (the geometry of the hyperbolic plane is realized on each nappe of such a

hyperboloid...)...This interpretation, which demonstrates vividly the consistency

of Lobachevskii’s planimetry, explains why the formulas of hyperbolic

trigonometry can be obtained from those of spherical trigonometry by replacing

the radius of the sphere by qi. (Laptev and Rozenfel’d 1996, 64)

The formulas referred to here include the law of cosines and the law of sines, which

in spherical geometry take the forms

cos
a

r
¼ cos

b

r
cos

c

r
þ sin

b

r
sin

c

r
cosA;

sinA

sin a=rð Þ ¼
sinB

sin b=rð Þ ¼
sinC

sin c=rð Þ

(where a, b, c are the side lengths of a triangle, A is the angle opposite a, and r is the

radius of the sphere). Lobachevky of course noticed the resemblance between the

spherical and hyperbolic formulas, but he lacked the resources to completely

understand it—doing so requires Poncelet’s later idea of enriching Euclidean space

with imaginary points. In the resulting ‘‘pseudo-Euclidean space’’, the notion of a

sphere of radius qi makes sense, and one can view the hyperbolic plane as a

hemisphere of such a ‘‘pseudosphere’’ (which is realized as a sheet or ‘‘nappe’’ of a

hyperboloid). This relationship holds because a sphere of radius r has Gaussian

curvature 1
r2, whereas a hyperbolic plane has negative Gaussian curvature, so a

sphere of imaginary radius corresponds to a hyperbolic surface. Thinking of the

hyperbolic plane in this way, then, lets us explain the peculiar form taken by the

laws of hyperbolic trigonometry.

Third and finally, here’s a case in which visualization plays a key role, from Marc

Konvisser’s linear algebra textbook. The problem Konvisser starts with is that of

finding the solutions to polynomial equations of the form xn � 1 ¼ 0. For values of

n less than 5, the solutions can be found by relatively simple algebraic methods

(e.g., factoring or applying the quadratic formula). After displaying these solutions,

Konvisser writes:

We have now found all the roots for all equations of the form 0 ¼ xn � 1 for

n ¼ 1; 2; 3, and 4. However, this has given us little insight into how to find the

solutions of such equations for n� 5. To see what is happening, we view

complex numbers as vectors. (Konvisser 1986, 25)

Konvisser then explains how addition and multiplication of complex numbers are to

be understood on this interpretation, noting in particular that multiplying a complex

number by i corresponds to rotating the associated vector counterclockwise by an

angle of p=2. He continues:
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Now let us see how this interpretation of multiplication by i as rotation by p=2

can help us solve our original problem of finding the roots of equations of the

form 0 ¼ xn � 1...In order to find complex numbers that satisfy the equation

zn ¼ 1, let us see if we can find complex numbers z so that multiplication by z

represents a rotation of 1 / n way around, that is, a rotation of 2p=n. (29)

Some simple trigonometry leads to the desired general result: ‘‘Let

z ¼ cos hþ i sin h. Multiplication by z represents a counterclockwise rotation by

the angle h’’ (31). This essentially solves the original problem. We wanted to find

the solutions to xn � 1 ¼ 0, i.e. the complex numbers z corresponding to rotations of

2p=n. By the previous proposition, one such solution is

z ¼ cos 2p=nð Þ þ i sin 2p=nð Þ. In fact, z is a ‘‘primitive nth root of unity’’, and the

remaining roots are the powers z2; z3; . . .; zn�1.

Clearly this is a case where viewing one kind of thing (complex numbers) as

another (vectors in the plane) yields a satisfying solution to a problem about the

original objects. Although Konvisser doesn’t explicitly frame the situation in terms

of explanation, he does point out the lack of insight afforded by the naı̈ve algebraic

approach, and he says that viewing complex numbers as vectors allows us to better

‘‘see what is happening’’ with respect to the roots of xn � 1. I think these remarks

are plausibly understood as claims about the relative explanatoriness of the viewing-

as strategy. In particular, I take it that facts about 1 / nth rotation vectors explain

why the solutions to xn � 1 ¼ 0 have the form that they do.

It wouldn’t be hard to add further examples to this list, and no doubt doing so

would paint a richer picture. But hopefully the cases discussed so far are enough to

give a good idea of the phenomenon. The next section looks more closely at the

conflict between viewing-as explanations and the Dependence Thesis.

3 Viewing-as, explanation and dependence

The Dependence Thesis, recall, is the following claim:

Dependence Thesis: All explanations reflect relations of ontic dependence

between the items appearing in the explanandum and the

items appearing in the explanans.

This idea is at least partly descended from Wesley Salmon’s program in philosophy

of science, which insisted on the centrality of causal relations to explanation.13 But

Dependence is now widely accepted in metaphysics and elsewhere (usually with the

understanding that non-causal grounding relations are also fair game). Here’s a

sample, by no means exhaustive, of recent endorsements of Dependence-like

claims:14

13 See Salmon (1984) for an early articulation of Salmon’s ‘‘ontic conception’’. Salmon (1989) describes

how the ontic conception emerged from dissatisfaction with Hempel’s deductive-nomological theory.
14 It may be reasonable to read some of these authors as implicitly talking only about certain kinds of

explanation (although I don’t think that’s the case across the board). Even though the conclusion of this

paper may not directly contradict those authors’ views, it should put pressure on them to clarify what we
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• ‘‘Explanations work only in virtue of the determinative relations that exist in the

world. ...[W]e explain something by showing what makes it or what is

responsible for it’’ (Ruben 1990, 231).

• ‘‘My main proposal...is this: explanations track dependence relations. The

relation that ‘grounds’ the relation between an explanans, G, and its explanatory

conclusion, E, is that of dependence; namely, G is an explanans of E just in case

e, the event being explained, depends on g, the event invoked’’ (Kim 1994, 68).

• ‘‘[A]n explanation, when successful, captures or represents...an underlying real-

world relation of dependence of some sort which obtains among the phenomena

cited in the explanation in question’’ (Koslicki 2012, 212, quoted in Pincock

2015, 7).

• ‘‘[E]xplanations correctly identify features of the ontic structures that produce,

underlie, or [are] otherwise responsible for the explanandum phenomenon’’

(Craver 2014, 39).

• ‘‘Explanations provide information about relations of ontic dependence, causal

and non-causal’’ (Povich 2016, 14).

• ‘‘I offer a speculation: the relations that back explanation are the relations of

directed dependency’’ (Schaffer 2016, 83).

As I’ve suggested, there’s an apparent conflict between the Dependence Thesis and

viewing-as explanations like those discussed above. That’s because there generally

aren’t any obvious dependence relations between the source and target objects in

such cases.

Of course we shouldn’t expect mathematical explanations to involve causal

dependence relations. But neither do the viewing-as cases feature familiar

metaphysical relations like composition, constitution or realization. Sums of odd

numbers aren’t comprised of arrays of dots in any sense, nor is ‘‘array of dots’’ a

functional role that numbers could realize. On the whole, there seems to be no sense

in which dot arrays ‘‘make’’ or are ‘‘responsible for’’ numbers or their properties.

Nevertheless, the viewing-as cases seem to involve genuine explanatory connec-

tions between the source and target objects. What conclusions should we draw from

this?

There are, it seems, four main views one might take. The first possibility is that

the viewing-as cases don’t really involve genuine explanations, so they aren’t

counterexamples to the Dependence Thesis. The second and third possibilities hold

that the cases do involve explanation, but they do so in ways that don’t threaten

Dependence. According to the second option, the explanantia in such cases are

something other than the target objects. So the lack of determination relations

between the sources and targets is no problem for Dependence. According to the

third option, it’s indeed true that facts about the target objects explain facts about

the source objects—however, there are also appropriate dependence relations

between the target and source, and hence the Dependence Thesis is borne out.

Footnote 14 continued

can and can’t expect from their version of Dependence. (Thanks to an anonymous referee for prompting

me to make this clearer.)
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Finally, the fourth possibility is that the cases are genuine counterexamples, and so

Dependence is false.

Below I’ll explain what I take to be the problems with the first three responses.

Each of these views could, of course, be discussed at great length, and I don’t claim

to settle the issue once and for all. But I hope to show that it’s at best unclear how to

maintain Dependence in the face of the above cases.

3.1 The first possibility: denying explanatoriness

The first approach to saving the Dependence Thesis is to deny that the viewing-as

cases really involve explanation. One can imagine this stance emanating either from

skepticism about mathematical explanation in general, or from worries about these

cases in particular. I don’t intend to say much about the first possibility—although a

very few voices of doubt have been raised about the existence of mathematical

explanations (notably Zelcer 2013), the arguments offered on this score have been

unconvincing, and at any rate I think the last fifteen years of research have shown

that there’s a phenomenon here worth theorizing about.15 As for the second

possibility, it’s not clear what features of the above examples would mark them as

especially problematic. There’s nothing, after all, to suggest that explanation-talk is

being used lightly or figuratively in the relevant passages. And in the absence of

such warning signs, I think philosophers should default to taking mathematicians’

accounts of their practice seriously, especially when those accounts fall into a

coherent pattern indicative of a widely shared standard. So, at least pending further

argument, this line of thought doesn’t look promising.

A different version of this strategy is to accept mathematicians’ judgments about

the viewing-as cases, but to insist at the same time that mathematical explanations

are essentially different from explanations in the standard sense. One could then

interpret the Dependence Thesis as only applying to (ordinary) explanations, so that

it can’t possibly be falsified by mathematical examples.

The problem with taking this line is that it’s quite ad hoc. There’s no independent

reason to think that mathematical explanations aren’t explanations in the usual

sense. Cases from mathematics may be distinctive in certain ways, but they’re not so

bizarre and aberrant that they demand metaphysical quarantine. (On the contrary,

recent work in philosophy of science suggests that mathematical and scientific

explanations often aren’t so different at all; cf. Lange 2016.) Nor is there any

evidence that mathematicians generally mean to use explanation-language in a

punning, metaphorical or otherwise nonstandard way. So I don’t think the

15 See Weber and Frans (2017) for a reply to Zelcer.
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Dependence issue can be solved by denying the relevance of mathematical

examples.

3.2 The second possibility: relocating the explanantia

The second argument in defense of the Dependence Thesis rests on the claim that,

although the viewing-as cases really do involve explanations of facts about the

source objects, the explanantia in these cases are something other than the target

objects. In order to preserve Dependence, of course, the true explanantia will have

to be things that do bear determination relations to the source objects.

What might these be? One option is that it’s the proofs figuring in these cases that

ultimately explain, and also metaphysically ground or determine, the relevant facts

about the source objects. This view has a certain weight of tradition behind it:

starting with Mark Steiner’s work in the 1970s, there’s been a tendency to think (or

at least assume) that all cases of mathematical explanation involve explanatory

proofs in some essential way. If that were true, then this strategy would have some

degree of initial plausibility. As D’Alessandro (2018) argues, however, such ‘‘proof

chauvinist’’ assumptions are dubious—there seem to be many perfectly good cases

of mathematical explanation in which proofs play no important role. So there’s no a

priori reason to expect they’ll solve the dependence problem.

What’s more, there’s good reason to think that proofs can’t play this role. The

hypothesis gets the direction of dependence wrong, for one. Surely it’s mathematical

objects and properties that are metaphysically fundamental, and representations of

those objects and properties, like proofs, that are derivative. The idea that proofs

‘‘make’’ or are ‘‘responsible for’’ facts about mathematical objects is about as plausible

as the claim that quarks are made or determined by papers in physics journals.

In any case, there’s an alternative way to spell out the second argument. Perhaps

the explanantia in the viewing-as cases are really facts about the source objects

themselves. On this picture, facts about the target objects don’t directly contribute

anything to the relevant explanations. They may serve some sort of purpose—

making an explanation more obvious, or easier to state, or something like that—but

they aren’t essential. In principle, we could give more or less the same explanation

without mentioning the target objects at all. Since there’s no mystery about how

some properties of an object can be determined by other properties of the very same

object, this scenario appears to be consistent with the Dependence Thesis.

The problem with this story is that it’s not at all clear how to subtract the target

objects from the explanations in the above cases. In what sense could one possibly

give ‘‘the same’’ explanation of why the sum of the first n odd numbers is n2 without

talking about arrays of dots (or whatever)?16 This hardly seems possible, since a key

component of the explanans is the fact that certain transformations of square arrays

of side n yield square arrays of side nþ 1. Similarly, how might we follow Gowers

in explaining the appearance of p in the Euler identity without mentioning functions

16 Obviously there’s nothing special about dots in particular—we could just as well use arrays of stars or

triangles, say. What’s essential to the explanation is the configuration of the arrays, not the identities of

the individual elements.
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defined on the circle, when it’s precisely the idea of averaging over such a function

that brings p into the picture? In these and the other examples, the target objects

seem not to function as convenient-but-dispensable accessories. Rather, it looks like

the explanations in these cases depend in a constitutive and direct way on facts

about the target objects.

3.3 The third possibility: identifying dependence relations

Finally, consider the third strategy for defending the Dependence Thesis. This line

of thought admits that facts about the target objects explain facts about the source

objects, but also insists that the former bear appropriate determinative relations to

the latter, as required by Dependence. Since these cases don’t feature any familiar

forms of causal or metaphysical dependence, of course, the proponent of the third

strategy will have to explain which relations she has in mind.

The recent literature contains a couple of proposals along these lines. Pincock

(2015), for instance, argues that some proofs are explanatory because the objects

appearing in the proofs stand in a particular metaphysical relation to the objects

appearing in the associated theorems. Pincock calls this relation ‘‘abstract

dependence’’. (This notion was briefly mentioned in Sect. 1.)

Pincock’s main motivating example is the relationship between polynomial

equations and their Galois groups, as described by Galois theory. It’s long been

known that a given polynomial equation is ‘‘solvable in radicals’’—i.e., that there

exists a formula expressing the equation’s solutions in terms of its coefficients, basic

arithmetical operations and nth roots—just in case the polynomial’s Galois group

has a certain algebraic property, also known as ‘‘solvability’’. There’s also

widespread agreement that this is a case of mathematical explanation: the Galois-

theoretic criterion explains why certain equations (but not others) are solvable in

radicals. Why should this be? Pincock suggests that ‘‘what makes a given

polynomial equation solvable...is that its Galois group is solvable’’ (11). That is, we

have an explanatory relation in this case because the explanandum-objects

abstractly depend on the explanans-objects.

Pincock doesn’t claim that all cases of mathematical explanation, or even any

particular class of cases, involve abstract dependence. So whether or not the

viewing-as cases are examples of this type isn’t diagnostic of the rightness or

wrongness of Pincock’s view. But it’s worth asking whether abstract dependence

might be the sort of determination relation that the Dependence theorist is looking

for.

So what, then, is abstract dependence? The details of Pincock’s account are

somewhat involved, but what matters most for our purposes is that an object X

abstractly depends on an object Y only if Y is more abstract than X. Relative

abstractness, in turn, is analyzed in terms of instancehood, in roughly the type-token

sense. For example, the word-type cat has particular token inscriptions of the word

‘cat’ as instances. So the word-type is more abstract than the word-token, on

Pincock’s view. Similarly, the ‘‘concrete’’ group 0; 1f g;þð Þ is an instance of the

‘‘abstract’’ cyclic group C2. So abstract groups (in particular, the Galois groups of

polynomials) count as more abstract than concrete groups (in particular, the
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automorphism groups of extensions of C associated with these polynomials).

Relative abstractness is only a necessary condition for abstract dependence—a

further requirement is Y’s being the least more abstract object than X. But it’s

enough for our purposes to ask whether the viewing-as cases satisfy even the

relative abstractness condition.

It’s clear that the answer is no. None of the cases discussed above involve anything

like a type-token relation between the source and target objects—numbers aren’t

instances of dot arrays, nor are functions R ! C instances of functions defined on the

circle, nor is the hyperbolic plane an instance of the hemisphere of a pseudosphere, nor

are complex numbers instances of vectors. So Pincock’s abstract dependence isn’t a

candidate for the dependence relation that holds between the objects in these cases.

Another view that links mathematical explanation to metaphysics can be found in

Lange (2015) [see also chapter 9 of Lange (2016)]. Here Lange compares two types

of proofs of Desargues’ theorem on intersection points: one type which takes place

in the setting of classical Euclidean geometry, and which takes the form of ‘‘a

motley collection of special cases’’ (Lange 2015, 438), and another type which

achieves a unified treatment using methods from projective geometry. According to

Lange and other commentators, only the second sort of proof is explanatory. Lange

presents a theory to account for this—a version of the ‘‘explanation as coincidence

elimination’’ approach he employs elsewhere—and he also uses the case to motivate

some metaphysical conclusions. It’s the latter that I want to consider here.

According to Lange, the fact that projective points can be used to explain

theorems of ordinary Euclidean geometry entails that there must be some

ontological connection between the two. In particular, such an explanatory

relationship can obtain only if projective objects ‘‘exist in’’ Euclidean geometry.

Lange summarizes this argument as follows:

P1: Certain facts about points at infinity explain certain facts about Euclidean

points, lines and planes. [...]

P2: What explains a fact about some entities must be on an ontological par

with those entities. (Roughly: only facts about what exists can explain facts

about what exists.)

C: Points at infinity exist in Euclidean geometry. (Lange 2015, 461)

What does it mean for a mathematical object to ‘‘exist in’’ a particular mathematical

domain? Lange doesn’t say much about this, as he seems not to have a settled view.

Indeed, he leaves open some fairly radical possibilities, including the view that

‘‘what it is for points at infinity to exist in Euclidean geometry is for them to play an

explanatory role there’’ (462). I take it that traditional approaches to ontology regard

existence as decidedly different from, and more fundamental than, explanation. So

this type of view would involve major revisions to standard metaphysics.

For this reason, it may be worth considering a more conservative interpretation of

Lange’s proposal. (I don’t claim that Lange would or should endorse this

interpretation. The view to be described strikes me as a straightforward way of

reading his remarks, and as an idea that may have some independent interest. But I’m

not suggesting that this is the best Lange could do.) The idea is this. Mathematical

objects are divided metaphysically into various collections—let’s call them
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‘‘domains’’—such that facts aboutX can explain facts about Y only ifX and Y belong to

the same domain. (Perhaps an object can belong to more than one domain, so we won’t

assume that this division is a partition.) ‘‘X exists inD’’ and ‘‘X is on an ontological par

with Y’’ are then domain-theoretic statements: the first names a domain that X belongs

to, and the second says that X and Y belong to some common domain. This proposal

may not give defenders of the Dependence Thesis everything they need, but it gives at

least a necessary metaphysical condition on facts about X explaining facts about Y.

I have three comments about this interpretation of ‘‘existing-in’’. First, the

domains it posits probably won’t look much like the familiar classifications of

mathematical objects (since there’s so much ‘‘impure’’ mathematical explanation

cutting across traditional subject boundaries,17 and there probably won’t be more

than a few distinct domains (for the same reason). So it’s unclear how interesting the

resulting metaphysical structure will be. Second, even if the proposal is correct, it

still gives us little insight into the nature of the dependence relation we were looking

for. After all, the claim that X and Y belong to the same domain doesn’t tell us

anything about whether X-facts explain Y-facts, or vice versa, or both, or neither. In

particular, belonging to the same domain isn’t sufficient for instantiating relations of

explanation or dependence. (Presumably the integers 33 and - 2,766,018 belong to

the same domain, but I doubt that either one determines or explains anything about

the other.) Finally, the proposal raises some awkward metaphysical questions. Why

should there be domains of this sort in the first place? In virtue of what does a

particular mathematical object belong or not belong to a particular domain? It would

be mysterious if the existence and composition of domains were brute ontological

facts, but it’s also unclear what other facts we could appeal to for an explanation. I

conclude that this way of developing Lange’s suggestion is neither very appealing

nor, even if true, likely to be of much use in defending the Dependence Thesis.

So where does the third strategy stand? The idea, again, was to identify a

determinative metaphysical relation between the source and target objects in the

viewing-as cases discussed above. We saw previously that none of the familiar

grounding relations is a good candidate. And I’ve just now argued that Pincock’s

abstract dependence and Lange’s ‘‘coexistence’’ proposal don’t seem obviously

helpful either. (Again, this isn’t a criticism of either author, since neither set out to

deal with this particular issue.) Of course, it’s possible that nobody has discovered

the true relation yet. But I don’t see much reason to hold out hope. There simply

doesn’t seem to be any interesting metaphysical theme running through the relevant

cases. (What do the pairs (numbers, dot arrays), (hyperbolic planes, hemispheres of

pseudospheres), and (periodic functions R ! C, functions defined on the unit

circle) have in common, metaphysically speaking?)

I conclude that the Dependence Thesis is, at best, a troubled and unpromising

claim about the metaphysics of explanation. Perhaps one of the above responses

could be developed more successfully. But until someone shows how, the likeliest

bet is that the viewing-as cases are genuine counterexamples.

17 As Lange notes himself: ‘‘a proof’s explanatory power is distinct from its ‘purity’ in the rough sense of

its making use of no concepts foreign to the concepts in the theorem being proved’’ (Lange 2016, 292).
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4 Fictional models as viewing-as explanations

An important issue raised by the argument I’ve just given is whether there are

legitimate viewing-as explanations in the sciences and elsewhere. If not, then this

difference needs to be accounted for somehow—why should a certain style of

explanation be permissible in one realm but not others? On the other hand, if

scientists do accept viewing-as explanations, how does this acceptance square with

the widespread endorsement of the Dependence Thesis in the philosophy of

science?

Perhaps the most natural way to approach this question is through the lens of

models. After all, thinking about a scientific entity or phenomenon in terms of a

model is in many ways akin to viewing one mathematical entity as another. Both

practices involve the use of one object (or system of objects) as lens through which

to examine, represent and understand another object of interest. (As Elisabeth Camp

claims, ‘‘we can illuminate the utility and effects of at least many models by treating

them as frames’’ (Camp forthcoming, 15); I’ve suggested that viewing-as involves

the same sort of frame-mediated cognition). So questions about viewing-as

explanations in science are at least closely related to questions about the

explanatoriness of (some kinds of) scientific models.

As for whether models explain, an emerging consensus holds that they can, at

least in certain cases. Some kinds of model are claimed to be explanatory because

they represent the actual causes or mechanisms responsible for the phenomena in

question (cf. Craver 2006). This sort of model-explanation is obviously compatible

with the Dependence Thesis. Other models are thought to explain by identifying

various kinds of noncausal dependence relations. For instance, (Saatsi and Pexton

2013) claims that the model of Brown, Enquist and West gives a (plausible)

geometric explanation of Kleiber’s allometric scaling law: ‘‘The model seems to

explain by virtue of...[showing] how the scaling exponent counterfactually varies

with the dimensionality of organisms. But this explanatory modal information is not

easily construed as causal dependence’’ (620).18 Dependence theorists should have

no problem with these cases either, since they still involve familiar metaphysical

grounding relations.

If Dependence is true, then we should expect all explanatory models to belong to

one of these two general types. This is the view espoused by Povich (2016), who

writes that ‘‘[models] are explanatory because they accurately represent the relevant

dependence relations, that is, the objective features of the world on which the

explanandum phenomenon counterfactually depends’’ (4).19 However, explanatory

power has sometimes been claimed for other, less Dependence-friendly kinds of

models. For instance, Alisa Bokulich has recently argued that some ‘‘fictional

models’’ are explanatory, although such models fail to represent the actual world

18 See also Berger (1998) for an early account of a geometric-style modeling explanation, and Rice

(2015) for a discussion of noncausal ‘‘optimality explanations’’.
19 Povich is talking specifically about the ‘‘minimal models’’ of Batterman and Rice (2014) here, but the

rest of the paper makes it clear that the thesis applies to all models, and indeed to scientific explanations

in general.
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even in an approximate or idealized way. According to Bokulich, a fictional model

‘‘explains the explanandum by showing that the counterfactual structure of the

model is isomorphic (in the relevant respects) to the counterfactual structure of the

phenomenon’’ (Bokulich 2011, 43). [This view is further developed in Bokulich

(2012, 2016, 2018).]20

Take Bohr’s model of the atom. Although the Bohr model with its classical-style

electron orbits fundamentally misrepresents reality, Bokulich thinks the model

nevertheless explains the spectrum of the hydrogen atom. This is because there’s ‘‘a

pattern of counterfactual dependence of the emission spectrum of hydrogen on the

elements represented in Bohr’s model’’ (43).21 The similar counterfactual structures

of Bohr’s model and of actual atoms clearly aren’t grounded in any objective

worldly dependence. In no sense do the orbits represented by the Bohr model cause,

or make, or otherwise metaphysically determine the spectrum of hydrogen (or other

features of atoms)—plainly they can’t, since nothing like Bohr’s orbits exists in

reality. The most that can be said is that ‘‘Bohr’s model is able to correctly answer a

number of ‘what-if-things-had-been-different questions,’ such as how the spectrum

would change if the orbits were elliptical rather than circular...This shows that

Bohr’s model is not simply an ad hoc fitting of the model to the empirical data, as

would be the case in a merely phenomenological model’’ (43).

Is Bokulich right that fictional models can genuinely explain, or must all

explanatory scientific models obey Dependence, as Povich suggests? I won’t try to

settle this question here, but I think either alternative is broadly compatible with my

proposal about viewing-as.

On the one hand, if models like Bohr’s are explanatory, then the scientific and

mathematical realms are alike in allowing viewing-as explanations that aren’t

backed by dependence relations.22 This would make the phenomenon I’ve described

20 Bokulich is the only author I’m aware of who explicitly rejects Dependence for reasons similar to the

ones I’ve presented. Whether her ‘‘eikonic’’ conception of explanation is a satisfactory alternative is

another question. I have doubts about this, but I can’t pursue the issue here.
21 I find this claim a little puzzling, since it’s unclear to me in what sense the spectrum of hydrogen

counterfactually depends on the features represented by the Bohr model. Taken at face value, the claim

seems false, since the key elements represented by the model don’t even exist. Perhaps what Bokulich

means is that, if the model had been an accurate representation of atomic structure, then the spectrum

would have counterfactually depended on the properties of electron orbits and the like. This is true, but of

course we can say the same about any model of anything—if the phenomenon in question had been like

the model, then the properties of the phenomenon would have depended on the properties of the elements

represented in the model. So this can’t be a way to identify explanatory models in particular.

Alternatively, Bokulich might mean that if the model were different, then this would have been because

the relevant observational data (including the spectrum of hydrogen) had been different—i.e., Bohr

wouldn’t have proposed the model if it hadn’t been empirically adequate. But this is a ‘‘backtracking’’

interpretation of the counterfactual and hence can’t be used to determine counterfactual dependence. (Cf.

Lewis 1973.) Perhaps the likeliest story is that Bokulich’s official view is given by the earlier statement

about ‘‘isomorphic counterfactual structures’’, and the current claim is an accidental misstatement.
22 Bokulich attributes this explanatoriness to similarity of counterfactual structure, but I’m inclined to

think that counterfactual similarity by itself doesn’t amount to very much if it fails to yield any epistemic

or cognitive benefits. A sketch of an argument: Suppose we want to study a complex phenomenon P, and

we propose to do so by modeling P with a model M. As it turns out, M and P have similar counterfactual

structures in certain respects. But M is extremely complex itself—it’s so hard to work with that it leads to
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in this paper seem less peculiarly parochial. On the other hand, there’s a sense in

which Povich is justified in wanting to exclude viewing-as explanations that violate

Dependence. After all, one of the distinctive goals of scientific explanation is

gaining control over the explanandum phenomenon, or at least knowing what such

control would require and to what extent it’s possible in principle. (This is the main

idea behind mechanism-based theories of scientific explanation.) While viewing-as

explanations may improve understanding, reduce surprise, and confer other

cognitive benefits, they conspicuously fail to tell us how to manipulate, control or

intervene.

This package of features is no problem in the mathematical setting, since control

and intervention are nonissues. But it gives scientists good reason to be dubious.

Indeed, since viewing-as explanations are unable to perform one of the core

functions of scientific explanations—and since there are generally alternative causal

or metaphysical explanations that do this job better—it may be reasonable to deny

that viewing-as cases even count as members of that category. This is an area where

scientists and mathematicians have importantly different interests and expectations.

So it’s not surprising that the explanatory status of fictional models and the like is

controversial, and it’s no impediment to rejecting Dependence if viewing-as

explanations are accepted in one domain but not the other.

5 Viewing-as, dependence and counterfactuals

Thus far I’ve focused on ontic dependence as a possible means of underwriting

explanatory facts. But another venerable tradition links explanation to counterfac-

tual dependence. The two approaches aren’t equivalent; for instance, as the

arguments of Fine (1995) seem to show, one can have counterfactual dependence in

the absence of ontic dependence.23 So it’s worth asking how the counterfactual

theory fares with respect to viewing-as explanations.24 (The question is timely, since

recent work in philosophy of science suggests that at least some non-causal

explanations can be handled in counterfactual terms; see e.g. Saatsi and Pexton

(2013) and Reutlinger (2016). A thorough discussion of this question would make

for another paper, at least, so I’ll limit myself to some preliminary points here.

Following Fine and his successors, I’m inclined to think that ontological

dependence, grounding and the associated forms of explanation are

Footnote 22 continued

no new predictions, no better understanding, and so on. Moreover, the elements of M in no way accurately

represent the actual components of P—it’s just a coincidence that the two agree in certain ways.

Would anyone be tempted to say that M explains P? Presumably not. To the extent that the Bohr

model is plausibly explanatory, this is surely at least in part because it’s more vivid, intuitive and easy to

work with than other ways of thinking about atomic structure, not just because it makes certain (actually

and counterfactually) correct predictions.
23 The famous example: the existence of Socrates counterfactually depends on the existence of the set

Socratesf g, but the ontological dependence in this case runs only in the opposite direction.
24 I’m grateful to an anonymous referee for suggesting that I say more about counterfactuals.
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hyperintensional, and hence that counterfactual dependence isn’t generally suffi-

cient for explanation.25 So I’ll deal here with the necessity question. Is it possible to

have genuine explanatory relations in the absence of counterfactual dependence?26

In particular, can the viewing-as cases I’ve discussed be understood in counter-

factual terms?

Of course, there’s a major problem to be faced before the counterfactual

approach can even get off the ground in the mathematical setting. The issue is that

the antecedents of the relevant mathematical counterfactuals are necessarily false.

So we have to extend the standard Lewis-Stalnaker semantics somehow if we don’t

want all such counterpossibles to come out trivially true. How should we do that?

There are a number of ‘‘impossible worlds’’ proposals on the table, but none that

stands out as obviously correct;27 a choice has to be made (and defended) before the

issue can be settled. (On the other hand, if all counterpossibles really are trivially

true—as Williamson (2007), Chapter 5 argues—then all the mathematical cases of

interest will trivially involve counterfactual dependence. But I take it this isn’t the

sort of vindication that counterfactual theorists are hoping for.)

Alternatively, we could put off choosing an official semantic theory and try to get

by on our intuitions. The trouble here is that we don’t have sufficiently clear

intuitions about most of the cases of interest. Take NUMBERS-DOTS. The relevant

counterpossible is this: ‘‘If dot arrays formed in the appropriate way didn’t make

squares, then the sum of the first n odd numbers wouldn’t be n2.’’ Intuitively, should

this be true or false? It depends on how exactly the change specified by the

antecedent is supposed to ‘‘ramify’’ across the rest of mathematics. But our

pretheoretic judgments don’t give us much guidance on that question.

If anything, it seems likely that the relevant counterpossibles are typically false.

Consider the proposal of Baron et al. (2017), for instance—a recent attempt to make

sense of mathematical counterpossibles that’s as plausible as anything I’m aware of.

One of Baron, Colyvan and Ripley’s main examples is the well-known cicada case,

due to Alan Baker.28 They propose to evaluate the counterpossible ‘‘If 13 wasn’t

prime, then North American periodical cicadas wouldn’t have 13-year life cycles.’’

Here’s a description of their approach:

We should not go too far...we still want to hold fixed as much as we can with

respect to the natural numbers. What we’re ultimately interested in, recall, are

the ramifications of twiddling 13. We are not interested in the ramifications of

twiddling any other number. In other words, we want to be able to carry out a

‘‘surgical strike’’ on 13 that enables us to gauge the consequences of altering

this number...in as much isolation as possible from alterations to anything else

within mathematics. Here’s our suggestion: work backwards from the desired

twiddle. First, twiddle 13 and hold some portion of the number theory

25 For more on the need for hyperintensionality in metaphysics, see Nolan (2014).
26 In asking whether counterfactual dependence is necessary for explanation, I mean to set aside worries

about overdetermination and similar phenomena.
27 For discussion and many references, see Berto and Jago (2018).
28 Cf. Baker (2005).
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structure fixed. Does a contradiction result? If yes, then relax the amount

you’ve held fixed and re-twiddle. Does a contradiction result? If yes, then

relax the amount you’ve held fixed and re-twiddle. Does a contradiction

result? If yes...And so on. Stop when you get to the maximal amount you can

hold fixed within mathematics without inducing a contradiction. If there is

more than one maximal amount, then pick the maximal amount that interests

you, and let the interests be set by your context of evaluation. (7)

Suppose we apply this procedure to NUMBERS-DOTS. What we want to do is ‘‘twiddle’’

the geometric properties of dot arrays while holding fixed as much of the rest of

mathematics as we can. In particular, we should presumably hold number theory

fixed, since the natural numbers are a completely different collection of objects than

the one we’re dealing with. So the theorem
Pn

k¼1 2k � 1ð Þ ¼ n2 remains intact.

Thus, on this approach, it’s almost certainly not the case that the sum of the first

n odd numbers counterfactually depends on the properties of dot arrays.

Whatever one thinks about Baron-Colyvan-Ripley’s specific proposal, it seems

certain that any reasonable approach will employ some version of their ‘‘surgical

strike’’ strategy. If counterpossibles are going to do anything useful for us, the

impossibilities in their antecedents have to be quarantined in some substantial and

principled way. There’s room for disagreement about what exactly these principles

should look like. But it’s very plausible that, whenever T1 and T2 are distinct

mathematical theories dealing with disjoint collections of entities, we should hold

T2 fixed when entertaining a T1-related counterpossible. Doing otherwise is likely to

incur unacceptably counterintuitive consequences. (Statements like ‘‘If the sets N

and R were the same size, then triangles would have four sides’’ should pretty

clearly all be false.)

If we follow some procedure along these lines, then NUMBERS-DOTS and other

viewing-as explanations won’t turn out to involve counterfactual dependence. I

don’t know of any serious alternative approach to counterpossibles that unambigu-

ously gives the opposite result.

6 Conclusion

This paper has tried to shed some light on the practice of ‘‘viewing one

mathematical object as another’’. As I hope is now clear, there are major challenges

and rewards involved in this undertaking, extending across fields including the

philosophy of mathematical practice, cognitive theory, metaphysics and philosophy

of science. In particular, viewing-as is worth studying for its connection to

mathematical explanation and the questions it raises about the nature of explanation

in general.

To summarize, the claims I’ve defended here include the following. First, I’ve

suggested that viewing-as is a standard element of mathematical practice, and I’ve

tried to show that mathematicians often use facts about target objects as

explanations of facts about source objects. Second, I’ve noted that there’s a prima

facie puzzle about how viewing X as Y could explain anything about X, given the
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apparent lack of familiar dependence relations between mathematical objects of

different types. Third, I’ve argued that the conflict between the Dependence Thesis

and the viewing-as cases is real, and that it can’t be easily resolved in a way that

preserves Dependence. (I’ve also suggested that counterfactual approaches to

explanation probably fare no better.) If the arguments I’ve given are right, then it’s

time to rethink a major point of orthodoxy in the theory of explanation.

So where do we go from here? What notion of explanation can make sense of

viewing-as cases in mathematics—and also, perhaps, fictional models in science—if

not one the one captured in the Dependence Thesis? A detailed answer to that

question will have to wait. But it seems to me that a return to a ‘‘cognitive’’ or

‘‘epistemic’’ notion of explanation may be called for. On this sort of view, an

explanation of a fact f is roughly another fact f � that makes us cognitively better off

with respect to f in some suitable sense—by making f more obvious, more intuitive,

less surprising, or the like.

Working out the details of such a view will no doubt be challenging. But it’s a

job we’ll have to do if, as I think, Dependence isn’t the whole story about

explanation.
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