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Abstract
Background Machine learning algorithms (MLAs) carry a huge potential in identifying predicting factors and are being 
explored for their utility in the field of personalized medicine.
Aim We aimed to investigate MLAs for identifying predictors (clinical and genetic) of poor anticoagulation status (ACS) 
and stable weekly warfarin dose (SWWD).
Method Clinical factors, in addition to the CYP2C9, VKORC1, and CYP4F2 genotypes, were obtained for patients receiv-
ing warfarin for at least the previous six months. The C5.0 decision tree classification algorithm was used to predict poor 
ACS while classification and regression tree analysis (CART), in addition to the Chi-square automatic interaction detector 
(CHAID), was used to predict SWWD. The percentage of patients within 20% of the actual dose, root mean squared error 
(RMSE), and area under the receiver-operating characteristics curve (AUROC) were identified as performance indicators 
of the models.
Results In the C5.0 classification decision tree, the CYP4F2 genotype was the strongest predictor of ACS (AUROC = 0.53). 
In the CART analysis of SWWD, VKORC1 polymorphisms were the most significant predictor, followed by the CYP2C9 
genotype (percentage of patients within 20% of the actual dose = 38.2%, RMSE = 13.6). For the CHAID algorithm, the 
percentage of patients within 20% of the actual dose was 49%, while the RMSE was found to be 13.4.
Conclusion Genetic and non-genetic predictive factors were identified by the MLAs for ACS and SWWD. Further, the need 
to externally validate the MLAs in a prospective study was highlighted.
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Impact statements

• Machine learning algorithms play a vital role in the 
implementation of personalized medicine and can be 
used to predict the clinically relevant therapeutic out-
comes with warfarin.

• Genotyping for CYP2C9, VKORC1, and CYP4F2 poly-
morphisms aid in identifying patients who are likely to 
have poor anticoagulation control with warfarin as well 
in determining the appropriate dose.

Introduction

Warfarin, the most widely-used anticoagulant drug, charac-
terizes certain challenges in terms of clinical use due to its 
narrow therapeutic window and wide inter-individual vari-
ability [1–3]. Anticoagulation control has been identified as 
a predictor of the health-related quality of life for patients 
who use warfarin [4].

Warfarin is one of the few drugs for which the clinical 
utility of pharmacogenetics measures is established. Single 
nucleotide polymorphisms (SNPs) in the cytochrome P 450 
2C9 (CYP2C9), vitamin K epoxide reductase complex 1 
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(VKORC1), and CYP4F2 metabolizing enzymes, in conjunc-
tion with non-genetic factors, explain around two-thirds of 
the variability in warfarin dosing [5]. Genotype-based dos-
ing has been demonstrated to improve the prediction of the 
therapeutic dose for warfarin, relative to clinical algorithms 
[6]. We reported that patients with specific genotypes of 
CYP2C9, VKORC1, and CYP4F2 required a reduced stable 
weekly warfarin dose (SWWD), showed higher variability 
in the prothrombin time-international normalized ratio (PT-
INR), and characterized an increased risk of bleeding [7].

A recent systematic review reported that nearly 80% of 
warfarin dosing algorithms were directed toward dose initia-
tion and that most of these algorithms were developed using 
multiple linear regression and employed in the context of 
Asians/Whites [8]. Another recent review on various dos-
ing methods revealed conflicting results due to differences 
in the study population, dosing regimen, and estimation of 
outcomes [9]. Time spent in the therapeutic range (TTR) 
is a vital clinical endpoint that determines both the sub-
therapeutic (leading to thrombosis) and supra-therapeutic 
effects (leading to bleeding episodes) of warfarin. Neverthe-
less, algorithms to predict TTR with the use of clinical and 
genetic factors have not been widely investigated, relative 
to other literature.

Machine learning algorithms (MLAs), which have 
recently emerged as a promising method to model drug 
responses in the field of pharmacogenetics and pharmaco-
metrics, employ data-driven models that aim to predict out-
comes after being trained using a data set [10, 11]. Machine 
learning algorithms were found to be useful in the context of 
major depressive disorders and cancer states [12, 13]. They 
also demonstrate great potential for implementing personal-
ized medication therapy [14].

While several studies have evaluated machine learning for 
warfarin therapy using non-genetic factors, there is a dearth 
of research that uses genetic factors as predictors [15–17]. 
Moreover, anti-coagulation status (ACS), an important clini-
cal outcome variable, has hardly been investigated, as only 
one study has evaluated the non-genetic factors that con-
tribute to it [17]. We conducted a pharmacogenetic study to 
evaluate the association between genetic polymorphisms of 
CYP2C9, VKORC1, and CYP4F2 with clinically significant 
outcomes [7]. The primary objective of the current study 
was to evaluate the application of the decision-tree proce-
dure in creating tree-based classification models to predict 
ACS and SWWD outcome variables. Classification and 
regression tree (CART), chi-square automatic interaction 
detector (CHAID), and C5.0 algorithms are commonly used 
decision tree models [18]. Further, we compared the findings 
with those of the international warfarin pharmacogenetics 
consortium (IWPC) dataset [19].

Aim

To identify factors (clinical and genetic) that predict the poor 
ACS and SWWD with the use of supervised MLAs.

Ethics approval

The current study was conducted as part of a warfarin phar-
macogenomics research approved by the Institutional Ethics 
Committee (E024-PI-11/18) on April 22, 2019.

Method

Study procedure

This cross-sectional study was carried out in the Depart-
ment of Cardiology, Salmaniya Medical Complex (a 
tertiary care hospital), Kingdom of Bahrain, from Sep-
tember 2019 until November 2020. Written consent was 
obtained from the study participants. We adhered to the 
Transparent Reporting of a multivariable prediction 
model for Individual Prognosis or Diagnosis (TRIPOD) 
guidelines [20].

Patients who received warfarin for at least the previous 
six months were included. Age, sex, comorbidities, warfa-
rin dosage regimen, PT-INR, and concomitant drugs were 
obtained for all participants. Further, congestive heart fail-
ure, hypertension, age, diabetes, stroke, sex, vascular disease 
 (CHA2DS2-VASc) scores; hypertension, abnormal liver or 
renal function, stroke, bleeding, labile INRs, elderly, drugs/
alcohol (HASBLED) scores; and sex, age, medical history, 
treatment, tobacco use, and race (SAMe-TT2R2) scores were 
estimated. The following concomitant drugs were consid-
ered to interact with warfarin: statins, proton pump inhibi-
tors, carbamazepine, phenytoin, valproic acid, and amiodar-
one [21].

The genetic polymorphisms in CYP2C9 (rs1799853 
and rs1057910), VKORC1 (rs9923231), and CYP4F2 
(rs2108622) were obtained using the allele discrimination 
genotyping methods, as previously described [7].

IWPC dataset

The IWPC dataset was obtained from the PharmGKB 
website [22]. Cases, where one or more of the following 
variables were unavailable, were excluded: age group, drug 
interaction, PT-INR, VKORC1, and CYP2C9 genotypes. 
Smokers were excluded, such that our population included 
only non-smokers.
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In the IWPC data, age was coded as a categorical variable 
in 10 year intervals. Hence, for machine learning analyses, 
age was categorized as follows: young: < 40 years; middle-
aged: ≥ 40 to 69 years; and elderly: ≥ 70 years.

Outcomes

The warfarin therapeutic range was defined as 2.5–3.5 for 
subjects who underwent mechanical valve replacement sur-
gery. For other indications, the therapeutic range was defined 
as 2–3 [23].

Time spent in the therapeutic range (TTR) was obtained 
by the Rosendaal method [24]. Individuals with TTR ≥ 70% 
were categorized as having adequate ACS while those with 
TTR < 70% were categorized as poor ACS [25].

The warfarin dose was considered stable when two con-
secutive PT-INR values with a gap of at least 1 week were 
observed in the therapeutic range from the start of the war-
farin therapy [26].

The SWWD from the IWPC dataset was analyzed for 
comparison with the Bahraini data. TTR was not available 
in the IWPC dataset.

Machine learning analyses

SPSS version 28 (IBM Corp. Released 2020. IBM SPSS 
Statistics for Windows, Version 27.0. Armonk, NY: IBM 
Corp.) and SPSS Modeler version 18 were used for machine 
learning analysis.

The datasets were partitioned (80:20) across training and 
testing cohorts.

Median with interquartile ranges (IQR) was used to repre-
sent the numerical variables. The median differences of con-
tinuous variables between the training and testing cohorts 
were evaluated using the Mann–Whitney U test. The chi-
square test was used for categorical variables.

Ages were categorized as follows: < 40 years (young); 
40 to < 65 years (middle-aged); and ≥ 65 years (elderly) for 
the dataset associated with the Bahraini population. Due to 
the small numbers in various categories of single nucleotide 
polymorphisms (SNPs), they were considered as a single 
entity for the analysis of anticoagulation control. Predictors 
included were CYP2C9, VKORC1, and CYP4F2 genotypes, 
age, gender, and the presence of concomitant interacting 
drugs. All predictors in the study were categorical variables.

The C5.0 decision tree classification algorithm was used 
to predict poor ACS outcomes. CART and CHAID analy-
ses were used to predict SWWD in the Bahraini population 
and the IWPC dataset. These models were selected as they 
characterized the least errors relative to the conventional 
regression models. Linear regression analysis was carried 

out with SWWD as the dependent variable and the above-
mentioned predictors as the independent variables.

The comparison of algorithms for SWWD was evaluated 
with the percentage of predicted doses within 20% of the 
actual dose (PPD-20%AD), as previous studies considered 
this threshold to be clinically significant [15].

Logistic regression analyses were carried out with the 
MLA to predict ACS, as well as for those who had their 
algorithm-predicted stable doses within 20% of the actual 
dose. The root mean squared error (RMSE), calculated as the 
square root of the mean of squared differences between the 
actual and algorithm-predicted doses was estimated along 
with the mean absolute error (MAE). The relationship with 
the anticoagulation status (adequate/poor) is expressed in 
terms of odds ratio (OR) with 95% confidence intervals 
(95% CI). The area under the receiver-operating character-
istics curve (AUROC) was used to estimate model-predicted 
poor anticoagulation status, relative to the actual status. As 
per the sample size recommendation from the TRIPOD 
guidelines, a minimum of 10 participants are required per 
predictor parameter of each candidate [20]. Thus, with a 
total of six predictors in the present study, the minimum 
estimated sample size was 60.

Results

Demographic characteristics

The 232 study participants had a median age of 69 (IQR: 
57–76) years. The other demographic characteristics have 
been summarized in Electronic Supplementary Table 1. 
The medians (IQR) for  CHA2DS2-VASc, HASBLED, and 
SAMe-TT2R2 scores were 4 (3–4), 2 (1.75–3), and 1 (1–2), 
respectively.

The analysis of the group with SWWD included 218 
patients; 14 patients who did not achieve stable therapeutic 
control were excluded.

The training (n = 173 for ACS and n = 163 subjects 
for SWWD) and testing cohorts were found to be similar 
(Table 1).

The sample size of included subjects for the IWPC data-
set was n = 1962 out of a possible n = 5700. The following 
factors constituted the rationale for excluding data on 3738 
subjects: patients were smokers (n = 2929); data were una-
vailable for the CYP2C9 genotype (n = 50); characterized 
VKORC1 1639 genotyping (n = 513), were not from the rel-
evant age group (n = 1); were characterized by undesirable 
concomitant medications (n = 85); and PT-INR (n = 160). 
Characteristics across the IWPC training and testing cohorts 
were comparable (Table 2).



82 International Journal of Clinical Pharmacy (2023) 45:79–87

1 3

Prediction of the poor anticoagulation status

The median (IQR) for TTR amongst the study participants 
was found to be 67.6 (54.5–77%). The TTR for 141 par-
ticipants (60.8%) was found to be less than 70%. Electronic 
Supplementary Fig. 1 shows the decision tree from the 
C5.0 algorithm. The first nodal split was observed on the 
CYP4F2, the second nodal split on the CYP2C9 genotype, 
while the third, fourth, and fifth nodal splits were found 
on the VKORC1 genotype, age status, and the presence of 
interacting drugs, respectively. CYP2C9 genotype (Node 
20 in Electronic Supplmentary Fig. 1) was associated with 
poor ACS in the sub-group with the variant CYP4F2 allele 
(Node 10). The variant allele of VKORC1 (Node 4) was 
associated with poor ACS in the subgroup with the wild-
type CYP2C9 allele (Node 2). The young and middle-aged 
groups were associated with an increased risk of poor ACS 
in sub-groups where the variant allele was in VKORC1, 
CYP2C9 allele, and the wild-type CYP4F2 (Node 6). The 
young and middle-aged groups were also associated with 
a high risk of poor ACS with variant type VKORC1, wild-
type CYP2C9 allele, and variant CYP4F2 genotype (Node 
16). Patients who were treated with interacting drugs, 
with wild-type VKORC1 and CYP2C9 genotypes with the 

Table 1  Comparison of variables between training and test cohorts in the study participants

The variables are expressed in median (IQR) unless specified; a—Include *2/*2, *2/*3, and *3/*3; ACS—Anticoagation status; SWWD—Stable 
weekly warfarin dose

Variables ACS (N = 232) SWWD (N = 218)

Training cohort 
(n = 173)

Testing cohort 
(n = 59)

P-values Training cohort 
(n = 163)

Testing cohort 
(n = 55)

P-values

Age category [n (%)]
 < 40 years 9 (5.2) 2(3.4) 0.369 10 (6.1) 3 (5.5) 0.586
40 to < 65 years 59 (34.1) 26 (44.1) 56 (34.4) 15 (27.3)
 > 65 years 105 (61.7) 31 (52.5) 97 (59.5) 37 (67.2)
Males [n (%)] 88 (50.9) 36 (61) 0.153 82 (50.3) 34 (61.8) 0.139
CHA2DS2-VASc score 4 (3–4) 3 (2.25–5) 0.325 4 (3–4) 4 (2.25–5) 0.863
HASBLED score 2 (1–3) 2 (2–3) 0.219 2 (1–3) 2 (2–3) 0.910
SAMe-TT2R2 score 1 (1–2) 1 (1–2) 0.786 1 (1–2) 1 (1–2) 0.859
Presence of concomitant interacting drugs 103 (59.5) 35 (59.3) 0.768 96 (58.9) 37 (67.3) 0.270
CYP2C9 [n (%)]
*1/*1
*1/*2

117 (67.6) 43(72.9) 0.803 110 (67.5) 37 (67.3) 0.737
33 (19.1) 9 (15.3) 30 (18.4) 9 (16.4)

*1/*3
Othersa

17 (9.8) 6 (10.2) 19 (11.7) 6 (10.9)
6 (3.5) 1 (1.6) 4 (2.4) 3 (5.4)

CYP4F2 [n (%)]
C/C 71 (41.1) 20 (33.9) 0.332 66 (40.5) 21 (38.2) 0.738
C/T, T/T 102 (58.9) 39 (66.1) 96 (59.5) 34 (61.8)
VKORC1 [n (%)]
C/C 77 (44.5) 23 (39) 0.459 75 (46) 21 (38.2) 0.312
C/T, T/T 96 (55.5) 36 (61) 88 (54) 34 (61.8)

Table 2  Comparison of training and testing cohorts of the IWPC 
dataset

All the parameters are mentioned in [n (%)]; a- Included *2/*2, 
*2/*3, *3/*3 for both datasets, and *1/*5, *1/*6, *1/*11, and *1/*13, 
*1/*14 for modified IWPC dataset

Variables ACS 
(N = 1962)
Training cohort 
(n = 1559)

Testing cohort 
(n = 403)

P-values

Age category
 < 40 years 120 (7.7) 41 (10.2) 0.251
40 to < 65 years 822 (52.7) 211 (52.4)
 > 65 years 617 (39.6) 151 (37.4)
Male [n (%)] 867 (55.6) 233 (57.8) 0.427
Presence of concomitant 

interacting drugs
483 (30.9) 114 (28.3) 0.295

CYP2C9
*1/*1 1117 (71.6) 278 (69) 0.263
*1/*2 259 (16.6) 66 (16.3)
*1/*3 135 (8.7) 39 (9.7)
Othersa 48 (3.1) 20 (5)
VKORC1
A/A 341 (21.9) 81 (20.1) 0.439
A/G, G/G 1218 (78.1) 322 (79.9)
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variant CYP4F2, characterized an increased risk of poor 
ACS (Node 14).

Logistic regression analysis revealed VKORC1 SNPs to 
be significant (OR: 4.6; 95% CI: 1, 21.3) in the C5.0 algo-
rithm for predicting poor ACS. Further, AUROC for the 
C5.0 algorithm was 0.53.

Prediction of stable weekly warfarin dose

The median (IQR) of SWWD was 31.5 (24.5–42 mg). Linear 
regression analysis revealed that CYP4F2 and VKORC1 gen-
otypes, in addition to age categories, represented significant 
predictors for SWWD (Electronic Supplementary Table 2). 
The linear regression model explained 32.6% of the variation 
in SWWD in the Bahraini population. The CART analysis 
revealed VKORC1 polymorphisms to be the most signifi-
cant predictor, followed by CYP2C9 (Fig. 1). Patients with 
an SNP in either of these enzymes required lower weekly 
doses, relative to those with the wild-type. An evaluation of 
model parameters revealed a similar MAE across the train-
ing (10.2 mg/week) and testing cohorts (9.1 mg/week).

The other evaluation parameters of the predictive algo-
rithms, which were found to be similar, have been repre-
sented in the Electronic Supplementary Table 3. The per-
centage of patients within 20% of the MAE with the CART 
algorithm was 38.2%. The RMSE for the same was observed 
to be 13.6.

Multivariate logistic regression analysis for the predicted 
outcomes from the testing cohort revealed only SNP in 
CYP4F2 to be significant in (OR: 11.2; 95% CI: 1.1, 111) the 
CART-prediction of SWWD within 20% of the actual dose.

The first nodal split in CHAID analysis occurs on 
VKORC1. Males with VKORC1 C/T genotype were found 
to require relatively higher doses than females (Fig. 2). 
Females with the variant allele of CYP4F2 were found to 
require higher doses. Further, among patients with wild-type 
CYP4F2, the presence of an interacting drug was found to 
reduce the dosage requirement. For those with the homozy-
gous VKORC1 T/T genotype, interacting drugs increased 
the warfarin dose required to achieve a stable therapeutic 
PT-INR. CART predicted the following variables in order 
of significance: the CYP2C9 genotype, presence of poten-
tially interacting drugs, CYP4F2 genotype, sex, age, and 
VKORC1 genotypes. An evaluation of model parameters 
revealed a similar mean absolute error between the training 
(9.3 mg/week) and testing (9.9 mg/week) cohorts with the 
model with other comparable parameters (Electronic Sup-
plementary Table 3). The percentage of patients within 20% 
of the MAE with the CHAID algorithm was 49% while the 
RMSE was found to be 13.4. Logistic regression analysis 
did not reveal any significant association among the inde-
pendent factors for CHAID-predicted doses within the 20% 
threshold.

Comparison of algorithms between populations

Following the application of the CART algorithm on the 
IWPC dataset, VKORC1, followed by age, CYP2C9, the 
presence of potentially interacting drugs, and sex were iden-
tified as variables predicted by the algorithm, in the order 

Fig. 1  CART analysis of SWWD. Each node represents the number 
of patients included for that specific variable with the percentage of 
patients included from the previous node. The predicted dose was the 
median SWWD in milligrams
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Fig. 2  Prediction of SWWD by the CHAID algorithm. Each node represents the number of patients included for that specific variable with the 
percentage of patients included from the previous node. The predicted dose was the median SWWD in milligrams
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of their significance. The decision algorithm for the IWPC 
dataset has been depicted in Electronic Supplementary 
Fig. 2. The first nodal split occurred with VKORC1 geno-
types; the G/G genotype group characterized the highest 
warfarin stable dose, relative to the A/G and A/A genotypes. 
Elderly individuals with the wild VKORC1 genotype (G/G) 
were found to require lower doses, similar to those with the 
A/G genotype. Among the CYP2C9 group, *1/*1, *1/*2, 
and *1/*11 were predicted to characterize higher warfarin 
doses while *1/*3, *1/*13, *2/*2, *2/*3, and *3/*3 were 
predicted to require significantly lower doses across all the 
genotypes of VKORC1. An evaluation of model parameters 
across the training and testing cohorts with the CART algo-
rithm was comparable (Electronic Supplementary Table 4). 
The mean absolute error was 9.3 mg/week for the training, 
and 10.5 mg/week for the testing cohorts. The percentage 
of patients within 20% of actual doses was observed to be 
43.1% with the CART model, accompanied by an RMSE of 
19. Logistic regression analysis did not reveal any signifi-
cant associations among the independent factors with the 
outcome for the IWPC dataset, as predicted by the CART 
model.

The CHAID algorithm also revealed the first nodal split 
on VKORC1 genotypes (Electronic Supplementary Fig. 3). 
Those with a homozygous mutant in the VKORC1 (A/A) 
genotype required lower doses. Of this group, those with 
CYP2C9 genotypes (*1/*3, *1/*13, *1/*14, *2/*2, *2/*3, 
and *3/*3) required the least. With regard to the other 
VKORC1 A/G and G/G genotypes, elderly individuals 
required lower doses, such as in the case of those character-
ized by the CYP2C9 *1/*1 genotype. Similarly, males in the 
elderly age group with G/G and A/G genotypes in VKORC1 
required higher stable doses. An evaluation of the model 
parameters across the training and testing cohorts with the 
CHAID algorithm was comparable (Electronic Supplemen-
tary Table 4). The mean absolute error was 9.3 mg/week 
for the training and 10.5 mg/week for the testing cohorts. 
The percentage of patients within 20% of actual doses was 
observed to be 43.4% with the CHAID model. The RMSE 
was found to be 19.2. Logistic regression analysis did not 
reveal any significant association among the independent 
factors for the IWPC dataset, as predicted by the CHAID 
model.

A comparison of outputs of MLAs in their predictions 
of SWWD in the IWPC dataset concurred with that of our 
population, where VKORC1 was observed as the most sig-
nificant predictive factor, followed by CYP2C9, where those 
with the wild genotype (*1/*1) required relatively higher sta-
ble doses of warfarin. Further, males were found to require 
higher stable doses, while the presence of interacting drugs 
was associated with lower SWWD.

Discussion

Statement of key findings

The current research represented the first study to evaluate 
the utility of MLAs in the prediction of ACS and SWWD 
with the use of genetic factors (in addition to non-genetic 
covariates) among patients receiving warfarin. CYP4F2, 
CYP2C9 genotypes, age, the presence of potentially inter-
acting drugs, and VKORC1 genotypes were identified as key 
predictors of ACS. For SWWD, VKORC1, CYP2C9 geno-
type, sex, CYP4F2 genotype, the presence of potentially 
interacting drug, and age were found to be the key predic-
tors. An evaluation of the classification MLA in the IWPC 
dataset revealed findings similar to ours.

Comparison of findings with other studies

Previously, Liu et al. evaluated nine MLAs in their predic-
tions of warfarin therapeutic doses using the IWPC dataset 
and observed that multivariate adaptive regression splines 
(MARS) and Bayesian additive regression trees (BART) per-
formed well among the Whites; further, the performance of 
support vector regression, BART, MARS, and lasso regres-
sion (LAR) was similar to multiple linear regression (MLR) 
in the Asian population; finally, MLR and LAR performed 
well in the Blacks [15]. We observed that the CART and 
CHAID analyses performed well in our population in the 
context of warfarin stable dose and the C5.0 algorithm for 
ACS. Further, the overall performances of the models evalu-
ated by Liu et al. ranged between 37 and 47%, which is 
comparable to the present study, where the performances 
ranged between 38 and 49% in our population, and 44.7% 
for the IWPC dataset. The RMSE of the models evaluated 
in the present study ranged between 13.4 and 13.6, which 
were significantly lower than 21.6 with the neural network, 
17.3 with support vector regression, and 14.51 with MVR 
methods, as reported by Sharabiani et al. [27]. Similarly, the 
C5.0 algorithm predicted poor ACS performance, similar to 
the findings of Gordon et al. who identified the accuracies 
(AUROCs) of the stochastic gradient boosting method and 
recurrent neural network algorithms to be 0.6 [17]. How-
ever, the authors in that study observed that the time-varying 
neural network model outperformed all other models with 
an AUROC of 0.8 [17]. A recent study from sub-Saharan 
African patients revealed only slight differences between 
the 21 models, which also included decision trees, to pre-
dict the stable warfarin dose [28]. Nguyen et al. evaluated 
predictions of stable daily warfarin doses with CART and 
other network algorithms, observing that the multiple linear 
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methods and gradient boosting machine were demonstrative 
of the best performance [29].

Our finding on the association between CYP4F2 pol-
ymorphisms with anticoagulation control and warfarin 
stable dose outcomes has been supported by an emerging 
body of literature, which indicates correlations between 
CYP4F2 polymorphisms (A/G, A/A) and reduced warfa-
rin doses in Korean, Caucasians, Asians, and Japanese 
populations [30–33]. A recent meta-analysis found that 
the presence of CYP4F2 polymorphisms required 11% 
[95% confidence interval: 8–14%] higher doses than the 
wild-type genotype [34]. Nonetheless, a study on the 
German population revealed an improvement of only 
0.5–0.7% with the inclusion of CYP4F2 SNPs [35]. The 
CYP4F2*3 genotype was associated with higher warfarin 
doses in European Americans but not African Americans 
[36]. In the present study, we found CYP4F2 to be a sig-
nificant predictor of ACS and SWWD in the MLAs. Our 
finding compels larger studies to assess the inclusion of 
CYP4F2 polymorphisms in the pharmacogenetic algo-
rithms for predicting warfarin dose. Further, the study 
found males with VKORC1 polymorphisms to require a 
significantly greater dose of warfarin, which aligns with 
the extant literature [37–39]. Although the exact reasons 
for the same remain unknown, factors such as varia-
tions in the rate of gastric emptying/intestinal enzymatic 
expression/body water content/hepatic metabolism may 
contribute to the altered pharmacokinetics of warfarin, 
and consequently, the dose required.

Strengths and limitations

To our knowledge, this research represents the first study 
that evaluated the utility of MLAs in their prediction of 
ACS using genetic co-variates among patients receiving 
warfarin. Our findings were qualitatively concordant with 
those that of the IWPC dataset. It provided a measure of 
external support for the prediction of SWWD using this 
approach. However, the study was limited by its cross-
sectional design and compliance with therapy. Further, 
endpoints associated with supratherapeutic anticoagula-
tion, such as bleeding episodes, dietary consumption of 
green leafy vegetables, serum vitamin K concentration, 
and mRNA expressions of the identified polymorphisms 
could not be assessed. Moreover, the IWPC dataset failed 
to include age as a continuous variable and instead pre-
sented age in categories with 10-year intervals, which 
may also have impacted the findings associated with this 
variable.

Conclusion

Machine learning algorithms are promising tools in delineat-
ing the factors for appropriate decision-making processes 
with warfarin therapy. The study marked the need to exter-
nally validate the MLAs in a prospective study. The rec-
ognized factors across both our population and the IWPC 
dataset were found to be similar.
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