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Abstract While structural equations modeling is increasingly used in philo-

sophical theorizing about causation, it remains unclear what it takes for a particular

structural equations model to be correct. To the extent that this issue has been

addressed, the consensus appears to be that it takes a certain family of causal

counterfactuals being true. I argue that this account faces difficulties in securing the

independent manipulability of the structural determination relations represented in a

correct structural equations model. I then offer an alternate understanding of

structural determination, and I demonstrate that this theory guarantees that structural

determination relations are independently manipulable. The account provides a

straightforward way of understanding hypothetical interventions, as well as a cri-

terion for distinguishing hypothetical changes in the values of variables which

constitute interventions from those which do not. It additionally affords a semantics

for causal counterfactual conditionals which is able to yield a clean solution to a

problem case for the standard ‘closest possible world’ semantics.

Keywords Structural equations � Causation � Counterfactuals � Interventions

1 Introduction

As a rough approximation, regularity theories of causation hold that, given the

circumstances, causes are nomically sufficient for their effects. As a matter of law, if

the cause is present in these circumstances, then the effect will be present too. As a

rough approximation, counterfactual theories of causation hold that, given the
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circumstances, causes are nomically necessary for their effects. As a matter of law,

were the cause to have been absent in these circumstances, so too would the effect

have been absent. I, like many, have been persuaded that counterfactual theories are

roughly correct about the relation of singular, token, or actual causation. Here, I will

argue that nomic sufficiency accounts are roughly correct about what I will call

structural determination relations. On the theory advanced here, these structural

determination relations provide truth conditions for causal counterfactual condi-

tionals. For counterfactual theorists, this means that regularity accounts still have an

important role to play in the metaphysics of causation.

Singular causal relations—the relations expressed by sentences of the form ‘‘c’s

F-ing caused e to G’’, where c’s F-ing and e’s G-ing are particular events or facts—

are familiar philosophical fare. Structural determination, less so. As I will explain in

further depth below, structural determination relations link qualities or quantities of

particular parts of the world. We can represent these qualities or quantities with

variables. When we do so, structural determination relations are representable as

structural equations, which establish functional relationships between those

variables.

Structural equations modeling has been used to provide novel semantics for

causal counterfactual conditionals (Hiddleston 2005; Shulz 2011, and Briggs 2012),

to investigate traditional metaphysical questions about singular causation (Hitch-

cock 2001; Woodward 2003, ch. 2, Menzies 2004; Halpern and Pearl 2001, 2005a;

Menzies 2007; Handfield et al. 2008; Halpern 2008; Hitchcock and Knobe 2009;

Glymour et al. 2010; Halpern and Hitchcock 2010, forthcoming, Paul and Hall

2013; Livengood 2013; Baumgartner 2013, and Weslake forthcoming), to explicate

the nature of causal enquiry and scientific explanation (Woodward 1999; Halpern

and Pearl 2005b; Woodward and Hitchcock 2003a, b, and Woodward 2003, ch. 7),

and to undergird novel statistical techniques for drawing inferences about the causal

structure of the world on the basis of sample data (Pearl 2000, 2009 and Spirtes

et al. 2000). However, relatively little has been done to get clear about what exactly

someone commits themselves to when they endorse one of these models—what

exactly, that is, a structural equations model says about the world.1

To the extent that it has been addressed, the consensus view appears to be that

structural equations represent patterns of causal counterfactual dependence amongst

variable values (in particular, see Hitchcock 2001; Woodward and Hitchcock 2003a;

Hall 2007; Hitchcock 2007; Menzies 2008; Halpern and Hitchcock 2010, and Glynn

2013).2 In Sect. 3 below, I will explain why causal counterfactuals are not well-

suited to provide a semantics for structural determination relations. My contention

there will be that the counterfactual account is not capable of securing the

independent manipulability of the structural determination relations represented in a

structural equations model—a property of structural equations models known as

1 Notable exceptions include Handfield et al. (2008), Baumgartner (2013), and Glynn (2013).
2 Not just any counterfactual is a causal counterfactual. While the question of which counterfactuals are

causal is a question to be decided by theory rather than stipulation, at the least, causal counterfactuals

must be non-backtracking (see Lewis 1979) and they must relate distinct events (see Kim 1973 and Lewis

1986).
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modularity. In contrast, I will suggest that one variable is structurally determined by

others just in case, within a certain region of modal space, the values of the latter

variables are sufficient for the value of the former (Sect. 4). This account will allow

us to understand the technical notion of an intervention; it will guarantee the

modularity of a correct structural equations model; and it will allow us to provide a

semantics for causal counterfactual conditionals which neatly solves a problem case

for the standard ‘closest possible world’ semantics of Stalnaker (1968) and Lewis

(1973).

2 Structural equations models

A structural equations model M is a triple ðU;V; EÞ of a vector of exogenous

variables U ¼ ðU1. . .UMÞ, a vector of endogenous variables V ¼ ðV1. . .VNÞ and a

vector of structural equations E ¼ ð/V1
. . ./VN

Þ, one for each endogenous variable.3

Formally, a variable is a partial function from a set of possibilities (or ‘worlds’) W
to the real line R. What makes the function partial is just that it needn’t map each

and every possibility w 2 W to some real number. So, for instance, I might be

interested in the variable S = number appearing on the digital scale at t. This

variable assigns a value, s, to every world at which the scale displays a number at t.

However, it will not assign any value to a world at which the scale does not display

a number at t, or does not exist at t. Here’s another (equivalent) way to understand a

variable: it is an assignment of values to a set of pairwise inconsistent propositions

fPig � }ðWÞ. Which value the variable takes on depends upon which of these

propositions is true. For instance, the variable F could assign the value f to the

proposition you exert a force of f Newtons on the surface of the scale at t, for every f

in some specified range. In general, variables stand to their values as determinables

stand to their determinants; just as being red is one way for an object to be colored,

having the property represented by V ¼ v is one way for a part of the world to have

the property represented by V . (A word on notation: I’ll write ‘Vw ¼ v’ to mean that

the value of w, under the function V , is v and I will often use ‘V ¼ v’ to denote the

set of worlds w such that Vw ¼ v).

The structural equations in E establish functional relationships amongst the

variables in U [ V. For instance, suppose that the digital scale is accurate at t,

zeroed out in the appropriate way (so that it reads ‘0’ when subjected to the earth’s

gravitational force and the ambient air pressure), and nothing else (besides you) is

exerting any force upon the surface of the scale. Then, the value of S will be

determined by the value of F. Since an object weighing 0.2248 pounds exerts 1

3 A word on notation: throughout, I’ll be using uppercase letters (A;B;C; . . .;Z) to represent variables,

and the corresponding lowercase letters (a; b; c; . . .; z) to stand for the values of those variables. Functions

will be denoted with ‘/’, with subscripts added to indicate which variable the function is associated with.

Vectors of variables or variable values will be represented with boldface or calligraphic letters

(U;V;X; x;PAðVÞ, etc.). At times I will use the function name alone to denote the entire structural

equation—for instance, I will write ‘/Y ’ to denote the structural equation ‘Y :¼/Y ðX1; . . .;XNÞ’.
Propositions will be denoted with upright uppercase letters ðA;B;C; . . .;ZÞ. I’ll also be abusing set-

theoretic notation, 2;[;�;�, and so on, by applying it to vectors of variables (or variable values).
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Newton on the surface of the Earth, if F ¼ f , then S ¼ d0:2248 � f e.4 We can thus

write down the structural equation

S :¼d0:2248 � Fe

What makes this equation structural is that it is asymmetric; it matters which

variable is to the left of the ‘ :¼ ’. In addition to claiming that the value of S is a

function of the value of F, the structural equation makes the further claim that the

value of S is determined by the value of F in a way that the value of F isn’t

determined by the value of S. Here’s a way of getting at this asymmetry: if there

were a certain kind of intervention on the value of F—if, for instance, you were to

put one foot on the floor—then the value of S would have been different—the scale

would have displayed a different number. If, however, there were an intervention on

the value of S—if, for instance, the scale was re-zeroed to read ‘0’—then the value

of F would not be different—you would not suddenly exert 0 Newtons on the

surface of the scale. (To emphasize this asymmetry, I use ‘ :¼ ’ to distinguish that

asymmetrical relation from the symmetrical ‘¼’).5

These variables and this structural equation together constitute a structural

equations model, or a causal model (I’ll use these terms interchangeably

throughout). A causal graph provides an intuitive representation of much of the

information contained in a causal model. If U appears on the right-hand-side of V’s

structural equation /V , then there will be an arrow with its tail at U and its head at V

in the causal graph. For instance, the model of the scale’s display and the force you

exert on the scale’s surface generates the causal graph shown in Fig. 1. This causal

graph tells us that the value of F determines the value of S, without telling us

exactly how. It tells us that the numbers on the scale’s display are determined by the

force you exert upon it, but it doesn’t, for instance, tell us what units the scale’s

display is set to. For that information, we must look to S’s structural equation in E.
A causal model can involve many more variables and structural equations than

this. Also, a single structural equation can relate more than two variables. Adapting

an example from Pearl (2000, ch. 7), suppose that there are two riflemen, one

standing on the left, the other standing on the right, who have their rifles aimed at a

deserter. If the captain gives the order, then both riflemen will fire, and the

deserter will die. We can model the causal structure of this case with

M2 ¼ ððCÞ; ðL;R;DÞ; E2Þ, where C is a binary variable which takes the value 1

if the captain gives the order to fire and takes the value 0 otherwise, L is a binary

variable which takes the value 1 iff the left rifleman fires, R is a binary variable

which takes the value 1 iff the right rifleman fires, and D is a binary variable which

takes the value 1 iff the deserter dies. The structural equations in E2 are shown in

Fig. 2. (There, x _ y is the truth function maxfx; yg.) These equations tell us that the
left rifleman will fire iff the captain gives the order, and likewise for the right

4 ‘dxe’ is the function which rounds x up to the closest integer.
5 It’s worth noting that the functions /V must be non-constant. A constant function from one variable to

another does not represent any kind of determination of of the latter variable by the former. We should

also require that the domain of each structural equation include the entire image of their parent variables’

structural equations, and only that image.

162 J. D. Gallow

123



rifleman. And the deserter will die iff at least one of the riflemen fire. M2 tells us

that the value of C determines the values of L and R and that the values of L and R

jointly determine the value of D.

We may use the language of genealogy to talk about the structural relationships

between variables. Thus, all of the variables in a causal model which appear on the

right-hand-side of V’s structural equation, /V , are called V’s structural parents. I’ll

use ‘PAðVÞ’ to refer to a vector of V’s structural parents.6 (If U is exogenous, then

PAðUÞ is the empty vector.) In the model shown in Fig. 2, e.g., PAðDÞ ¼ ðL;RÞ. In
a similar fashion, we can define V’s structural descendants—with the slight wrinkle

that we stipulate that every variable V is one of its own descendants. I’ll use

‘DEðVÞ’ to refer to a vector of V’s structural descendants. In the model shown in

Fig. 2, DEðLÞ ¼ ðL;DÞ.
A few paragraphs back, I invoked the notion of an intervention. Formally, an

intervention is a way of setting the values of some of the variables in U [ V without

directly affecting any of the other variables in U [ V, or their determination

structure. To illustrate, suppose that in the model shown in Fig. 2, the value of L is

set to 1 via an intervention. Suppose, that is, that we perform an intervention to

make the left rifleman fire. The way this is modeled is by replacing L’s structural

equation, L :¼C, with L ¼ 1 (indicating that L has been set to 1 via an intervention)

and leaving all other structural equations unchanged. We thus get the mutilated

model M2; L¼1 ¼ ððCÞ; ðL;R;DÞ; E2; L¼1Þ, shown in Fig. 3. In M2; L¼1, whether the

left rifleman fires is no longer determined by whether the captain gives the order.

However, whether the deserter dies is still determined by whether the left rifleman

fires. In general, the graphical result of an intervention on a variable V is to remove

all of the arrows leading into V (if such there be), to destroy all of the structural

determination relations between V and PAðVÞ, while leaving all other structural

determination relations intact.

This property of a structural equations model—that there are in-principle

hypothetical interventions upon the variables which leave all the other structural

determination relations intact—is known as modularity. Without modularity,

structural equations models do not tell us anything about the results of hypothetical

interventions, since without the assumption that the structural equations other than

Fig. 1 A causal graph

Fig. 2 The system of structural
equations E2

6 In general, there will be many such vectors. It won’t matter for my purposes which one ‘PAðVÞ’ refers
to. Pick one. Likewise for the other vectors of variables or variable values I discuss here.

A theory of structural determination 163

123



/V remain in place post-intervention, we cannot calculate the down-stream effects

of setting the value of V .

Notice that not every way of setting the value of V will have this result. Some

ways of setting the value of V will affect other variables in the graph as well. For

instance, one way of setting S to 0, one way of making the scale read ‘0’, is to

simply lift you off of the scale. But this wouldn’t count as an intervention on the

value of S, since it wouldn’t alter the manner in which the value of F determines the

value of S. It wouldn’t be correct to model this way of setting S to 0 by replacing

S :¼/SðFÞ with S ¼ 0, since the determination relation represented by S :¼/SðFÞ
would still be in force. It would be this very determination relation that we would

exploit in order to affect the value of S. Additionally, we could set the value of F in

such a way that we affect the manner in which the value of F determines the value

of S—i.e., our meddling could have the result of changing the structural equation

/S. For instance, we might decide to keep you from stepping onto the scale by

placing a dead five-pound rat on the scale. In that case, our method for setting the

value of F would alter S’s structural equation, replacing it with

S :¼d0:2248 � F þ 5e

So only certain methods of setting the value of a variable in a causal model will

count as interventions on the value of that variable, in our technical sense.7

Once we have this method for modeling interventions, a method for evaluating

causal counterfactual conditionals comes along for free. On this account, the

counterfactual A h! C is true at a world w according to the model M just in case

MA;Uw � C. That is: the counterfactual A h! C is true at a world w, according

to the model M, given the exogenous variable assignment U ¼ Uw, iff C is true in

the model that we get by minimally mutilating M so as to make A true. To

illustrate: suppose that, in the causal model shown in Fig. 2, the actual value of C is

0.8 Suppose, that is, the captain doesn’t actually give the order to fire. Then, neither

the left nor the right rifleman fires, and the deserter does not die. And suppose that

we want to evaluate the causal counterfactual ‘If the left rifleman were to have fired,

then the deserter would have died’—or ‘L ¼ 1 h! D ¼ 1’. To evaluate this causal

counterfactual, we simply perform an intervention on the value of L so as to make

the antecedent true; we mutilate the model, so that the value of L is no longer

determined by the value of C, we set L to 1, and then we calculate the values of R

and D in the mutilated model in accordance with their structural equations and the

values for the exogenous variables. If the consequent comes out true in the mutilated

Fig. 3 The system of equations
E2; L¼1 models an intervention

on the variable L

7 See Cartwright (2009).
8 Here and throughout, I’m using ‘actual’ as an indexical like ‘here’, and not as a rigid designator for the

actual world.
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model M2; L¼1, then the counterfactual was true in the original model M2.

According to M2, then, ‘L ¼ 1 h! D ¼ 1’ is true. If the left rifleman were to fire,

then the deserter would have died. Note that, without modularity, we would not be

able to evaluate these counterfactual conditionals, since, without modularity, there

is no guarantee that the downstream structural determination relations would remain

intact post-intervention.

A theory of structural determination should explain why structural equations

models have the properties they do. In particular, it should explain why they allow

us to correctly evaluate causal counterfactual conditionals in this way, and it should

explain why a correct system of structural equations is modular. It would be a

benefit of an account if it could explain why only certain ways of setting the values

of variables leave the downstream structural determination relations unaffected, as

well as providing a principled way of distinguishing the ways of setting the values

of variables which do from those which do not constitute interventions, in our

technical sense. In Sect. 4, I will provide a theory which meets each of these

explanatory demands. I will not attempt to account for probabilistic structural

determination relations (of the sort that I believe are implicated in probabilistic

causation). Nor will I be concerned with backwards structural determination

relations, in which the future state of the world structurally determines the past state

of the world. That’s not because I think that there aren’t, or couldn’t be,

probabilistic or backwards structural determination relations. Considering these

issues here would simply muddy already murky waters. Another task for another

day.

3 The causal counterfactual understanding

Let’s say that a structural equation V :¼/VðPAðVÞÞ is descriptively adequate at

world w just in case Vw ¼ /VðPAðVÞwÞ. Just as mere descriptive adequacy is not

sufficient for a universal generalization to be a law of nature, mere descriptive

adequacy is not enough for a structural equation to be correct. There must

additionally be some kind of genuine determination of V by PAðVÞ. So an account

of structural equations models must say something about what it takes, beyond mere

descriptive adequacy, for a structural equation to be correct.

One of the more popular ways of understanding structural equations models

appeals to causal counterfactual conditionals. Hitchcock articulates this view in his

(2001, pp. 283–284):

A system of structural equations is an elegant means for representing a whole

family of counterfactuals...The correctness of a set of structural equations, and

of the corresponding graph, depends upon the truth of these counterfactuals.

On this account, what it is for an isolated structural equation V :¼/VðPAðVÞÞ to be

correct is just for it to be the case that, for any subvector X � PAðVÞ, were X to take

on the values x;V would take on the value /VðPAðVÞX¼xÞ,

ðVÞ 8X � PAðVÞ 8x ðX ¼ x h! V ¼ /VðPAðVÞX¼xÞÞ

A theory of structural determination 165

123



where PAðVÞX¼x is the assignment given to V’s structural parents by X ¼ x (if

X ¼ x doesn’t assign any value to one of V’s structural parents, then PAðVÞX¼x

gives that parent its actual value). ðVÞ tells us that V’s value counterfactually

depends upon those of its parents, in the way specified by /V .

More generally, we can say that what it is for a structural equation /V , in a causal

model M ¼ ðU;V; EÞ, to be correct at a world w, is just for it to be the case that, for

every subvector X � U [ ðV � VÞ, and any assignment of values x to X, were X to

take on those values, V would take on the value /VðPAðVÞX¼xÞ

ðV1Þ 8V 2 V 8X � U [ ðV � VÞ 8x ðX ¼ x h! V ¼ /VðPAðVÞX¼xÞÞ

where PAðVÞX¼x assigns V’s parents the values determined by ðU � XÞw; x, and
E �

S
ið/Xi

Þ; for each endogenous Xi 2 X. That is, PAðVÞX¼x assigns PAðVÞ the

values determined by the mutilated model MX¼x, with the actual assignment of

values to the exogenous variables. ðV1Þ tells us that V’s value counterfactually

depends upon the values of its parents, and only the values of its parents, in the way

specified by /V .

The causal counterfactuals in ðVÞ and ðV1Þ are to be evaluated in the standard

way (see Stalnaker 1968; Lewis 1973). To evaluate a counterfactual A h! C, we

consider a set of possibilities determined by A and the world of evaluation w, and

check to see whether C is true in those possibilities. Exactly which possibilities we

ought to check is a complicated and controversial matter. However, for the most

part, we can sidestep these issues here. We need only endorse the following general

framework: there is a selection function, f , which is a function from pairs of

propositions, A, and worlds, w, to sets of worlds, f ðA;wÞ. Whenever a

counterfactual conditional A h! C is true at a world w, what makes it the case

that A h! C is true is that f ðA;wÞ � C.9 Different accounts of the selection

function will yield different truth conditions for counterfactual conditionals.

However, for my purposes, it won’t matter what we say about f , so long as we agree

that it satisfies the following three properties.10

9 From the standpoint of Lewis (1973)’s account of counterfactuals, it will appear that, by adopting this

general framework, I am tolerating the so-called limit assumption—the assumption that, for any arbitrary

antecedent A and world w, there is a set of most similar A-worlds (see Lewis 1973; Stalnaker 1980).

Appearances are deceiving. The limit assumption is not needed for any of my arguments here. In Lewis’s

framework, for any case in which the limit assumption fails and A h! C is true, we can just define

f ðA;wÞ to be the largest sphere centered on w containing at least one A world and throughout which the

material conditional A � C is true. So long as A h! C is true, there will be some such sphere. If it is

false, of course, there won’t be such a sphere, so this won’t do as an account of the truth conditions of

these counterfactuals. However, I am not interested in providing truth conditions for these counterfac-

tuals. Rather, I am interested in the question of whether the truth of a set of counterfactuals is sufficient to

guarantee the correctness of a structural equations model. And this trick will tell us what we can infer

from the truth of A h! C at a world w, on Lewis’s account.
10 ðf1Þ corresponds to Lewis’s 2nd condition on the selection function; and ðf2Þ is a weakening of

Lewis’s 4th condition. See Lewis(1973, p. 58). I’ve used the weaker ðf2Þ, rather than Lewis’s stronger

constraint— if A � B then f ðB;wÞ \ A ¼ f ðA;wÞ—not because I’m skeptical of the stronger con-

straint, but rather because the weaker constraint is all that I need avail myself of in developing the

counterfactual account, and I think it best to minimize my assumptions where possible. Indeed, in

developing the nomic sufficiency account in Sect. 4, I will only require ðf1Þ and ðf3Þ. See fn 15.
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(f1) f ðA;wÞ � A

(f2) if A � B then f ðB;wÞ \ A � f ðA; w)
(f3) at w, there is a hypothetical intervention to set any V � U [ V to any values v

which yields a world wV¼v 2 f ðV ¼ v;wÞ

Returning to ðV1Þ: that condition imposes two constraints on a structural

equation, /V , in a causal model M. In the first place, it says that the value of /V ’s

left-hand-side variable, V , is sensitive to the values of /V ’s right-hand-side

variables, PAðVÞ, and they are sensitive in precisely the way specified by /V .

Changes in the values of those variables would lead to changes in the value of V ,

and they would lead to precisely the changes specified by /V . Additionally, it says

that the value of V is only directly sensitive to the values of PAðVÞ. Holding fixed

those values, interventions to change the values of the other variables in the model

would not lead to changes in the value of V .

Note that requiring a causal model to satisfy ðV1Þ is stronger than merely

requiring it to satisfy ðVÞ, for each endogenous variable V 2 V. To illustrate:

suppose that the right rifleman takes the day off, so that the causal model shown in

Fig. 4 correctly describes the structural determination relations between the

captain’s giving the order (C), the left rifleman’s firing (L), and the deserter’s dying

(D). Suppose that, at the actual world, the captain doesn’t give the order. Given the

method for evaluating causal counterfactuals introduced in Sect. 2, this model

entails (1).

C ¼ 1 h! D ¼ 1 ð1Þ

However, (1) does not follow from the truth of ðVÞ, for each of the structural

equations in E4,

C ¼ 0 h! L ¼ 0

C ¼ 1 h! L ¼ 1

L ¼ 0 h! D ¼ 0

L ¼ 1 h! D ¼ 1

since the counterfactual conditional is not transitive. ðV1Þ, by contrast, will require,

inter alia, that both (2) and (3) be true in order for the system of structural equations

E4 to be correct.

C ¼ 1 h! L ¼ 1 ð2Þ

ðC ¼ 1 ^ L ¼ 1Þ h! D ¼ 1 ð3Þ

And (2) and (3) do entail (1), given ðf1Þ and ðf2Þ.
However, the truth of ðV1Þ is not sufficient for the correctness of a structural

equations model. Take the familiar example of Suzy and Billy throwing their rocks

at a window. Both Suzy and Billy have excellent aim, so if either of them throws

their rock, then the window will shatter; and the window is sturdy enough that if

neither of them throw their rock, then the window will not shatter. Suppose that

Suzy actually throws and Billy doesn’t, and that (4–11) are all true.
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ðB ¼ 0 ^ S ¼ 0Þ h! W ¼ 0 ð4Þ

ðB ¼ 0 ^ S ¼ 1Þ h! W ¼ 1 ð5Þ

ðB ¼ 1 ^ S ¼ 0Þ h! W ¼ 1 ð6Þ

ðB ¼ 1 ^ S ¼ 1Þ h! W ¼ 1 ð7Þ

S ¼ 1 h! W ¼ 1 ð8Þ

S ¼ 0 h! W ¼ 0 ð9Þ

B ¼ 1 h! W ¼ 1 ð10Þ

B ¼ 0 h! W ¼ 1 ð11Þ

(where B; S, and W are binary variables with the natural interpretation). If the truth

of ðV1Þ were sufficient for the correctness of a structural equations model, then the

system of structural equations E5, shown in Fig. 5, would have to be correct.

However, E5 says more than the counterfactuals (4–11) do. When B ¼ 0 and

S ¼ 1; E5 entails that were Billy to have thrown, Suzy (still) would have,

B ¼ 1 h! S ¼ 1. But it is consistent with the truth of (4–11) that Suzy wouldn’t

have thrown her rock if Billy had thrown his. That is, it is consistent with (4–11)

that the value of S is determined by the value of B. And if S is determined by B, then

E5 would be incorrect in virtue of missing a necessary determination relation.

The problem with ðV1Þ is that, by itself, it only places a constraint on the

endogenous variables, yet a structural equations model gives us information not

only about the endogenous variables, but about the exogenous variables as well—in

particular, the model tells us that the exogenous variables are counterfactually

independent of each other. On the counterfactual approach, there is a straightfor-

ward fix to this problem: we simply require that each exogenous variables is

counterfactually independent of all the other variables in the model—i.e., at a world

w, for any exogenous variable U 2 U, and any assignment of values x to any

subvector X � ðU � UÞ [ V, were X to take on those values, U would (still) take on

its actual value, Uw.

ðU1Þ 8U 2 U 8X � ðU � UÞ [ V 8x ðX ¼ x h! U ¼ UwÞ

Fig. 4 The system of structural equations E4

Fig. 5 The system of structural
equations E5
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This gives us the following account of the correctness of a causal model M:

ðM1Þ M is correct at w iff:

1: V satisfies ðV1Þ at w
2: U satisfies ðU1Þ at w

That is:M is correct iff (1) for every endogenous variable V 2 V, (a) the value of V
counterfactually depends upon the values of the variables in PAðVÞ in precisely the

manner specified by /V , and (b) holding fixed the value of PAðVÞ;V doesn’t

counterfactually depend upon the values of the variables in ðU [ VÞ � PAðVÞ; and
(2) for every U 2 U, the value of U is counterfactually independent of the values of

the other variables in the model.

3.1 Problems with modularity

In order for a structural equations model to be correct, the equations in E must be

modular—that is, that there be in-principle interventions to set the values of any

subset of U [ V which leaves the structural equations of the non-intervened-upon

endogenous variables intact. The problem is that modularity does not follow from

ðM1Þ alone; nor can we formulate the requirement of modularity in terms of any

finite number of counterfactuals (even when the potential values of the variables in

U [ V are finite).

Distinguish two kinds of modularity: weak and strong. According to weak

modularity, when there is an intervention or interventions to set the values of variables

in a correct causal model, the structural equations of the non-intervened-upon

endogenous variables in the model will still be descriptively adequate. That is, when

we perform hypothetical interventions on the values of the variables in U [ V, taking
us to the world wi, then, for every non-intervened-upon endogenous variable V ,

wi � V ¼ /VðPAðVÞÞ

According to strong modularity, whenever there is an intervention or interventions to

set the values of variables in a correct causal model, the structural equations of the

non-intervened-upon endogenous variables in the model will still be correct. That is,

when we perform hypothetical interventions on the values of the variables in U [ V,
taking us to the world wi, for every non-intervened-upon endogenous variable V ,

wi � V :¼/VðPAðVÞÞ

On the counterfactual account, this means that it must at least be true that

wi � ðV1Þ. That is, for every non-intervened-upon endogenous variable V ,

wi � 8X � U [ ðV � VÞ 8x ðX ¼ x h! V ¼ /VðPAðVÞX¼xÞÞ ð12Þ

ðM1Þ does not guarantee strong modularity because it does not guarantee the truth

of (12) for any endogenous variable V .

To see why, consider again the structural equations model shown in Fig. 4.

For that model, ðM1Þ requires that C ¼ 1 h! D ¼ 1: at all the closest worlds

at which the captain gives the order, the deserter will die, f ðC ¼ 1;@Þ �
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D ¼ 1.11 However, ðM1Þ does not require that f ðC ¼ 1;@Þ � L ¼ 0 h! D ¼ 0. It

does not require that, at all the closest worlds at which the captain gives the order,

whether the deserter dies counterfactually depends upon whether the left rifleman

fires. And that means that ðM1Þ does not require that, at the worlds at which a

hypothetical intervention setting C to 1 occurs, D’s value is still structurally

determined by L’s value. So ðM1Þ will not guarantee that the equations in E are

strongly modular.

Weak modularity is not modularity enough. Structural equations don’t merely

represent accidentally true patterns amongst variable values. They represent

determination relations between variable values. To say that the structural equation

V :¼/ðPAðVÞÞ is unaffected by an intervention on another variable should be to say
that the determination of V by PAðVÞ is unaffected.

Here’s a thought about how to achieve strong modularity: we don’t merely require

that ðV1Þ be satisfied. We additionally require that V meets the following condition.

ðV2Þ 8X � U [ V 8x ðX ¼ x h! ð8W 2 V � X

8Y � U [ ðV �WÞ 8y ðY ¼ y h! W ¼ /WðPAðWÞX¼x;Y¼yÞÞÞÞ
ðV2Þ says that, if there were an intervention to set the values of any set of variables

X, then ðV1Þ would still hold for all the non-intervened-upon variables. This

solution is not satisfying. With this new account, we are told that what it is for a

causal model to be correct is, inter alia, for both ðV1Þ and ðV2Þ to be satisfied. But

while ðV2Þ guarantees that, at the world where the hypothetical intervention occurs,

ðV1Þ will hold, we have as yet no guarantee that, at that world, ðV2Þ will be

satisfied. But if what it is for a structural equation to be correct is for both ðV1Þ and
ðV2Þ to hold, then this account fails to guarantee that the structural equation will still
be correct post-intervention; that is, it fails to secure strong modularity.

It’s actually a bit worse than that. ðM1Þ cannot even guarantee weak modularity.

For it could turn out that, for three variables V1;V2, and V3,

f ðV1 ¼ v1 ^ V2 ¼ v2;@Þ � V3 ¼ /V3
ðPAðV3ÞÞ ð13Þ

even though12

f ðV2 ¼ v2; f ðV1 ¼ v1;@ÞÞ 6� V3 ¼ /V3
ðPAðV3ÞÞ ð14Þ

While ðM1Þ guarantees (13), it is consistent with (14). But this means that ðM1Þ
fails to guarantee that the equations in E will even be descriptively adequate after

multiple sequential interventions. And the number of potential interventions is

unbounded (we can always just set the value of X to x, then set it to x0 6¼ x, then set it

back to x, then back to x0, and so on and so forth, indefinitely). So there is no finite

number of counterfactuals that is sufficient to guarantee that the equations in E are

even weakly modular (even when the number of potential values of the variables in

U [ V is finite).

11 Throughout, I use ‘@’ to denote the actual world.
12 Above, I didn’t define f for sets of worlds. Let’s say that f ðB; f ðA;wÞÞ is the union of f ðB;w0Þ for
every w0 2 f ðA;wÞ.
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4 The nomic sufficiency understanding

In this section, I will suggest that we can retain all of the virtues of the causal

counterfactual understanding of structural equation models, without running into the

problems with modularity raised in Sect. 3.1 above, by moving to an understanding

of structural equations according to which what makes them correct is that they are

descriptively adequate throughout an area of modal space meeting certain

constraints. For instance, an isolated structural equation V :¼/VðPAðVÞÞ is correct
just in case, for every world w in some set of worlds FV ;Vw ¼ /VðPAðVÞwÞ.

A useful orienting picture here is Mackie (1965)’s notion of a causal field.

Mackie argues that causal claims must be evaluated relative to a set of alternate

states of affairs within which the causes are parts of an occurrent minimally

sufficient condition for the effect.13 He calls this set of alternative states of affairs

the causal field. This is roughly how I am thinking of the set of worlds FV . Just as,

on Mackie’s account, the causes are the parts of an occurrent minimally sufficient

condition for the effect within the causal field, on the nomic sufficiency account, the

values of a variable V’s structural parents, PAðVÞ, are minimally sufficient for the

value of V within FV .
14 In virtue of this resemblance, I will call the set of

possibilities FV V’s causal field.

Of course, this is far too rough. For any structural equation /V , it will be easy to

find some set of worlds within which /V is descriptively adequate. A structural

equation according to which my height structurally determines the size of the earth

will be descriptively adequate throughout FV if I only include worlds in FV in

which the earth’s diameter is a constant multiple of my height. But my height does

not determine the size of the earth. The question of which possibilities to consider

when evaluating the determination of one variable by another is a complicated one,

but it is one that is faced by the nomic sufficiency account and the counterfactual

account both. The counterfactual account solves it by appeal to some suitable

selection function f . And I see no reason why the nomic sufficiency account cannot

similarly avail itself of this very selection function—whichever one we fancied for

the counterfactual understanding of structural equations models—to characterize the

worlds which must be included in FV .
15

As a first step, if we’re considering an isolated structural equation

V :¼/VðPAðVÞÞ at a world w, then we can require that, for every assignment x
to any X � PAðVÞ, every world in f ðX ¼ x;wÞ must be included in FV . Similarly, if

13 The condition is minimally sufficient for the effect just in case no subset of the condition is also

sufficient for the effect. The minimal sufficient condition is occurrent iff it actually obtained on the

occasion in question.
14 The values of PAðVÞ are sufficient, and not (or not necessarily) necessary, for the value of V because

two different assignments of values to PAðVÞ could get mapped by /V to the very same value of V .

PAðVÞ must be minimally sufficient for V’s value because we require that /V be a non-constant function

of each of its parents. See fn 5.
15 In fact, the nomic sufficiency account will ultimately require us to assume strictly less about this

selection function than the counterfactual account did. For the theorems proved in the appendix only

require that f satisfy ðf1Þ and ðf3Þ; so the condition ðf2Þ, along with any other constraints on the selection
function, are unnecessary on the nomic sufficiency account.
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we’re considering a structural equation V :¼/VðPAðVÞÞ in a causal model M at a

world w, then we can require that, for every assignment of values x to any

X � U [ ðV � VÞ, all the worlds in f ðX ¼ x;wÞ must be included in FV .

ðF1Þ 8X � U [ ðV � VÞ 8x f ðX ¼ x;wÞ � FV

Putting this together with the requirement that /V be descriptively adequate

throughout FV , we can say that a causal model M ¼ ðU;V; EÞ is correct at a world
w only if ðV3Þ.

ðV3Þ 8V 2 V 9FV such that FV satisfies ðF1Þ and FV � V ¼ /VðPAðVÞÞ

If we stop here, then, in the presence of ðU1Þ, we get an account which is equivalent

to the counterfactual account’s ðV1Þ. That is, given ðU1Þ;M satisfies ðV1Þ iff M
satisfies ðV3Þ. (Theorem 1, proved in the appendix, establishes the equivalence.)

Since this condition on the endogenous variables is equivalent to the counter-

factual account’s, if we stop here, we will run into the problems with modularity

that we encountered in Sect. 3.1. However, we needn’t stop here. We can

additionally require that the condition imposed by ðF1Þ holds, not only for the

world of evaluation, but for every other world in FV as well.

ðF2Þ 8w 2 FV 8X � U [ ðV � VÞ 8x f ðX ¼ x;wÞ � FV

This amounts to the requirement that the set FV is closed under counterfactual

suppositions about the values of any of the variables in U [ ðV � VÞ. At any world

w 2 FV , making counterfactual suppositions about the values of any of the variables

in U [ ðV � VÞ will deliver a set of worlds inside of FV .

Putting this together with the requirement that /V be descriptively adequate

throughout FV , we get an account according to which a causal model M is correct

at a world w only if ðV4Þ.

ðV4Þ 8V 2V 9FV 3w such thatFV satisfies ðF2Þ andFV � V ¼/VðPAðVÞÞ
A structural equation belonging to a causal model satisfying ðV4Þ will continue to

belong to a causal model satisfying ðV4Þ after any number of interventions to set the

values of any of the other variables in the model. In the appendix, I prove the

following theorem.

Theorem 2 Given (f3), if /V belongs to a causal model satisfying ðV4Þ at a world

w0, then /V will continue to belong to a causal model satisfying ðV4Þ after any

number of consecutive hypothetical interventions to set the values of any

X � U [ ðV � VÞ.

This means that the nomic sufficiency account is not subject to the objection I

raised for the counterfactual account in the previous section—viz., that it could not

guarantee that a structural equation /V would continue to be correct after multiple

sequential interventions to set the values of the variables other than V .

In Sect. 3, we saw that a structural equations model says more than just that the

endogenous variables V 2 V are structurally determined by their parents, and are

not structurally determined by any of the other variables in U [ V. It additionally
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says that the exogenous variables aren’t determined by any of the other variables in

U [ V. We can accomplish this within the nomic sufficiency account in the

following way. Say that one model M0 ¼ ðU0;V0; E0Þ eclipses another model

M ¼ ðU;V; EÞ;M M0, iff M0 and M share all the same variables and M0

contains strictly more structural determination relations between those variables.

That is:

M M0 iff:

1: U [ V ¼ U0 [ V0

2: 8V 2 U [ V; PAðVÞ � PA0ðVÞ
3: 9V 2 U [ V; PAðVÞ(PA0ðVÞ

(where ‘PA0ðVÞ’ is a vector of V’s structural parents in the model M0.) Now, we
can enrich our account of the correctness of causal models by requiring that a model

not be eclipsed by any other model which satisfies ðV4Þ.

ðM2Þ M is correct at w iff:

1: M satisfies ðV4Þ at w
2: :9M0 such that M0 satisfies ðV4Þ at w and M M0

Returning to the example of Billy, Suzy, and the window (shown in Fig. 5): if Billy

is eager to see the window shatter, and will throw his rock if (but only if) Suzy

doesn’t throw hers, then, given some assumptions about the selection function f , the

system of structural equations shown in Fig. 6 will satisfy ðV4Þ. (‘x’ is the truth

function 1� x). And this causal model eclipses the model consisting of the sole

structural equation W :¼ S _ B, shown in Fig. 5. So, according to ðM2Þ, the causal
model in Fig. 5 will not be correct, if this one is. So, if Billy’s decision about

whether or not to throw is determined by whether Suzy throws, then the model

consisting of just the equation W :¼ S _ B is not correct. That model tells us that

whether Billy throws isn’t determined by whether Suzy throws, which is false.

4.1 Interventions and modularity

The nomic sufficiency account of causal models affords an understanding of

hypothetical interventions. On this understanding, a hypothetical intervention on an

endogenous variable V is a counterfactual supposition which takes one outside of

the causal field FV , while remaining inside the causal fields of all the other

endogenous variables in the model. Consider, for instance, the causal model of the

captain, the riflemen, and the deserter shown in Fig. 2. Suppose that this causal

model is correct at w0, and that Cw0
¼ 0—the captain doesn’t give the order at w0.

Suppose that we wish to entertain a hypothetical intervention to set the value of L to

1. We know that this is to be modeled in the following way: we take the original

Fig. 6 E6 eclipses E5
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system of structural equations E2 and replace it with E2;L¼1, shown in Fig. 3. In the

mutilated system of equations E2s; L¼1; L does not merely take on the value of 1.

Additionally, the value of L is not structurally determined by the value of C.

Whether the left rifleman fires is not determined by whether the captain gives the

order. This follows immediately from the correctness of the system of equations

E2; L¼1, given ðM2Þ, since if L were still structurally determined by C, then M2; L¼1

would be eclipsed by M2.

Since we’ve said that a structural equation /V is in force at a world w iff w lies

inside of a causal field FV satisfying ðF2Þ, this means that a hypothetical

intervention to set the value of L must take us to a world w1 which lies outside of FL

(since L is not structurally determined by C), but still inside of FR and FD (since D

is still structurally determined by L and R, and R is still structurally determined by

C), as shown in Fig. 7a. This provides a semantic interpretation of what’s going on

when we model an intervention on L by removing Ls’s structural equation and

leaving the other structural equations in place.

It also provides an explanation of why only certain methods of setting the value

of L to 1 count as interventions, and it provides a criterion for distinguishing those

ways of setting the values of the variables which do from those which do not

constitute interventions. For instance, if we were to get the left rifleman to fire by

bribing the captain to give him the order, then this would not constitute an

intervention on L, since it would leave us inside of the causal field FL, as shown in

Fig. 7b. Similarly, suppose that the captain does not want to kill the deserter, but

would welcome an opportunity to let the riflemen blow off some steam. Then, we

might be able to get the left rifleman to fire by putting up a bullet-proof partition

between the riflemen and the deserter. Then, the captain would give the order, and

the left rifleman would fire. Even though this is an intervention which makes the left

rifleman fire, it is not an intervention on on the value of L. Rather, since it leaves L

and R’s determination by C intact, but severs the determination of D by L and R, as

shown in Fig. 7c, it constitutes an intervention on D.

This generalizes. A causal model M will be correct throughout FM ¼def
T

V2V FV .

This is the area of modal space in which every endogenous variable’s structural

equation V 2 V is in force—it is the area in which all of the causal fields of the

endogenous variables overlap. Theorem 3, proved in the appendix, establishes that,

(a) (b) (c)

Fig. 7 Interventions on the nomic sufficiency understanding
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given ðM2Þ, this area of modal space will contain every assignment of values to

U [ V which is consistent with the structural equations in E, and no assignments of

values to U [ V which is inconsistent with the structural equations in E.

Theorem 3 Given (f1), if a causal model M ¼ ðU;V; EÞ is correct according to

ðM2Þ, then FM ¼def
T

V2V FV contains all and only the allowed assignment of values

to the variables in U [ V, where an assignment is allowed just in case it is a solution
to the equations in E.

In particular, this means that, for any assignment of values to the exogenous

variables, there will be some area of modal space inside FM where that assignment

of values is realized. So there are in-principle hypothetical interventions to set the

values of any of the exogenous variables without disrupting any of the structural

determination relations in E.
Moreover, it follows from ðM2Þ, (f3), and the definition of intervention provided

above that, for any correct causal model M ¼ ðU;V; EÞ, any V(V, and any

assignment of values toV, there will always be an area ofmodal spacewhich is outside

the causal fields of all the members of V but still inside the causal fields of all of the

members of V � V, and which contains every possible assignment of values toV [ U.

Theorem 4 Given ðM2Þ and (f3), for any V(V,
\

W 62V
FW �

[

V2V
FV

is non-empty and contains every assignment of values to the variables in V [ U.

This means that, if a structural equations model is correct, according to ðM2Þ,
then there is an in-principle intervention to set any subset of the variables in V to

any assignment of values which will leave the structural equations of the non-

intervened-upon variables intact. This, together with theorems 2 and 3, guarantees

that the structural equations in E are strongly modular.

4.2 Causal counterfactual dependence

ðM2Þ allows us to provide an account of causal counterfactual conditionals in terms

of relations of structural determination. On this account, a causal counterfactual

A h! C is true at a world w iff there is a causal model M, correct at w, such that,

given the exogenous variable assignment Uw, if M is minimally mutilated so as to

make A true, then C is true in the resulting model.

ðh!MÞ A h! C () MA;Uw � C

With this kind of account, we could take structural determination to be more pri-

mitive than causal counterfactual dependence, and use the former to provide an

account of the latter. That is to say: with this account, we need not define causal

counterfactual dependence directly in terms of the selection function; rather, f can

be used to provide truth conditions for M, which can be used to provide truth

conditions for h!.
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The counterfactual understanding, in contrast, retained an account of causal

counterfactual conditionals according to which A h! C is true at the world of

evaluation, w, iff all the worlds in f ðA;wÞ are worlds at which C is true.

ðh!f Þ A h! C () f ðA;wÞ � C

Depending upon our semantics for f , there may be cases in which ðh!MÞ and ðh!f Þ
diverge. Just to fix ideas: consider an account roughly like that of Lewis (1979) or

Maudlin (2007). On Maudlin’s account, f ðA;wÞ is the set of worlds that you get by

performing a surgical alteration onw so as tomakeA true at the relevant time, and then

time-evolving the resulting state of the world forward in time according to the fun-

damental laws of nature. While Lewis (1979)’s account is slightly more complicated,

it will achieve the same results as Maudlin’s in the case I’ll be considering.16

Imagine that I’ve got a tychistically chancy coin—whether it lands heads is not

determined by the previous microphysical state of the universe and the laws of nature;

rather, given that it’s flipped, the previous state of the universe and the laws of nature

assign a probability of one half to the coin landing heads and a probability of one half to

the coin landing tails. I’m going to flip the coin, and I offer you a bet on whether or not

the coin lands heads. I’m an honest player, so if you take the bet and the coin lands

heads, then you’ll win some money. If you take the bet and the coin lands tails, then

you’ll lose some money. If you don’t take the bet, then you’ll neither win nor lose any

money, independent of whether or not the coin lands heads. Let’s stipulate that the

chance that the coin lands heads is unaffected by whether you take the bet. In this

scenario, it appears that the structural equations model shown in Fig. 8 is correct,

whereB is a binary variable that takes the value 1 if you accept the bet and 0 if you don’t

accept the bet,H is a binary variable which takes the value 1 if the coin lands heads and

0 if the coin lands tails, and W is a ternary variable which takes the value 0 if you

neither win nor lose money, 1 if you lose money, and 2 if you win money. Let’s say

that, at the actual world, you refuse the bet and the coin lands heads.

Suppose that we adopt the Maudlin account of the selection function. Then,

ðM1Þ and ðh!f Þ will tell us that this structural equations model is not correct,

since condition ðU1Þ will not be satisfied. ðU1Þ, recall, required that, were some of

the exogenous variables to have taken on different values, the other exogenous

variables would have retained their actual values. However, f ðB ¼ 1;@Þ 6� H ¼ 1,

since when we surgically alter the state of the world so as to make B ¼ 1 true and

time-evolve the resulting state of the world into the future according to the

fundamental laws of nature, there are two possibilities: one in which the coin lands

heads and one in which the coin lands tails. In contrast, the causal model in Fig. 8

will satisfy the second clause of ðM2Þ—(M2, 2)—so long as there is no other

structural equations model which satisfies (M2, 1) according to which W is

determined by B and H, and either B is determined by H or H is determined by B.

Since f ðB ¼ 1;@Þ contains both H ¼ 0 worlds and H ¼ 1 worlds, there will be no

set of worlds containing f ðB ¼ 1;@Þ which entails that H is any function of B. So H

16 At least, Lewis thinks that it achieves the same results; but see Elga (2001) for a persuasive argument

to the contrary.
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is not determined by B, according to (M2, 1). Assuming that, under the

counterfactual supposition that the coin lands tails, you still refused the bet, the

structural equations model shown in Fig. 8 will satisfy (M2, 2).

Of course, there’s no reason that the counterfactual account can’t replace ðU1Þ
with the requirement that a causal model be uneclipsed. On an account like this, a

model M ¼ ðU;V; EÞ will be correct iff V satisfies ðV1Þ and there is no other

structural equations model M0 which satisfies ðV1Þ and eclipses M. Even this

emended counterfactual account will fail to say that the system of equations in Fig.

8 is correct. For f ðB ¼ 1;@Þ 6� W ¼ 2, since there are some worlds in f ðB ¼ 1;@Þ
where the coin lands tails and you therefore lose the bet. So, ðV1Þ, wedded with a

Maudlin-esque account of the selection function, entails that the system of structural

equations in Fig. 8 is incorrect.

Independent of its ability to vindicate the system of structural equations E8, the

fact that this account of the selection function, together with ðh!f Þ, entails the

falsity of B ¼ 1 h! W ¼ 2 strikes me, as it has struck many,17 as the wrong result.

Whether the coin lands heads is entirely unaffected by whether you took the bet.

Since the coin actually landed heads, if you had taken the bet, you would have won.

Now, there are moves to be pulled here—we can alter our account of the selection

function so that, if the coin actually lands heads, then only the worlds where the coin

lands heads are included in f ðB ¼ 1;@Þ. Note, however, that the account consisting
of ðM2Þ and ðh!MÞ need not avail itself of those maneuvers. Even with the bare

Maudlin account of the selection function, that account entails that, were you to take

the bet, you would have won. According to ðM2Þ, the correctness of the structural

equations model in Fig. 8 does not depend upon whether the worlds in f ðB ¼ 1;@Þ
are worlds in which the coin lands heads or tails, or whether they are worlds in

which you win or lose. ðM2Þ only requires that, at all the worlds in f ðB ¼ 1;@Þ at
which the coin lands tails, you lose; and that, at all the worlds in f ðB ¼ 1;@Þ at

which the coin lands heads, you win. Assuming that similar remarks apply to all the

other worlds in FW , the structural determination relations shown in Fig. 8 will be in

force. Then, those structural determination relations will entail, via ðh!MÞ,
that B ¼ 1 h! W ¼ 2. So, according to ðM2Þ and ðh!MÞ, it is possible for a

counterfactual A h! C to be true at a world w, even though f ðA;wÞ 6� C. (See

Fig. 9).

This is not easily mimicked by the counterfactual account, for that account is

committed to both ðh!MÞ and ðh!f Þ. For instance, the counterfactual theorist

might want to attempt to adopt the nomic sufficiency account’s treatment of the coin

toss case by emending ðV1Þ to read:

Fig. 8 The system of structural
equations E8

17 See Bennett (2003, ch.15) and Kment (2006).
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ðV5Þ 8V 2 V 8X � U [ ðV � VÞ 8x ðX ¼ x h! V ¼ /VðPAðVÞÞÞ

ðV5Þ, unlike ðV1Þ, does not require that, were X to take on the values x;V would

take on the value it is given in the mutilated model MX¼x, with the actual as-

signment of values to the exogenous variables. It simply requires that, whatever

values V’s parent variables end up taking on when the values of X change, the value

of V remains a function /V of those values. This would allow the counterfactual

theorist to agree with the nomic sufficiency theorist that were you to have taken the

bet, you would have won, B ¼ 1 h! W ¼ 2. However, since the counterfactual

theorist is still committed to ðh!f Þ, so long as they retain the simple Maudlin

account of the selections function, they must also deny that were you to have taken

the bet, you would have won, since f ðB ¼ 1;@Þ 6� W ¼ 2. And this is a straight-

forward contradiction.

The counterfactual theorist might want to respond to these kinds of consid-

erations by denying ðh!f Þ, and reformulating their account of the correctness

conditions of causal models directly in terms of the selection function f , saying

nothing of counterfactuals. That is, they could replace ðV5Þ with ðV6Þ.
ðV6Þ 8V 2 V 8X � U [ ðV � VÞ 8x f ðX ¼ x;@Þ � V ¼ /VðPAðVÞÞ

It follows from Lemmas 1 and 2 (Sect. 6) that, in the presence of ðU1Þ; ðV6Þ is

equivalent to ðV1Þ. Of course, we just encountered reason for such a theorist to

abandon ðU1Þ—namely that, together with the Maudlin-esque account of f , it is

inconsistent with the correctness of E8. And once ðU1Þ has been replaced with a

condition along the lines of (M2, 2), ðV6Þ will no longer be equivalent to ðV1Þ.18
Given that it denies any direct connection between f and counterfactual conditionals,

we might well wonder whether the resulting account deserves the name ‘counter-

factual’ any longer, but put that question to the side. Whatever we call the resulting

account, it is only able to avoid complicating its account of f by inching ever closer to

the nomic sufficiency account. The only thing separating the two accounts at this

point is the nomic sufficiency account’s closure condition, ðF2Þ. This is the aspect of
the account which solves the problems with modularity raised in Sect. 3.1 above. It

appears that any counterfactual account built around ðV6Þ which was able to solve

those problems with modularity would end up being equivalent to (or would entail)

the nomic sufficiency account. For it appears that the only way to solve those

Fig. 9 The relationship
between the causal field FW , the

selection function f , and the
counterfactual
B ¼ 1 h! W ¼ 2

18 The case currently under discussion provides a counterexample to the equivalence.
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problems is to impose a constraint on which worlds are reachable by repeated

counterfactual supposition; for worlds that are so reachable, put them in the set FV ,

and modularity will then guarantee that FV � V ¼ /VðPAðVÞÞ. If that’s right, then
such an account would impose all the same constraints as the nomic sufficiency

account; and counterfactual theorists would have mimicked nomic sufficiency the-

orists only by becoming nomic sufficiency theorists themselves.

4.3 A remaining worry

Above, I defined modularity as the thesis that any number of interventions on a set of

variables V leaves the structural equations associated with every endogenous vari-

able V 62 V unaffected. Theorems 2–4 guarantee that a correct system of structural

equations will be modular in this sense. Note, however, that modularity does not

guarantee that there will always be an intervention on a set of variables V such that,

post-intervention, the variables in V are no longer determined by any of the variables

in PAðVÞ. For a schematic example, consider the causal fields shown in Fig. 10. In

that diagram, the causal modelM will be correct at the world w0 2 FM ¼def
T

V2V FV .

Now, theorem 4 guarantees us that there is a set of worlds f ðV ¼ v;w0Þ which lie

outside of
S

V2V FV , yet inside of
T

U 62V FU , and at which V ¼ v, for any assignment

v. However, we have no guarantee that this set of worlds doesn’t lie within some

other causal field F0
V such that F0

V � V ¼ /0
VðPAðVÞ; . . .Þ, for some V 2 V. And

that means that, even though we have a guarantee that an intervention on a set of

variables will sever the actual structural determination relations between V and

PAðVÞ, we don’t have any guarantee that the intervention won’t make it the case that

some other structural determination relations link PAðVÞ to V .

For a concrete example which might give rise to a case like this, consider the

steam vent illustrated in Fig. 11. There, a switch, which may be placed to the left or to

the right, will either divert the steam to the left or the right. (If the switch is left, the

steam will go right, as shown in Fig. 11a; if the switch is right, the steam will go left,

as shown in Fig. 11b). There is a lid on the right steam vent. If the steam is directed up

to the right vent, then the lid will heat up. Consider the variables S and L. S is 1 if the

switch is to the left, and is 0 if the switch is to the right. L is 1 if the lid is hot and is 0 if

the lid is not hot. When the system is as depicted in Fig. 11a, the structural equation

L :¼ S will be in force. Whether the lid is hot is determined by whether the switch is

to the left or right. In Fig. 11a, both S and L will be 1. Now, suppose that the lid is

Fig. 10 On the nomic
sufficiency account, an
intervened-upon variable may
still be determined by its
structural parents

A theory of structural determination 179

123



attached to a hinge, so that it can be pivoted to sit atop either the left or the right steam

vent. There is then an intervention we may perform to set L to 0. That is, there is a

method for making the lid not hot which will take us outside of the causal field FL.

We may simply pivot the lid on its hinge to put it atop the left steam vent, as in Fig.

11c. Then, it will no longer be the case that L ¼ 1, nor will it be the case that S

determines L according to the equation L :¼ S. However, even after this intervention

has taken place, the value of S will determine the value of L. It will now do so

according to the equation L :¼ S. If the switch is set to the left, then the lid will not be

hot, and if the switch is set to the right, then the lid will be hot.

Given the account of interventions provided in Sect. 4.1 above, this will count as

an intervention on the value of L. However, it would be inappropriate to model the

result of this intervention by mutilating the model, removing L’s structural equation,

and replacing it with nothing. For, in order for the mutilated model to be correct, it

must be uneclipsed by any correct structural equations model. And, in this case, the

mutilated model in which S does not structurally determine L would be eclipsed by

the model containing the equation L :¼ S.

Cases such as these might also make trouble for ðh!MÞ, as ðh!MÞ would

predict that, if we are in the situation depicted in Fig. 11a, then, were the lid to not

be hot, then, if the switch were moved to the right, the lid would not be hot—

L ¼ 0 h! ðS ¼ 0 h! L ¼ 0Þ. However, if we think that there are worlds in f ðL ¼
0;@Þ at which the lid has been pivoted on its hinge, then we might think that this

counterfactual should be false.

It is unclear whether this ought to be regarded as a problem for the nomic

sufficiency account. To the extent that one is inclined to think that f ðL ¼ 0;@Þ
includes worlds at which the lid has been pivoted on its hinge, it seems to me

entirely correct to say that we ought not model an intervention on L which pivots the

lid on its hinge by removing the structural determination relation between L and S,

and it seems a mark in the nomic sufficiency account’s favor that it says so. To the

extent that one is inclined to think that f ðL ¼ 0;@Þ contains worlds at which the lid

is removed from its hinge, or perhaps worlds at which some kind of Lewisian

(a) (b) (c)

Fig. 11 An example of how an intervened-upon variable may still be determined by its structural parents

180 J. D. Gallow

123



miracle keeps the lid from getting hot even though the steam is being directed up

towards it, it seems entirely correct to model this kind of intervention by removing

the structural determination relation between S and L. Once there is a miracle to set

L to 0, changes in the value of S will not affect the value of L, so long as God’s hand

is steady. If one is unhappy with the possibility of L being determined by S post-

intervention, then one may simply require that f ðL ¼ 0;@Þ contain only worlds at

which Lewisian miracles determine the value of L. Of course, nothing in the account

guarantees that there will always be some possible Lewisian miracle which will

constitute an intervention. However, if there are cases in which Lewisian miracle

interventions are impossible, then I’m inclined to say just what I said above about

the case in which f ðL ¼ 0;@Þ contained worlds at which the lid was pivoted on its

hinge: in such cases, it is incorrect to model the result of the intervention by

mutilating the model, and it would be a mark against an account of structural

determination if it said otherwise. So my settled judgment is that this is a feature,

rather than a bug, of the nomic sufficiency account.

Somewill disagree. Theywill have the following reaction to this case: the structural

equationsmodel containing just the equation L :¼ S ought not be deemed correct by an

account of structural determination. For there is another, better, model which contains

an additional variable describing the position of the lid. For instance, if we use the

variableP, which is 1 if the lid is pivoted to the left and 0 if the lid is pivoted to the right,

then the model ððS;PÞ; ðLÞ; ðL :¼ SYPÞÞ will be correct.19;20 I agree that this new

model is correct; however, it appears tome that, so long as the lid is pivoted to the right,

the original model is correct, too. And I see no reason why these two models cannot

both be correct together. There are a great many structural equations models to which

we could, if we chose, add additional exogenous variables, but they are none the worse

for that. A model in which whether the match lights is determined by whether it is

struck is correct, even thoughwe could add to it an additional variable for the presence

of oxygen. We often wish to ignore certain background properties of the world which

determine an outcome; and an account of structural equations models ought to permit

this. However, if one is not persuaded by these considerations, and one wishes to rule

out structural equations like L :¼ S when there are correct structural equations like

L :¼ SYP to replace them, then the nomic sufficiency account could be emended to

achieve this in a variety of ways.21 From my perspective, such emendations are

unnecessary and ill-advised; but I would not be surprised to learn that others disagree.

5 In summation

After developing the counterfactual understanding of structural determination, I

argued that it faces difficulties in securing the modularity of structural determination

relations. I advanced an alternate understanding of structural determination and I

19 xY y is the exclusive ‘or’, which is 1 iff x 6¼ y.
20 Thanks to an anonymous reviewer for pressing me to consider this objection.
21 For one: we could simply emend the definition of eclipsing by removing condition (1).

A theory of structural determination 181

123



demonstrated that it guarantees that structural determination relations are modular. I

showed that it provides a clear and straightforward way of thinking about

hypothetical interventions, as well as a criterion for distinguishing hypothetical

changes in the values of variables which constitute interventions from those that do

not. By treating structural determination relations as more fundamental than causal

counterfactuals, the resulting theory was able to yield a clean solution to a problem

case for ‘closest possible world’ semantics for counterfactuals.

Acknowledgments I am indebted to Gordon Belot, Allan Gibbard, Jim Joyce, Brian Weatherson, and

an anonymous reviewer for helpful conversations and feedback on this material.

Appendix

Define the rank of a variable V 2 U [ V recursively as follows:

rankðVÞ ¼ 0 () V 2 U
rankðVÞ ¼ k þ 1 () maxfrankðPÞ : P 2 PAðVÞg ¼ k

Graphically, a variable’s rank is the largest number of edges lying between that

variable and an exogenous variable along a directed path. Let ‘RankðiÞ’ denote the
set of all variables of rank i, and let ‘Rankði; j; . . .; kÞ’ denote the union

RankðiÞ [ RankðjÞ [ . . . [ RankðkÞ.

Lemma 1 Given ðV1Þ, ðU1Þ, and ðf1Þ, for all V 2 V, all X � U [ ðV � VÞ, all x,
and all w0 2 f ðX ¼ x;wÞ; PAðVÞw0 ¼ PAðVÞX¼x, where PAðVÞX¼x assigns the

values to PAðVÞ determined by the structural equations in E �
S

ið/Xi
Þ, for every

endogenous Xi 2 X, and ðU � XÞw [ x.

Proof By induction on the rank of the variables in V. h

Base case For all V 2 Rankð1Þ, all X � U [ ðV � VÞ, all x, and all

w0 2 f ðX ¼ x;wÞ; PAðVÞw0 ¼ PAðVÞX¼x.

Proof If rankðVÞ ¼ 1, then every P 2 PAðVÞ is exogenous. Without loss of

generality, consider one P 2 PAðVÞ. If P 2 X, then f ðX ¼ x;wÞ � P ¼ PX¼x (the

value assigned to P by x), by ðf1Þ. If P 62 X, then f ðX ¼ x;wÞ � P ¼ Pw, by ðU1Þ.
In either case, P takes on the value assigned to it by PAðVÞX¼x. h

Inductive step If for all V 2 Rankð1; 2; . . .; kÞ, it is true that, for all

X � U [ ðV � VÞ, all x, and all w0 2 f ðX ¼ x;wÞ; PAðVÞw0 ¼ PAðVÞX¼x, then for

all V 2 Rankðk þ 1Þ, it will be true that, for all X � U [ ðV � VÞ, all x, and all

w0 2 f ðX ¼ x;wÞ; PAðVÞw0 ¼ PAðVÞX¼x.

Proof Without loss of generality, consider one V 2 Rankðk þ 1Þ, one

X � U [ ðV � VÞ, one x, and one P 2 PAðVÞ. Either P 2 X or P 62 X. Suppose that
P 2 X. Then, f ðX ¼ x;wÞ � P ¼ PX¼x, by ðf1Þ. If P 62 X, then, since

rankðPÞ 6 k;PAðPÞw0 ¼ PAðPÞX¼x, for all w
0 2 f ðX ¼ x;wÞ, by the inductive hy-

pothesis (since P 62 X;X � U [ ðV � PÞ). Then, ðV1Þ guarantees that
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f ðX ¼ x;wÞ � P ¼ /PðPAðPÞX¼x). So, whether P 2 X or P 62 X;P takes on the

value PX¼x at every w0 2 f ðX ¼ x;wÞ. Since P;V;X, and x were arbitrary, for all

V 2 Rankðk þ 1Þ, all X � U [ ðV � VÞ, and all x;PAðVÞw0 ¼ PAðVÞX¼x for every

w0 2 f ðX ¼ x;wÞ. h

Lemma 2 Given ðV3Þ, ðU1Þ, and ðf1Þ, for all V 2 V, all X � U [ ðV � VÞ, all x,
and all w0 2 f ðX ¼ x;wÞ; PAðVÞw0 ¼ PAðVÞX¼x, where PAðVÞX¼x assigns the

values to PAðVÞ determined by the assignment of values ðU � XÞw [ x and the

structural equations in E �
S

ið/Xi
Þ, for every endogenous Xi 2 X.

Proof By induction on the rank of the variables in V. h

Base case For all V 2 Rankð1Þ, all X � U [ ðV � VÞ, all x, and all

w0 2 f ðX ¼ x;wÞ; PAðVÞw0 ¼ PAðVÞX¼x.

Proof Consider, without loss of generality, a variable V 2 Rankð1Þ. Since V’s

rank is 1, every P 2 PAðVÞ is exogenous. If P 2 X, then f ðX ¼ x;wÞ � P ¼ PX¼x

(the value assigned to X by x), by ðf1Þ. If P 62 X, then f ðX ¼ x;wÞ � P ¼ Pw, by

ðU1Þ. In either case, P takes on the value assigned to it by PAðVÞX¼x. h

Inductive step If for all V 2 Rankð1; 2; . . .; kÞ, it is true that, for all

X � U [ ðV � VÞ, all x, and all w0 2 f ðX ¼ x;wÞ; PAðVÞw0 ¼ PAðVÞX¼x, then for

all V 2 Rankðk þ 1Þ, it will be true that, for all X � U [ ðV � VÞ, all x, and all

w0 2 f ðX ¼ x;wÞ; PAðVÞw0 ¼ PAðVÞX¼x.

Proof Without loss of generality, consider one V 2 Rankðk þ 1Þ, one

X � U [ ðV � VÞ, one x, and one P 2 PAðVÞ. Either P 2 X or P 62 X. Suppose that
P 2 X. Then, f ðX ¼ x;wÞ � P ¼ PX¼x, by ðf1Þ. If P 62 X, then, since

rankðPÞ 6 k;PAðPÞw0 ¼ PAðPÞX¼x, for all w
0 2 f ðX ¼ x;wÞ, by the inductive hy-

pothesis (since P 62 X;X � U [ ðV � PÞ). Then, ðV3Þ and ðF1Þ guarantee that f ðX ¼
x;wÞ � FP andFP � P ¼ /PðPAðPÞÞ. So f ðX ¼ x;wÞ � P ¼ /PðPAðPÞX¼xÞ: So,
whether P 2 X or P 62 X;P takes on the value PX¼x at every w

0 2 f ðX ¼ x;wÞ. Since
P;V ;X, and x were arbitrary, for all V 2 Rankðk þ 1Þ, all X � U [ ðV � VÞ, and all
x;PAðVÞw0 ¼ PAðVÞX¼x for every w0 2 f ðX ¼ x;wÞ. h

Theorem 1 Given (f1), in a causal model M ¼ ðU;V; EÞ, if U satisfies ðU1Þ, then
V satisfies ðV3Þ iff V satisfies ðV1Þ.

Proof First assume that V satisfies ðV1Þ. Then, we know that for all V 2 V, all
X � U [ ðV � VÞ, and all assignments x to X,

f ðX ¼ x;wÞ � V ¼ /VðPAðVÞX¼xÞ

By Lemma 1, it then follows that

8w0 2 f ðX ¼ x;wÞ;Vw0 ¼ /VðPAðVÞw0 Þ

So

f ðX ¼ x;wÞ � V ¼ /VðPAðVÞÞ
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So, if for every V , every X � U [ ðV � VÞ, and every x, we include every w0 2
f ðX ¼ x;wÞ in FV , then we will have a set FV which satisfies ðF1Þ and which

entails that V ¼ /VðPAðVÞÞ. So every V 2 V will satisfy ðV3Þ.
To establish the other direction, assume that V satisfies ðV3Þ. Then, for every

V 2 V, every X � U [ ðV � VÞ, and every x; f ðX ¼ x;wÞ 2 FV and

FV � V ¼ /VðPAðVÞÞ. By Lemma 2, it then follows that, for all V ;X, and x,

f ðX ¼ x;wÞ � V ¼ /VðPAðVÞX¼xÞ

So V must satisfy ðV1Þ as well. h

Theorem 2 Given (f3), if /V belongs to a causal model satisfying ðV4Þ at a world

w0, then /V will continue to belong to a causal model satisfying ðV4Þ after any

number of consecutive hypothetical interventions to set the values of any

X � U [ ðV � VÞ.

Proof By induction on the number of interventions. h

Inductive step If /V belongs to a causal model satisfying ðV4Þ at world wk after k

interventions to set the values of any X � U [ ðV � VÞ, then /V will belong to a

causal model satisfying ðV4Þ at the world wkþ1 where there is a k þ 1st intervention

to set the values of any X � U [ ðV � VÞ.

Proof By the inductive hypothesis, /V belongs to a causal model satisfying ðV4Þ
at wk. This means that there must exist a set of worlds FV which satisfies ðF2Þ and
which contains wk. By ðf3Þ, an intervention setting the value of some X �
U [ ðV � VÞ to x must take us to a world wkþ1 2 f ðX ¼ x;wkÞ. Since wk 2
FV ; ðF2Þ guarantees that f ðX ¼ x;wkÞ � FV , so wkþ1 2 FV as well. And, by as-

sumption, FV � V ¼ /VðPAðVÞÞ. So there is a FV 3 wkþ1 such that FV satisfies

ðF2Þ and FV � V ¼ /VðPAðVÞÞ. As /V was arbitrary, the same holds for every

V 0 62 X. So, ðV4Þ will hold at wkþ1. So /V will belong to a causal model satisfying

ðV4Þ at wkþ1.

Setting k ¼ 0 in the proof of the inductive step establishes the base case. h

Theorem 3 Given (f1), if a causal model M ¼ ðU;V; EÞ is correct according to

ðM2Þ, then FM ¼def
T

V2V FV contains all and only allowed assignment of values to

the variables V 2 U [ V, where an assignment is allowed just in case it is a solution

to the equations in E.

Proof The proof proceeds by induction on the rank of the variables in V. h

Base case FM contains all and only allowed assignment of values to the variables

in Rankð0Þ.

Proof For every V 2 V;FV contains f ðU ¼ u;wÞ, for every assignment u to U,
and every w 2 FV . So FM contains f ðU ¼ u;wÞ, for every assignment u to U and

every w 2 FM. If U 2 Rankð0Þ, then U is exogenous, U 2 U. Every assignment of

values to the exogenous variables is allowed. So FM contains all and only allowed

assignments to the variables in Rankð0Þ. h
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Inductive step If FM contains all and only allowed assignment of values to the

variables in Rankð0; 1; . . .; kÞ, then it contains all and only allowed assignment of

values to the variables in Rankð0; 1; . . .; k; k þ 1Þ.

Proof Take an arbitrary V 2 Rankðk þ 1Þ. Since PAðVÞ � Rankð0; 1; . . .; kÞ, the
inductive hypothesis gets us that every and only the allowed assignment of values to

PAðVÞ are realized in FM. And because M is correct, Vw ¼ /ðPAðVÞwÞ, for every
w 2 FV . Since FM � FV , this means that Vw ¼ /ðPAðVÞwÞ for every w 2 FM as

well. So FM contains all and only the allowed values of V . Since V was arbitrary,

the above holds for every V 2 Rankðk þ 1Þ. h

Theorem 4 Given ðM2Þ and (f3), for any V(V,
\

W 62V
FW �

[

V2V
FV

is non-empty and contains every assignment of values to the variables in V [ U.

Proof Take an arbitrary V(V, an arbitrary assignment of values v to V, an
arbitrary W 62 V, and an arbitrary assignment u to U. Then, FW contains worlds at

which V [ U is set to v [ u by an intervention, by ðF2Þ and ðf3Þ. These worlds are
not in

S
V2V FV , by the definition of an intervention. Since W ;V; v;u, and V were

arbitrary, for everyW 62 V, every u, and every V 2 V, there are worlds in FW which

are not in FV and at which the value of V [ U is set to any value v [ u. Thus,
T

W 62V FW �
S

V2V FV is non-empty and contains every assignment of values to the

variables in V [ U . h
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