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Abstract
Background  Chronic Obstructive Pulmonary Disease is characterised by declining lung function and a greater oxidative 
stress burden due to reduced activity of antioxidant enzymes such as Glutathione Peroxidase 1.
Objectives  The extent to which drugs may contribute to this compromised activity is largely unknown. An integrative drug 
safety model explores inhibition of Glutathione Peroxidase 1 by drugs and their association with chronic obstructive pul-
monary disease adverse drug events.
Methods  In silico molecular modelling approaches were utilised to predict the interactions that drugs have within the active 
site of Glutathione Peroxidase 1 in both human and bovine models. Similarities of chemical features between approved 
drugs and the known inhibitor tiopronin were also investigated. Subsequently the Food and Drug Administration Adverse 
Event System was searched to uncover adverse drug event signals associated with chronic obstructive pulmonary disease.
Results  Statistical and molecular modelling analyses confirmed that the use of several registered drugs, including acetyl-
salicylic acid and atenolol may be associated with inhibition of Glutathione Peroxidase 1 and chronic obstructive pulmonary 
disease.
Conclusion  The integration of molecular modelling and pharmacoepidemological data has the potential to advance drug 
safety science. Ongoing review of medication use and further pharmacoepidemiological and biological analyses are war-
ranted to ensure appropriate use is recommended.

Keywords  chronic obstructive pulmonary disease · glutathione peroxidase · molecular docking · pharmacoepidemiology · 
pharmacovigilance

Introduction

Adverse Drug Events (ADEs) are undesirable outcomes 
that occur following administration of a drug regardless of 
whether causality has been determined [1]. Pharmacovigi-
lance incorporates the prediction and review of ADEs 
based on reviewing large data repositories and predicting 
the potential for ADEs based on proposed pharmacological 
mechanisms [2, 3].

For example, epidemiological studies have reported 
that co-administration of certain medicines may increase 
or reduce the risk of Chronic Obstructive Pulmonary Dis-
ease (COPD). Consumption of statins was associated with 
a reduced risk of COPD whereas consumption of paraceta-
mol (acetaminophen) was associated with an increased risk 
of COPD [4, 5]. At a pharmacological level, it is largely 
unknown to what extent medicines impact the activity of 
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antioxidative enzymes such as Glutathione Peroxidase 1 
(GPx1) which are involved in the pathogenesis of COPD 
[5–7].

COPD is an umbrella term for progressive respiratory 
conditions such as emphysema, chronic bronchitis and 
chronic asthma which are characterised by inflammation 
and fibrosis of the airways [8]. COPD is insidious and often 
occurs due to frequent and prolonged exposure to environ-
mental factors such as cigarette smoke, air pollutants and 
occupational dusts that increase oxidative stress on cells 
in the human body [7]. Oxidants in these pollutants may 
produce reactive oxygen species (ROS) on exposure to the 
lungs causing damage and inflammation [9]. The lungs have 
several antioxidant enzymes that exist to reduce damage 
caused by ROS including catalase, superoxide dismutase 
and glutathione peroxidase (EC 1.11.1.9). GPx1 is a ubiq-
uitous enzyme which is involved in detoxifying hydrogen 
peroxide to water and lipid peroxides to alcohols [7]. GPx1 
achieves its function by using two molecules of glutathione 
as cofactors which are ultimately reduced to glutathione 
disulfide in a two-step process [10]. The active site sele-
nocysteine residue is important in this process. First, upon 
encountering the hydrogen peroxide the selenol is oxidized 
to selenenic acid. Then a glutathiolated selenol intermedi-
ate is formed after reduction of the selenenic acid by the 
first glutathione molecule. Subsequently, reduction of the 
glutathiolated selenol bond occurs by a second molecule of 
glutathione, restoring the active site and formation of oxi-
dised glutathione disulfide [10].

Erythrocyte activity of GPx1 is reduced in individuals 
who smoke cigarettes and in those living with COPD. How-
ever, GPx1 genes are also upregulated in the same popula-
tions [11–13]. This demonstrates that the protective effects 
of GPx1 against inflammation and damage induced by ROS 
is reduced in the presence of the increased oxidative stress 
burden which occurs in COPD [10].

Historically, in silico molecular modelling has been utilised 
to understand the activity of drugs at targets of interest [14, 
15]. Changes in the chemical structure of drugs are sometimes 
subtle and can affect the clinical risk profile. For example, 
the tyrosine kinase inhibitor sunitinib has been associated 
with risk of hypothyroidism, however, sorafenib of the same 
class does not appear to be associated with this risk [14]. In 
silico molecular modelling analyses have demonstrated that 
sunitinib is more likely to bind to retinoic acid receptors 
than sorafenib and contribute to dysregulation of the 
thyroid hormone [14]. Similarly, using molecular docking 
simulations, paracetamol has been shown to competitively 
inhibit the binding of carbamazepine to HLA-B*15:02 
which reduces the likelihood of severe and potentially fatal 
cutaneous reactions [16]. This competitive inhibition is likely 
due to the structural similarity of amino ketone groups and 
aromatic rings between carbamazepine and paracetamol [16].

Herein we utilise an integrative approach to investigate 
the potential for Food and Drug Administration (FDA) 
approved drugs to inhibit GPx1 and association with COPD 
ADEs. Such integrative approaches have been suggested 
yet are not widely utilised [17, 18]. Initially, ligand- and 
structure-based in silico modelling techniques will be used 
to predict the potential for drugs to interact with GPx1. 
Metrics derived from these models will then be applied to 
select leading candidates of interest for investigation using 
pharmacoepidemiologic data sources. Specifically, the Food 
and Drug Administration Adverse Event Reporting System 
(FAERS) was searched for ADE reports between drugs sug-
gested by the in silico modelling and outcomes of interest 
in order to investigate real-world evidence of the potential 
ADE and increased risk of COPD [19].

Materials and Methods

Database Curation

A database of 2381 FDA approved drugs was obtained 
from DrugBank (Approved Drugs, Version 5.1.1, released 
3rd July 2018) in Simplified Molecular-Input Line-Entry 
System (SMILES) format [20, 21]. In addition, the 
SMILES of several known inhibitors of GPx1 previously 
confirmed to have GPx1 inhibitory activity were obtained 
from the literature to represent positive controls for the 
in silico analysis and added to the larger database (see 
Table I).

All in silico analyses were performed using the OpenEye 
Scientific Software molecular modelling software suite [28].

All molecules from the FDA approved drugs DrugBank 
subset and known inhibitors were subjected to the Openeye 
Blockbuster filter (part of the OMEGA suite version 4.1.2.0) 
to remove non-druglike compounds and limit the production 
of spurious hits [29]. After this filter was applied to the data-
set, 1500 molecules (including all of the known inhibitors 
listed in Table I) remained in the dataset. A maximum of 
100 conformers were then generated for each molecule using 
OMEGA. The limit of 100 conformers was chosen as this 
is considered to be a standard number of conformers to be 
used in molecular modelling analyses and to balance com-
putational time requirements whilst ensuring the production 
of an appropriate ensemble size [29]. Stereochemistry was 
retained for molecules for which it was already identified. 
Where stereochemistry was not pre-identified, conformers 
were generated with the flag ‘strictstereo false’. All other 
OMEGA settings were used as default. Following conformer 
generation 1494 molecules remained in the final dataset 
which was utilised for all subsequent analyses.
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Structure‑Based Analyses

Two crystal structures of GPx1 were obtained from the 
RCSB Protein Databank (PDB); bovine erythrocyte 
GPx1 (PDB Code: 1GP1) and human erythrocyte GPx1 
(PDB Code: 2F8A) [30-32]. For each crystal structure, 
the active site was modelled using Make Receptor (ver-
sion 3.4.0.2). The 1GP1 active site model was curated by 
identifying key amino acids that surround the active site 
known to have roles in catalysis and substrate or inhibi-
tor binding (GLN140 (glutamine), ARG177 (arginine), 
SEC45 (selenocysteine) and ARG50 (arginine)), as no 
bound ligand was present [22, 33–38]. The selenocyst-
eine residue in the active site was also adapted to its 
reduced form. A box was then determined (dimensions 
21.33 Å × 15.00 Å × 10.00 Å) to encapsulate the topogra-
phy of the key residues of the active site, approximately 
centered on ARG177. The molecular cavity detection algo-
rithm within Make Receptor was then used to define the 
active site shape and size, which was determined to have 
a volume of 1405 Å3. As no co-crystallised ligand was 
present in the PDB 1GP1 entry, the co-factor glutathione 
was re-docked into the receptor created by Make Recep-
tor to verify the model and ensure that the cysteinyl sulfur 
of glutathione was oriented to and forming an interaction 
with the selenocysteine. The known inhibitor tiopronin 
(glutathione analogue) was also investigated in a similar 
way and was observed to have the expected orientation 
within the active site.

The 2F8A binding site was created in a similar way to 
that of 1GP1 to determine the active site box (dimensions 
16.33 Å × 10.67 Å × 14.00 Å). The molecular cavity detec-
tion algorithm within Make Receptor was then used to define 
the active site shape and size, which was determined to have 
a volume of 1378 Å3. The active site selenocysteine in the 
2F8A GPx1 crystal structure was found to be mutated to 
glycine (GLY47) [31]. According to the Uniprot Align-
ment, there is 87.4% amino acid sequence similarity between 
bovine and human erythrocyte GPx1 [39].

Docking studies were undertaken on the 1494 molecule 
conformational database using the FRED algorithm within 
the OEDocking suite [34]. Docking scores were obtained 
for each molecule that could be successfully docked into 
the active site of GPx1, and molecules were subsequently 
ranked based on their Chemgauss4 docking score [33].Only 
molecules that ranked within the top 150 docking scores 
(top 10%) for each model (1GP1 or 2F8A) were considered 
for subsequent pharmacoepidemiological analyses as these 
drugs were more likely to potently bind to the target and 
exert their effects [40–43]. Docking results were visualized 
in VIDA (version 4.4.0.4) allowing for observations to be 
made on relative docking ranks and identification of key 
intermolecular interactions. Protein–ligand interactions were 

further investigated using the Open Eye Scientific Grapheme 
Tool Kit 2017 June release (complex2img.py).

Ligand‑Based Analyses

Using the 1494 molecule conformational database, ligand-
based modelling was conducted using Rapid Overlay 
of Chemical Structures ((ROCS) version 3.3.2.2)) [44]. 
Chemical similarity was measured between tiopronin (the 
query molecule), a known inhibitor of GPx1 and registered 
drug, and all other molecules in the dataset. The similarity 
between tiopronin and each database molecule was assessed 
and ranked using the Tanimoto Combo Score (linear combi-
nation of the Shape and Color Tanimoto values).

Pharmacoepidemiological Analyses

The Food and Drug Administration (FDA) Adverse Event 
Reporting System (FAERS) was utilised to search for reports 
that included medicines for which there was a potential 
adverse event signal related to COPD or deterioration in 
lung function [19]. SAS statistical software version 9.4 was 
used for all FAERS data analysis.

Linkage of FAERS Data Files

FAERS datasets were linked as described in Fig. 1.
As a FAERS case (CaseID) may contain multiple updated 

versions of the report (primaryID), only the most current 
report for each case was kept as this was the most complete 
and accurate report available [45]. Where the event date of 
the report was left blank the manufacturer report date was 
utilised to ensure that a study period could be defined. Each 
reaction was linked to each drug in the report to remove 
reporter biases which include whether the reporter suspected 
the medications caused a particular adverse event. Only 
reports from the US were captured to ensure drug names and 
trade names were standardised. Following this filtering pro-
cess there were approximately 48.4 million possible drug-
reaction links in the dataset (Fig. 1). Reports were further 
limited to those with an event date from 1st January 2012 
through to 31st of December 2018 and where the patient was 
45 years or older as there is low incidence of COPD before 
45 years of age and low likehood of patients developing 
symptoms of COPD before 45 years of age [46, 47]. The 
final remaining number of drug-reaction associations was 
approximately 21.3 million.

Implementation of Method on Dataset

Any drug molecule that was ranked in the top 150 in either 
the 1GP1 or 2F8A models in the structure-based analyses 
or in the top 150 rank of the ligand-based screening against 
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tiopronin was made available for inclusion as a drug of inter-
est in the FAERS analysis (top 150 results for each method 
found in Supplementary Tables 1 and 2). Drugs were then 
included in the FAERS analysis if at least one ‘Trade Name’ 
was present in the drug monograph on Micromedex [48]. All 
available generic and trade names available were included in 
the regular expression search terms when searching FAERS. 
Regular expressions were also used to identify the drug reac-
tion of interest (categorised by “preferred term” in FAERS) 
[49]. Reactions of interest included “dyspnoea”, “asthma”, 
“chronic obstructive pulmonary disease” (COPD), “obstruc-
tive airways disease” (OAD), “wheezing”, “cough”, “bron-
chospasm”, “asthma-chronic obstructive pulmonary dis-
ease”, “alveolar lung disease”, “emphysema”, “combined 
pulmonary fibrosis and emphysema”, “idiopathic pulmonary 
fibrosis” (IPF), “irregular breathing”, “respiration abnor-
mal”, “productive cough” or “respiratory disorder”.

Reporting odds ratios (ROR) were determined for each 
adverse event and drug molecule pair as described previ-
ously elsewhere [50, 51]. RORs with at least 3 cases and 
where the lower 95% confidence interval value was greater 
than 1 were retained for further investigation as this indi-
cated a statistically significant adverse disproportionality 
signal of potential clinical interest [52–54].

Results and Discussion

Multi‑Method Model Results Summary

In the structure-based analyses utilising the 1GP1 crystal 
structure of GPx1, 99.9% (1492/1494) of molecules were 
successfully docked into the crystal structure. Digoxin and 
digitoxin were not successfully docked into 1GP1. Similarly, 

Fig. 1   Process of linking and optimising FAERS dataset prior to analysis.
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99.7% (1490/1494) of molecules were able to be docked 
into the active site of GPx1 crystal structure 2F8A. Dela-
manid, novobiocin, digitoxin and digoxin were not docked 
into the active site of 2F8A. The top 150 docking results for 
structure-based analyses utilising 1GP1 and 2F8A are listed 
in Supplementary Table 1.

The GPx1 active site is relatively accessible by substrates 
or co-factors such as glutathione and hosts the unique amino 
acid selenocysteine [55]. The catalytic triad has previously 
been identified as selenocysteine(SEC)-glutamine(GLN)-
tryptophan(TRP) for Glutathione Peroxidase 1 [56]. Arginine 
residues (ARG) are also prominent in the active site (ARG50 
and ARG177) and may have roles in catalysis and substrate 
or inhibitor binding [30]. Moreover, glutathione can form 
interactions with ARG177, GLN140 and SEC45 when it is 
present in the active site [30]. Only four crystal structures of 
GPx1 are available in the Protein Data Bank [32]. All were 
deposited as their apo-crystal structures; none has a bound 
ligand present. The bovine and human models (1GP1 and 2F8A 
respectively) were chosen for this study given their mammalian 
origin and amino acid sequence similarity (87.4%). Moreover, 
the other two GPx1 crystal structures were of parasitic origin, 
Schistosoma mansoni, and lacked amino acid residues that were 
important for glutathione binding in the bovine and human 
models[57]. It was also important to compare results for the 
2F8A human model with those of another structure-based 
model of GPx1 given that the selenocysteine in the active site 
of 2F8A is mutated to glycine which may affect the binding 
poses of ligands predicted by the model.

Tiopronin was utilised as the query molecule in the 
ligand-based model as it has demonstrated therapeutic prop-
erties by inhibiting GPx1 activity and affecting cell survival 
[23, 26]. Tiopronin is structurally similar to the GPx1 cofac-
tor glutathione and was observed to align in a similar orien-
tation to glutathione in the active site of GPx1 in the bovine 
model. Moreover, in a bovine erythrocyte model, an IC50 
of 356 µM was reported for tiopronin. In the same study, 
tiopronin was shown to be cytotoxic to two different human 
cancer cell lines [27]. Tiopronin is also a registered medica-
tion for preventing kidney stones in patients with cystinuria 
and it shares structural similarity with penicillamine due to 
the presence of a sulfhydryl group [58]. The top 150 ligand-
based modelling results with tiopronin as the query molecule 
are listed in Supplementary Table 2.

Despite the potential mechanism of GPx1 inhibition con-
tributing to COPD, there is little information describing the 
potential real-world impact that registered medicines may 
have on development or exacerbation of COPD. As such, 
the FAERS database was investigated for adverse drug event 
reports of COPD with drugs of interest from the molecular 
modelling analyses.

To be considered for the FAERS analysis, molecules 
must have appeared in the top 150 in at least one of the 
structure- or ligand-based models. Table II includes drugs 
of clinical interest where an adverse event was reported at 
least 3 times with concomitant administration of the drug 
of interest, and where the ROR lower 95%CI was greater 
than 1. For all other adverse events that were searched for 
each drug, there was either less than 3 adverse event reports 
or the ROR lower 95% CI was less than 1. Several drugs 
were unable to be searched because they were not available 
in the US during the study period or there were no reports 
in FAERS associated with the use of the drug of interest. 
Additionally, drugs which are used to treat COPD are not 
included in this table as confounding by indication is likely 
to have influenced frequency of reporting in the FAERS 
database. Molecular modelling ranks (based on Chemgauss 
4 for structure-based models and TanimotoCombo for the 
ROCS ligand-based model) are also provided for each of 
these molecules of interest in Table II.

ARG177 was observed to be one of the most important 
residues for drug binding in the active site of 1GP1. Inter-
actions with ARG177 included hydrogen bonding (e.g. 
acetazolamide, acetylsalicylic acid, atenolol, azathioprine, 
furosemide, mycophenolic acid, ribavirin), cation-pi or 
ionic interactions. Similarly in 2F8A, ARG179 (the residue 
which corresponds to ARG177 in the active site of 1GP1) 
was observed to be similarly important for protein–ligand 
binding [35]. SEC45 and ARG50 have also been previously 
observed to be able to form interactions with known inhibi-
tors [10, 22, 26]. No drugs in Table II were observed to 
form specific interactions with the selenocysteine residue 
(SEC45) in 1GP1 or with the glycine residue (SEC mutated 
to GLY47) in 2F8A, however 6 of the 18 drugs (includ-
ing atenolol (Fig. 3)) were able to form interactions with 
GLY48 in 2F8A which is located adjacent to GLY47 in the 
active site. None of the 18 drugs were shown to form specific 
interactions with ARG50 in 1GP1, however 5 of 18 drugs, 
including atenolol (Fig. 3) were able to form hydrogen 
bonds, cation-pi or ionic interactions with the correspond-
ing residue ARG52 in 2F8A. Hydrogen bonds were also 
commonly formed with ASP135, THR141 and ARG178 in 
1GP1 in this analysis indicating that interactions with these 
amino acids are important for inhibitor binding [22]. In the 
2F8A active site, drugs also commonly formed hydrogen 
bonds, cation-pi, ionic or pi-pi interactions with GLN82 and 
TRP160 indicating their potential role in inhibitor binding. 
Selected drugs from Table II (including acetylsalicylic acid, 
atenolol and nicotine) are discussed as examples in the fol-
lowing section due to their widespread use as therapeutic 
agents in clinical practice.
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Table II   Selected molecules of clinical interest with adverse event signals associated with COPD or deterioration in lung function listed in alpha-
betical order. Entries in the table where more than one adverse event is listed for a drug are ordered by Reporting Odds Ratio lower 95% confi-
dence interval

Drug Total number of reports 
in FAERS including 
this molecule

RORs where ≥ 3 reports and lower 95% CI ≥ 1. 1GP1 Rank 2F8A 
Rank

Tiopronin 
ROCS rank

Adverse event Number of 
reports with 
molecule of 
interest

Reporting Odds Ratio

Acetazolamide 2034 COPD 11 2.71 (1.50−4.89) 218 125 62
Acetylcysteine 1904 Wheezing 6 3.05 (1.37−6.80) 196 8 3

Dyspnoea 57 2.05 (1.57−2.66)
Productive cough 8 3.41 (1.70−6.83)

Acetylsalicylic acid 422311 Dyspnoea 6555 1.05 (1.02−1.07) 169 67 30
Atenolol 79333 Obstructive Airways 

Disease
15 2.54 (1.53−4.22) 54 400 666

Irregular breathing 4 5.69 (2.11−15.31)
Azathioprine 17748 Idiopathic Pulmonary 

Fibrosis
5 4.09 (1.70−9.84) 254 126 370

Bendamustine 3784 Respiratory disorder 5 3.27 (1.36−7.86) 394 136 440
Cefdinir 4015 COPD 17 2.11 (1.31−3.41) 918 132 716

Productive cough 14 2.82 (1.67−4.77)
Dexlansoprazole 18079 Productive cough 32 1.43 (1.01−2.02) 204 111 773

Cough 137 1.21 (1.02−1.43)
Epinephrine 14877 COPD 41 1.38 (1.01−1.87) 25 52 133

Dyspnoea 277 1.26 (1.12−1.41)
Asthma 57 2.90 (1.24−3.76)
Obstructive Airways 

Disease
5 4.50 (1.87−10.82)

Wheezing 42 2.73 (2.02−3.70)
Respiratory disorder 19 3.16 (2.02−4.96)
Bronchospasm 16 8.78 (5.37−14.36)

Furosemide 223695 Respiratory disorder 111 1.23 (1.02−1.48) 144 229 409
Obstructive Airways 

Disease
29 1.74 (1.21−2.52)

Emphysema 72 1.62 (1.28−2.04)
Idiopathic Pulmonary 

Fibrosis
34 2.23 (1.59−3.13)

Dyspnoea 5473 1.67 (1.63−1.71)
COPD 795 1.79 (1.67−1.92)

Labetalol 9150 Respiratory disorder 8 2.16 (1.08−4.33) 41 839 1069
Mycophenolic acid 28858 Obstructive Airways 

Disease
7 3.25 (1.55−6.83) 101 157 508

Nicotine 25047 COPD 68 1.36 (1.07−1.72) 284 181 94
Pentamidine 1451 Wheezing 7 4.68 (2.23−9.83) 138 985 1240

Bronchospasm 6 33.75 (15.12−75.32)
Ribavirin 72863 Dyspnoea 1311 1.22 (1.15−1.28) 126 44 259
Tranexamic acid 434 Obstructive Airways 

Disease
3 93.08 (29.87−290.06) 71 88 13

Vitamin C 77711 Idiopathic Pulmonary 
Fibrosis

10 1.87 (1.00−3.48) 102 89 136

Voriconazole 8525 Respiratory disorder 9 2.61 (1.36−5.03) 731 81 562
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Acetylsalicylic Acid and Atenolol

Acetylsalicylic acid and atenolol (Table II) have been pre-
viously shown to contribute to exacerbations of lung con-
ditions by other pharmacological mechanisms which may 
present differently to GPx1 inhibition [59–64]. However, in 
this study, acetylsalicylic acid ranks highly in docking in 
both molecular models of GPx1 (169th in 1GP1 and 67th in 
2F8A) indicating that it has the potential to interact with 
GPx1 and alter its activity. In both models it occupies the 
Phe145-Trp158-Arg177 region which has previously been 
shown to be the binding site of glutathione disulfide during 
the redox reaction of glutathione [35]. Acetylsalicylic acid 
also ranks highly in the tiopronin ROCS model (30th). The 
ROCS overlay of acetylsalicylic acid and tiopronin in Fig. 2 
show that acetylsalicylic acid shares similar chemical fea-
tures to tiopronin in terms of three hydrogen bond acceptor 
groups and the anionic carboxylate group. In the FAERS 
analysis, dyspnoea seems to be reported more frequently for 
acetylsalicylic acid compared to other drugs (ROR 1.05 95% 
CI 1.02–1.07). Its use is also associated with acute bron-
chospasm in approximately 10% of people diagnosed with 
asthma [65, 66]. Moreover, GPx activity has been shown 
to be significantly compromised in the red blood cells of 
patients with acetylsalicylic acid-induced asthma compared 
to control patients [65]. Further analyses are required to 
determine whether acetylsalicylic acid alters GPx1 function 
in vitro at either antiplatelet or analgesic doses.

Atenolol ranks highly in docking into the active site of 
1GP1 (54th) demonstrating that it may have the potential to 
alter GPx1 function at a molecular level. In Fig. 3, ateno-
lol was observed to form hydrogen bonds with ARG177, 
ASP135 and SER176 in the 1GP1 crystal structure of GPx1. 
Cation-pi interactions were observed between the aromatic 
ring of atenolol and the ARG177 residue. Additionally, in 
the 2F8A model, although atenolol docked poorly (400th) it 
was observed to form hydrogen bonds with GLY48 which is 
close to the GLY47 residue. In the ROCS analysis with tio-
pronin as the query, atenolol did not rank favourably (666th). 
However, in the FAERS analysis, the cardio-selective beta-
blocker atenolol was positively associated with obstructive 
airways disease (ROR 2.54 95% CI 1.53–4.22) and irregu-
lar breathing (ROR 5.69 95%CI 2.11–15.31). Similarly, 
labetalol, a non-selective beta blocker was associated with 
respiratory disorder (ROR 2.16 (95%CI 1.08–4.33)) and 
ranked 41st in the 1GP1 docking analysis. Orally adminis-
tered labetalol has previously been associated with higher 
incidence of asthma exacerbations when compared to pla-
cebo [67]. Debate continues on the safety of beta-blockers 
and respiratory conditions [61, 68].

Nicotine

Nicotine docks reasonably well in 2F8A (181st) and 1GP1 
(284th) however it falls outside the top 10% ranking in 
both models(Table II). In Fig. 4, nicotine is predicted to 
form hydrogen bonds with THR141 and with ASP142 in 
the 1GP1 crystal structure. In the 2F8A model it forms a 
hydrogen bond with the key amino acid residue ARG179. 
Compared to other molecules in the dataset, nicotine does 
have a similar shape to tiopronin (Fig. 4, Shape Tanimoto 
0.829) and was ranked 94th in the tiopronin ROCS model. 
The deleterious effects of cigarette smoking on lung func-
tion are well documented, however the extent to which 
nicotine itself may contribute to lung conditions is largely 
unknown [69]. These results suggest that nicotine may 
have the ability to alter GPx1 activity and is worthy of 
further investigation.

Gabapentinoids

Pregabalin ranked 73rd in 1GP1 and 112th in 2F8A and 
ranked 39th in ROCS comparison with tiopronin (Supple-
mentary Tables 1 and 2). Similarly, gabapentin ranked 276th 
in 1GP1 and 22nd in 2F8A and ranked 26th in ROCS com-
parison with tiopronin (Supplementary Tables 1 and 2). In 
FAERS there were more than 200 reports for each of the 
outcomes; dyspnoea (highest number 2655), asthma, COPD, 
wheezing, cough, and productive cough associated with use 
of gabapentin (total number of ADE reports 232211). Simi-
larly, more than 200 ADE reports that included dyspnoea 
(highest number 1185), COPD or cough were associated 
with pregabalin (total number of ADE reports 146229). 
Despite these findings, no statistically significant results 
were determined in the FAERS analysis for these drugs. The 
United States of America Food and Drug Administration, 
has previously warned of serious breathing difficulties in 
patients who take pregabalin or gabapentin particularly in 
people with respiratory risk factors [70]. Between January 
1st 2012 and October 26th 2017 the FDA identified 49 reports 
of respiratory depression which mentioned the use of gabap-
entinoids [70]. Gabapentin has also previously been shown 
to reduce GPx activity in a rat brain demyelination model. 
GPx activity in the cortex decreased by 54.3% following 
administration of 300 mg/kg of gabapentin [71]. Gabapen-
tinoids are becoming increasingly prescribed and along with 
this, their misuse and abuse above the normal therapeutic 
range is also increasing [72, 73]. Additional studies should 
be conducted to ascertain the risk of using gabapentinoids, 
particularly in people with compromised lung function.
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Previous In Vitro Investigations of Glutathione 
Peroxidase

Investigations of the effect of FDA approved drugs on 
erythrocyte GPx1 activity in vitro is scarce and often lim-
ited to animal studies. A literature search for in vitro data 
relating to the drugs listed in Table II revealed that when 

male rats were administered azathioprine 50 mg/kg this 
resulted in a 20% decrease in liver GPx levels compared 
to controls [74]. Mycophenolate mofetil (the prodrug of 
mycophenolic acid) at a dose of 100 mg/kg also reduced 
GPx activity by approximately 32% in a murine model 
[75]. Additionally, administration of voriconazole 50 mg/
kg in murine models has also been shown to lower GPx 

Fig. 2   (A) Acetylsalicylic acid docked into 1GP1 (rank 169th), forming a salt bridge with ARG177 and a cation-pi interaction with ARG177. 
(B) acetylsalicylic acid docked into 2F8A (67th), forming an edge-to-face pi stacking interaction with TRP160 and a salt-bridge interaction with 
ARG179. (C) ROCS overlap of acetylsalicylic acid with query molecule tiopronin and its TanimotoCombo rank with respect to all other drugs 
in the ROCS analyses. Panels A and B were created using the OE Chem Toolkit and Panel C was adapted from the ROCSReport utility program; 
both part of the OpenEye Software suite.
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activity and increase oxidative stress [76]. Additional mol-
ecules listed in Table II should be subjected to in vitro 
GPx1 analyses.

Challenges and Opportunities

Despite the promising results shown by the multi-method 
approach detailed above, there are some challenging aspects 
which should be considered.

Dexlansoprazole appears to be associated with symptoms 
suggestive of COPD including cough and productive cough 
in FAERS (ROR 1.21 (95% CI 1.02–1.43) and ROR 2.82 
(95% CI 1.01–2.02), respectively) and ranks well (111st) in 
the 2F8A docking model. Proton pump inhibitors may be 
associated with COPD exacerbations; however, this associa-
tion may be representative of confounding by indication as 
gastro-oesophageal-reflux-disease is a common comorbidity 
of patients with COPD [77–79]. Similarly, despite furosem-
ide ranking highly in the 1GP1 molecular model (144th), 

Fig. 3   (A) Atenolol docked into active site of 1GP1 (ranked 54th) forming one hydrogen bond with ARG177, ASP135 and SER176. Ateno-
lol also has a cation-pi interaction with ARG177. (B) Atenolol docked into active site of 2F8A (ranked 400th) forming hydrogen bonds with 
GLY48, ARG52, GLN82 and ARG179. (C) ROCS overlap of atenolol with query molecule tiopronin and its TanimotoCombo rank with respect 
to all other drugs in the ROCS analyses. Panels A and B were created using the OE Chem Toolkit and Panel C was adapted from the ROCSRe-
port utility program; both part of the OpenEye Software suite.
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confounding by indication in FAERS data may be evident 
for furosemide since it can be used to treat symptoms of 
fluid overload in patients with COPD. Similar confounding 
might also explain the results for acetazolamide (FAERS 
COPD ADE signal ROR 2.71 (95% CI 1.50–4.89)), which 
can be used as a respiratory stimulant [80]. As confounding 
by indication is difficulty to control in FAERS analyses, an 
integrative approach to ADE detection and investigation is 
beneficial [81, 82].

The crystal structure of bovine GPx1 1GP1 was ini-
tially deposited in 1985 and is of poorer resolution (2.00 Å) 

compared to that of the human GPx1 2F8A model 1.50 Å 
[30]. No newer GPx1 crystal structures of the same origins 
are currently available [30]. Despite this, comparing bovine 
to human results was important to investigate any differences 
in the binding of drug molecules in the active site due to 
the mutation of the selenocysteine to glycine in the human 
model which had the potential to modulate the interactions 
that drugs had with this important amino acid residue in 
the active site. Importantly, in addition to the structure-
based modelling analyses, ligand-based molecular model-
ling was also utilised to investigate and highlight important 

Fig. 4   (A) Nicotine docked into active site of 1GP1 (ranked 284th) forming two hydrogen bonds with THR141 and another with ASP142. (B) 
Nicotine docked into active site of 2F8A (ranked 181st) forming a hydrogen bond with ARG179. (C) ROCS overlap of nicotine with query mol-
ecule tiopronin and its TanimotoCombo rank with respect to all other drugs in the ROCS analyses. Panels A and B were created using the OE 
Chem Toolkit and Panel C was adapted from the ROCSReport utility program; both part of the OpenEye Software suite.
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chemical features of molecules for GPx1 inhibition. FAERS 
is a spontaneous reporting system and generally reports are 
of adverse events that happen soon after medication admin-
istration [83]. COPD is an insidious condition and it is less 
likely that notifiers will report medication use and the devel-
opment of a condition that occurs over time [84]. Moreover, 
it is difficult to search drug names in FAERS. Previously, 
researchers have mapped drug trade names to their com-
mon generic name using RxNorm, however in this analysis 
regular expressions were utilised, and they may have been 
too strict for this analysis [45, 83, 85].

Individually, both molecular modelling and pharmacoepi-
demiological methodologies have strengths in uncovering 
and investigating ADE signals [16, 86]. Computational 
molecular modelling provides an efficient and cost-effective 
method to rapidly determine which drugs may have favour-
able interactions in a target site of interest [87]. Pharmacoep-
idemiological analyses using spontaneous reporting systems 
such as FAERS provide real-world insight to ADE signals 
at a population level [88]. Together, an integrated multi-
method approach to pharmacovigilance allows for improved 
signal detection by highlighting evidence for an ADE signal 
using several methods [15]. Moreover there is opportunity to 
advance drug safety by utilising complementary and integra-
tive approaches, particularly to flag ADEs of drugs that may 
be new to market [18].

To our knowledge this study is the first to use an inte-
grated multi-method approach to understand the effect that 
registered drugs may have on GPx1 and their propensity to 
cause ADEs. Additional analyses investigating the effect of 
registered medications on GPx1, and other oxidative stress 
pathways are required. Further optimisation of ADE signal 
detection, particularly due to GPx1 activity, should include 
in vitro analyses to determine implications of the ADE in 
humans at a biological level.

Conclusion

This integrated molecular modelling and pharmacoepidemi-
ological approach to adverse drug event signal detection and 
investigation has identified several drugs as potential inhibi-
tors of GPx1. The Chronic Obstructive Disease adverse drug 
event signals associated with acetylsalicylic acid, atenolol, 
nicotine, gabapentinoids and dexlansoprazole may be of sig-
nificant interest to clinicians.

To further explain and develop the models, in vitro analy-
ses of relevant molecules would be of benefit. Moreover, 
additional longitudinal pharmacoepidemiological analyses 
may identify additional associations between these mol-
ecules and adverse drug events of interest.
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