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Abstract Mereological atomism is the thesis that everything is ultimately com-

posed of atomic parts, i.e., parts lacking proper parts. Standardly, this thesis is

characterized by an axiom that says, more simply, that everything has atomic parts.

Anthony Shiver has argued that this characterization is satisfied by models that are

not atomistic, and is therefore inadequate. I argue that Shiver’s conclusion can and

ought to be resisted, for (i) the models in question are atomistic in the intended

sense, and (ii) even though the standard characterization does not say that every-

thing is composed of atoms, it implies so. If there is a sense in which the relevant

models are problematic, it lies elsewhere.
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Shiver (2015) has argued that the standard way of characterizing mereological

atomicity fails to do justice to the thesis that it is meant to capture, namely, that

everything is ultimately composed of entities lacking proper parts. The standard

characterization1 says:

(1) Everything has atomic parts

i.e., formally,

& Achille C. Varzi

av72@columbia.edu

1 Department of Philosophy, Columbia University, New York, NY 10027, USA

1 From Tarski (1935, §2) and Goodman (1951, VII, §1). See also Simons (1987, §1.6).
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(2) VxAy(Ay & Pyx),

where ‘P’ stands for the (proper or improper) parthood relation and ‘A’ for the

property of being a mereological atom:

(3) Ay = df Vz(Pzy ? z = y)

This, Shiver says, is inadequate. To see why, he calls on models with the following

structure (henceforth model M), where N is the set of natural numbers and ‘P’ is

interpreted as the subset relation2:

In this model, the sequence of infinite subsets of N in the leftmost branch of the

diagram is a non-terminating maximal chain. Thus, while it is true that everything

has (proper or improper) atomic parts, validating (1), it is also true that every

composite has a composite proper part. And ‘‘if every composite has a composite

proper part, then it is false that everything is ultimately composed of atoms; it is, at

least partly, composites all the way down’’ (pp. 608–609).

It is worth stressing, as Shiver does, that the issue would not arise if (1) were

conjoined with the other axioms of classical mereology. These include, besides the

basic partial-order axioms for ‘P’ (all of which are satisfied in M, along with

extensionality), also an axiom schema to the effect that every specifiable non-empty

set has a mereological sum:

(4) Ax/x ? AzVy(Ozy $ Ax(/x & Oyx)),

where ‘O’ stands for the relation of mereological overlap:

(5) Oxy = df Az(Pzx & Pzy)

And that schema—so-called ‘‘unrestricted composition’’—fails in M, as it fails in

other problematic models of (1) considered by Shiver. Still, (4) expresses a thesis

that is controversial, and the friends of atomism may not be willing to endorse it.

This, Shiver concludes, confirms the inadequacy of (1) as an independent

characterization of atomism, leading to the interesting alternative offered in his

paper.

In the following, I argue that Shiver’s conclusion can and ought to be

resisted. I do so by defending two claims: (i) model M is in fact atomistic in the

intended sense: everything is ultimately composed of atoms; and (ii) even

2 Models like M are not new to the literature in mereology. To my knowledge, the first instance can be

found in Eberle (1970, p. 75).
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though (1) does not say that everything is ultimately composed of atoms, it

implies so, at least under certain plausible assumptions on the parthood relation.

Thus, the standard characterization of atomism offered by (1) is perfectly fine

even in the absence of (4). If there is a sense in which model M is problematic,

it lies elsewhere.

1 Composites all the way down, but atomistic

Concerning claim (i), it is true, of course, that in M every composite is, at least

partly, ‘‘composites all the way down’’. However, that does not mean that it is not

composed of atoms. For, in M an atom is just a singleton, and obviously every set is

the union of the singletons of its own members. Since the singleton of each n 2 N is

in the domain of M (at depth n ? 1), that means every composite element in the

domain is the union of its atomic parts. And in the present context this is precisely

what it means to be composed of them.

Shiver does consider this objection, but rebuts it on the grounds that it rests on

slippery intuitions stemming from the set-theoretic structure ofM. After all,M is not

a model of set theory, for it lacks a null element and is not closed under union,

intersection, and so on, so ‘‘it would be a mistake to take set-theoretic intuitions

about the structure very seriously’’ (p. 609). I agree that that would be a mistake.

But it still does not follow that the infinite sets in the model are not composed of the

singletons of their members. They are, at least insofar as we take ‘‘composed of’’ to

mean what it is usually taken to mean.

To see this, consider the standard definition, as familiar from van Inwagen (1990,

p. 29)3:

(6) x is composed of the /s = df x is a sum of the /s and the /s are pairwise

disjoint (i.e., non-overlapping)

When each of the /s is mereologically atomic, the second conjunct in the definiens

can be dropped, since all atoms are pairwise disjoint. Thus, to say that something, x,

is composed of atoms amounts to saying that there are such and such atoms, the as,
such that

(7) x is a sum of the as

Now, strictly speaking the import of (7) depends on how exactly one understands

‘‘sum of’’.4 One understanding, implicit in Shiver’s formulation of Unrestricted

Composition as (4), corresponds to the following general definition:

3 Actually, van Inwagen’s definition is given in a language with plural variables, so the relevant predicate

is ‘‘x is composed of the ys’’ (or rather: ‘‘the ys compose x’’). Here we stick to a standard first-order

language, with ‘‘the /s’’ standing for all and only those things that satisfy the condition expressed by the

open formula /.
4 On the multiple understandings of this notion present in the literature, and relative differences, see

Hovda (2009) and Varzi (2015, §4), and references therein.
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(81) x is a sum1 of the /s = df x overlaps all and only those things that overlap at

least one of the /s

Another understanding, more commonly used in connection with (6), corresponds to

the following:

(82) x is a sum2 of the /s = df the /s are all parts of x and every part of x overlaps

at least one of the /s

Yet another understanding corresponds to the identification of ‘‘sum’’ with

‘‘minimal upper bound’’:

(83) x is a sum3 of the /s = df the /s are all parts of x and x is part of all those

things whose parts include all the /s

These definitions are not equivalent. In particular, it is clear that in M any finite

collection of atoms has a sum3 (their least upper bound with respect to set inclusion)

but not a sum1 or a sum2. However, the question at issue is not which collections of

atoms in M have a sum. The question is whether everything in M is a sum of atoms,

i.e., whether (7) is true for every x and a corresponding choice of as. And in this

regard the non-equivalence of (81)–(83) is immaterial. For, corresponding to each

definition, we can express (7) formally as follows:

(71) Vy(Oxy $ Az(az & Oyz))

(72) Vy(ay ? Pyx) & Vy(Pyx ? Az(az & Oyz))

(73) Vy(ay ? Pyx) & Vy(Vz(az ? Pzy) ? Pxy)

And it is easy to verify that, for any x, each of these theses is true in M precisely

when the as are the atomic parts of x, i.e., when a is the condition given by5:

(9) Vz(az $ (Az & Pzx))

Thus, regardless of our set-theoretic intuitions, and regardless of how exactly we

define the notion of a mereological sum, on the standard understanding of ‘‘composed

of’’ the model in question satisfies the claim that everything is ultimately composed of

atoms. Hence M is not a counterexample to the adequacy of (1).

Of course, there remains something disturbing about M. For it is a fact that in

M the proper parthood relation is infinitely descending: the pattern of decomposition

that goes down the left branch never ‘‘bottoms out’’, looking awfully similar to a

gunky precipice. Thus, although M does not violate the idea that everything is

ultimately composed of atoms, it violates the idea that everything can be

5 Proof The case in which x is an atom is trivial, so suppose x is interpreted as an infinite set Xk = {n:

n C k} for some k C 0 and let Ak = {{n}: n [ Xk} be the corresponding set of as. For (71), pick any Y in

the domain of M. If Xk overlaps Y, which on the present interpretation of ‘P’ amounts to saying that

Xk \ Y = [, then clearly Y overlaps—in fact: includes—the singleton of any n [ Xk \ Y, each of which

is in Ak. Conversely, if Y overlaps some {n} [ Ak, then n [ Y, and since n [ Xk by definition, we have

Xk \ Y = [. Concerning (72), the first conjunct holds trivially, since every element of Ak is a subset of

Xk by definition. As for the second conjunct, pick again any Y in the domain. Clearly Y ( Xk implies

{{n}: n [ Y} ( {{n}: n [ Xk} = Ak, and since Y = [, the required overlap follows. Finally, regarding

(73), the first conjunct is again trivial while the second is immediate from the fact that, for any Y in the

domain, if every element of Ak is a subset of Y, then so is
S
Ak , which is Xk.
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decomposed into its ultimate constituents. As Cotnoir (2013, p. 68) points out, this is

especially disturbing if atomism is meant to carry the weight of metaphysical

grounding. For there can be no infinite regress of metaphysical priority. Grounding

calls for well-foundedness, and in M the parthood relation is not well-founded. This

is precisely why philosophers throughout history have been struggling with the

thought that lines, planes, and solids are ‘‘made up’’ of points, and it may well be

that precisely here the atomist is in trouble. For as Jonathan Schaffer would put it, in

a model like M the atomist’s ontology seems to ‘‘drain away down a bottomless pit’’

(2007, p. 184); being is ‘‘infinitely deferred, never achieved’’ (2009, p. 62). Still,

such concerns go beyond what is at issue here, which is whether the standard

characterization of atomicity in (1) is shown to be inadequate by a model like M.

And the answer is that it is not. Mereologically speaking, atomism is a thesis about

composition, not decomposition.6

It is worth noting that exactly the same sort of consideration applies to the

following model, Mp, which is obtained from M by adding an arbitrary element (in

this case, p) to each infinite set, but leaving out the corresponding singleton.

This model, too, satisfies (1), but as Shiver points out, the intuition that Mp is not

atomistic is even stronger than in M, for here the elements along the infinitely

descending branch on the left are not the unions of atoms (singletons) available in the

domain: each such element contains p, and {p} is missing. SinceMp is isomorphic to

M, Shiver takes this to be further evidence that M itself is not atomistic. But M is

atomistic. Thus, contrary to appearances, Mp must be atomistic as well (as can be

verified independently by checking thatMp satisfies each of (71)–(73).
7) Yet Shiver is

6 Cotnoir’s ‘‘superatomism’’ (2013), by contrast, can be seen as a thesis concerning both composition and

decomposition. Given any object, x, the atomicity axiom (1) guarantees the existence of some parthood

chain that bottoms out at an atom; superatomicity requires that every parthood chain of x bottoms out—a

property that fails in M. Whether this strengthening of (1) can be formulated in the standard language of

mereology is still an open question. As Cotnoir notes, however, the models of superatomistic mereologies

are nonetheless clear in view of the connection between classical mereology and Boolean algebras

established by Tarski (1935, n. 4): a Boolean algebra is superatomic if and only if every subalgebra is

atomic (Mostowski and Tarski 1939).
7 The proof is similar to that of n. 5, except that now we let Xk = {n: n C k} [ {p}. For (71), pick any

Y in the domain. Whenever Xk \ Y = [ we also have Xk\{p} \ Y\{p} = [, so Y must include—hence,

overlap—the singleton of some n [ Xk \ Y, which is in Ak. Conversely the proof is just as before.

Regarding (72), the first conjunct holds trivially, like before. For the second conjunct, we have again that

Y ( Xk implies {{n}: n [ Y} ( {{n}: n [ Xk} = Ak, and the required overlap follows because

Y \{p} = [. Finally, again the first conjunct of (73) holds trivially. For the second conjunct, pick any

On being ultimately composed of atoms 2895

123



right: there is an obvious intuitive sense in which the infinite elements of Mp are not

entirely composed of atoms. So how can this be a model in which it is true—

literally—that they are?

The answer, in my opinion, does not lie in the inadequacy of (1), the

atomicity axiom satisfied in Mp. It lies in the intrinsic limits of (6), the standard

characterization of ‘‘composed of’’ in terms of ‘‘sum of’’. This characterization

has played a central role in much recent work in part-whole theories, beginning

with the debate spawned by van Inwagen’s (1990) ‘‘special composition

question’’, and it’s fair to say that for the most part it has proved both useful and

reliable. What else could it mean to say that something is composed of a number

of things, if not that it is a mereological sum of those things? Yet the notion of a

sum is itself less clear than one might initially think, witness the multiplicity of

definitions with which mereologists have been working; and while these

definitions tend to agree and work well in ordinary circumstances, abstract

unintended models are always possible. Indeed, one need not go so far as to

consider exotic structures such as Mp to run into troubles. The simple model

below is just as problematic. Here the top element counts as a sum of the bottom

atoms in each sense of ‘‘sum’’ defined in (81)–(83), hence it fully qualifies as

composed of those atoms according to definition (6). Yet there is also a clear

sense in which {0, 1, 2} is not composed of {0} and {1}, i.e., it is not entirely

composed of {0} and {1}.

Of course, in describing the situation we should be careful not to fall prey to

the temptation mentioned by Shiver in connection with M and Mp: the model

looks strange because we tend to read it set-theoretically. Really, the sets are

just stand-ins for nodes in a mereological structure, and a model in which the

top node is represented by the set {0, 1} would be perfectly isomorphic (and

unproblematic). It is also true, however, that there is nothing intrinsically set-

theoretic in our intuitions about such cases. We could replace {0} and {1} with

my head and my torso and {0, 1, 2} with my whole body (cum limbs). Surely

this model would be isomorphic to one in which the top node is my limbless

body instead. Yet again the isomorphism is not enough to obliterate the intuitive

difference between the two: while it makes perfect sense to say that a limbless

body is composed of a head and a torso, we normally wouldn’t say the same of a

whole body (cum limbs). But we wouldn’t say so even if heads and torsos were

Footnote 7 continued

Y in the domain and suppose it includes every element of Ak. As before, it follows that
S
Ak � Y .

Moreover, Y cannot be an atom, so it must contain p. Thus
S
Ak [ {p} = Xk ( Y.
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treated as mereologically non-atomic, or as pieces of gunk. If there is a problem,

here, it has nothing to do with the atomistic assumption of the models; the

problem lies entirely in the fact that in one of the models the limbs seem to

come from nowhere. Mutatis mutandis for the model with {0, 1, 2}, where {2}

is missing from the domain, and for Shiver’s model Mp, where {p} is missing.

These models transgress our intuitive assumptions about what there is. The

intuitive notion of composition is sensitive to the transgression—and the models

seem wrong; its formal definition in (6), based on ‘‘sum’’, is not—and the

models are fine.

2 Hidden virtues

Let us now consider the second claim advertised above: even though the atomicity

axiom (1) does not say that everything is ultimately composed of atoms, it implies

so. At least, it implies so insofar as ‘‘composed of’’ is understood via (6). What I

mean by this is that (1) implies the universal closure of (7) when the as are precisely
the atomic parts of x, as in (9), and it does so on each understanding of ‘‘sum of’’.

Formally:

(71
0) VxVy(Oxy $ Az((Az & Pzx) & Oyz))

(72
0) Vx(Vy((Ay & Pyx) ? Pyx) & Vy(Pyx ? Az((Az & Pzx) & Oyz)))

(73
0) Vx(Vy((Ay & Pyx) ? Pyx) & Vy(Vz((Az & Pzx) ? Pzy) ? Pxy)).

Of course, the implication doesn’t hold merely as a matter of logic, as if ‘P’ were

an arbitrary binary predicate. Nonetheless, it holds in each case under some

plausible assumptions on the mereological relation that the predicate is meant to

express.

To begin with (71
0), all that is required in this case is that parthood be at least

reflexive and transitive, two properties that are normally regarded as constitutive of

the very meaning of ‘‘part’’ (in the inclusive sense)8:

(10) VxPxx
(11) VxVyVz((Pxy & Pyz) ? Pxz)

Given these minimal assumptions, it is easy to see that (71
0) is implied by the

atomicity axiom (1), or rather by its formal counterpart (2). Here is a simple

proof9:

8 In standard treatments of mereology, parthood is axiomatized as a partial order. For possible

disagreements, see Varzi (2015, §2).
9 The proof (in classical predicate logic) is presented in slightly abbreviated natural deduction form. In

the explanatory column on the right, ‘H’ signals a hypothesis, ‘Eq’ means logical equivalence, and an ‘I’

or an ‘E’ next to a logical operator indicates an application of the corresponding introduction or

elimination rule, respectively.
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1 Oab H (for →I)
2 ∃z(Pza & Pzb) 1, df (5) 
3 Pca & Pcb H (for ∃E)
4 ∃y(Ay & Pyc) Atomicity (2) ∀E 
5 Ad & Pdc H (for ∃E)

Pdc & Pca) → Pda Transitivity (11) ∀E 
7 Pda 3, 5, 6 &E + &I + →E

Pdc & Pcb) → Pdb Transitivity (11) ∀E 
9 Pdb 3, 5, 8 &E + &I + →E
10 Pdd Reflexivity (10)∀E
11 Pdd & Pdb 9, 10 &E + &I
12 Obd 11 ∃I + df (5)

6 (

8 (

13 (Ad & Pda) & Obd 5, 7, 12 &E + &I 
14 ∃z((Az & Pza) & Obz) 13 ∃I 
15 ∃z((Az & Pza) & Obz) 4, 5–14 ∃E 
16 ∃z((Az & Pza) & Obz) 2, 3–15 ∃E 
17 Oab → ∃z((Az & Pza) & Obz) 1–16 →I
18 ∃z((Az & Pza) & Obz) H (for →I)
19 (Ac & Pca) & Obc H (for ∃E)
20 ∃z(Pzb & Pzc) 19 &E + df (5) 
21 Pdb & Pdc H (for ∃E)
22 Pdc → d = c 19 &E + df (3) + ∀E 
23 Pcb 21, 22 &E + →E + =E
24 Pca & Pcb 19, 23 &E + &I
25 Oab 24 ∃I + df (5) 
26 Oab 20, 21–25 ∃E 
27 Oab 18, 19–26 ∃E 
28 ∃z((Az & Pza) & Obz) → Oab 18–27 →I
29 ∀x∀y(Oxy↔ ∃z((Az & Pzx) & Oyz)) 17, 28 ↔I + ∀ I 

The argument from (2) to (72
0) rests on the same assumptions and is even simpler.

In fact, the first quantified conjunct in (72
0) is a generalized tautology, so we only

need to show that (2) implies the closure of the second conjunct:

1 Pba H (for →I)
2 ∃y(Ay & Pyb) Atomicity (2) ∀E 
3 Ac & Pcb H (for ∃E)

Pcb & Pba) → Pca Transitivity (11) ∀E 
5 Pca 1, 3, 4 &E + &I + →E
6 Pcc Reflexivity (10) ∀E
7 Pcb & Pcc 3, 6 &E + &I
8 Obc 7 ∃I + df (5)

4 (

9 (Ac & Pca) & Obc 3, 5, 8 &E + &I 
10 ∃z((Az & Pza) & Obz) 9 ∃I 
11 ∃z((Az & Pza) & Obz) 2, 3–10 ∃E 
12 ∀x∀y(Pyx → ∃z((Az & Pzx) & Oyz)) 1–11 →I + ∀I 

In the case of (73
0), the proof requires an additional assumption. Specifically, we

need to assume that the parthood relation satisfies the so-called ‘‘strong

supplementation principle’’:
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(12) VxVy(*Pxy ? Az(Pzx & *Ozy)).

This may seem unwarranted in the present context, for (12) is no less

controversial than the principle of unrestricted composition (4). In particular,

(12) rules out non-extensional models in which two or more composite things

have exactly the same proper parts, as with c and d in the example below,

and this is a consequence that an atomist may want to resist.

However, non-extensional models of this sort are in fact at odds with the idea that a

sum is just a ‘‘minimal upper bound’’, which is the understanding corresponding to

(73
0). For example, in the four-element model above it seems natural to say that c is

composed of the two atoms a and b, and likewise for b; yet neither c nor d qualifies as a

sum3 of those atoms, since c is not part of d (which includes all of c’s atomic parts) and

d is not part of c (which includes all of d’s atomic parts). Thus, when ‘‘composed of’’ is

understood in terms of sum3, models of this sort should be ruled out.10 And if things

are so, then (73
0) is most naturally read against the assumption that ‘P’ obeys the

strong supplementation principle (12). On this assumption, and given transitivity, the

proof that also (73
0) is entailed by (2) is easy. In fact, the first conjunct of (73

0) is, again,
a generalized tautology, so we only need to prove the closure of the second conjunct:

Pab H (for →I)
Pab → ∃z(Pza & ~Ozb) Supplementation (12) ∀E

3 ∃z(Pza & ~Ozb) 1, 2 →E
4 Pca & ~Ocb H (for ∃E)
5 ∃y(Ay & Pyc) Atomicity (2) ∀E 
6 Ad & Pdc H (for ∃E)

Pdc & Pca) → Pda Transitivity (11) ∀E 
8 Pda 4, 6, 7 &E + &I + →E

∃z(Pzc & Pzb) 4 &E + df (5) 
10 ~(Pdc & Pdb) 9 ~∃E 
11 Pdc & ~Pdb 6, 10 &E + &I + Eq

Ad & Pda) & ~Pdb 6, 8, 11 &E + &I 
13 ∃z((Az & Pza) & ~Pzb) 12 ∃I 
14 ∃z((Az & Pza) & ~Pzb) 5, 6–13 ∃E 
15 ∃z((Az & Pza) & ~Pzb) 3, 4–14 ∃E 
16 ∀x∀y(~Pxy → ∃z((Az & Pzx) & ~Pzy))  1–15 →I + ∀I 
17 ∀x∀y(∀z((Az & Pzx) → Pzy) → Pxy

1 ~
2 ~

7 (

9 ~

12 (

) 16 Eq

10 This is not to say that all non-extensional models should be ruled out. What follows from (12) is that

composite things with the same proper parts are part of each other. That’s enough to exclude the four-

element model. Generally speaking, however, mutual parthood falls short of identity unless parthood is

assumed to be antisymmetric (by itself a standard assumption, but not one that is required for the present

argument). See Cotnoir (2010).

On being ultimately composed of atoms 2899

123



This completes the argument. No matter how we understand the notion of sum,

the thesis that everything has atomic parts turns out to imply the thesis that

everything is a sum of atoms. Insofar as being composed of atoms amounts to being

a sum of atoms, at least according to the customary definition in (6), it follows

therefore that the standard way of characterizing mereological atomicity implies

precisely the thesis that it is meant to capture: everything is ultimately composed of

atoms. That is, it implies that thesis as long as parthood is reflexive and transitive

and, in the third case, strongly supplemented.

At this point it is only instructive to go back to our infinitely descending model

M. In that model, parthood is the subset relation, hence it satisfies the reflexivity and

transitivity principles (10) and (11) as well as the strong supplementation principle

(12). Thus, since the whole point of considering M was that it satisfies the atomicity

axiom (1), we have another proof of the claim established in the previous Section:

appearances notwithstanding, M also satisfies each of (71
0)–(73

0), hence it is

atomistic in every sense of the term. If this sounds unacceptable, the culprit is not

the inadequacy of (1); it is, again, the notion of composition involved in the broader

atomistic theses expressed by (71
0)–(73

0). Everything is composed of atoms, that is,

ultimately composed; it’s just that the infinite elements of the model cannot be

decomposed accordingly.
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