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Abstract
Purpose  Information on milk transferability of drugs is important for patients who wish to breastfeed. The purpose of this 
study is to develop a prediction model for milk-to-plasma drug concentration ratio based on area under the curve (M/PAUC​). 
The quantitative structure–activity/property relationship (QSAR/QSPR) approach was used to predict compounds involved 
in active transport during milk transfer.
Methods  We collected M/P ratio data from literature, which were curated and divided into M/PAUC​ ≥ 1 and M/PAUC​ < 1. Using 
the ADMET Predictor® and ADMET Modeler™, we constructed two types of binary classification models: an artificial 
neural network (ANN) and a support vector machine (SVM).
Results  M/P ratios of 403 compounds were collected, M/PAUC​ data were obtained for 173 compounds, while 230 compounds 
only had M/Pnon-AUC​ values reported. The models were constructed using 129 of the 173 compounds, excluding colostrum 
data. The sensitivity of the ANN model was 0.969 for the training set and 0.833 for the test set, while the sensitivity of the 
SVM model was 0.971 for the training set and 0.667 for the test set. The contribution of the charge-based descriptor was 
high in both models.
Conclusions  We built a M/PAUC​ prediction model using QSAR/QSPR. These predictive models can play an auxiliary role 
in evaluating the milk transferability of drugs.
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Introduction

Breastfeeding is known to have various advantages, such as 
improving the immune [1] and cognitive functions of the 
infant [2], reducing the prevalence of certain diseases in the 
future [3], reducing the risk of various diseases in the mother 
[4, 5], and building a good mother-infant relationship [6]. Due 
to these reasons, the World Health Organization recommends 
exclusive breastfeeding [7]. According to a 2015 survey in 
Japan, over 90% of pregnant women chose to breastfeed over 
other alternatives [8]. However, with advancement in mothers’ 
age at the time of childbirth and improved treatment for preg-
nancy complications, the number of women receiving drug 
treatment during their pregnancy and delivery is increasing 

[9]. Even if a pregnant woman on medication wishes to breast-
feed, there is insufficient information available regarding the 
milk transferability of drugs. Moreover, it is ethically chal-
lenging to conduct human clinical trials to assess the milk 
transferability of drugs. Several factors affecting this transfer-
ability are known, including molecular weight, pH, lipophilic-
ity, and plasma protein-binding [10]. Milk transfer of drugs 
involves passive diffusion. However, some drugs have also 
been shown to be actively carried by transporters, such as 
breast cancer resistance protein (BCRP) [11].

The milk-to-plasma drug concentration (M/P) ratio is an 
indicator of the transferability of drugs to milk. The safety of 
drug therapy for nursing mothers cannot be evaluated based 
on the M/P ratio alone; maternal and infant clearance and 
other factors must be considered. The M/P ratio is also used to 
calculate relative infant dose (RID) and exposure index (EI), 
which are pharmacokinetic measures [12]. These indicators 
can help determine the precise amount of drug ingested by 
the child. This is important to evaluate whether breastfeeding 
can be combined with drug therapy, making these indicators 
helpful in drug therapy for lactating women [13]. Recently, 
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the M/P ratio has been used as a parameter in the in silico 
Physiologically based pharmacokinetic model, contributing 
to the development of drug therapy for lactating women [14].

Prediction of M/P ratios has been attempted since the 
1980s, when a phase distribution model was reported to 
predict M/P ratios from the physicochemical properties of 
compounds [15, 16]. These were noted for their independ-
ence from clinical data and the fact that they did not take into 
account the effects of active transport [14]. Subsequently, an 
M/P prediction model using quantitative structure-activity 
relationships (QSAR/QSPR) was reported. The QSAR/QSPR 
approach aims to find correlations between structural features 
or physicochemical constants of a drug and its biological 
activity, and can be applied to predict physical and chemical 
properties by means of descriptors that explain changes in the 
physical or chemical properties of that drug group. A number 
of linear regression models have been reported for QSAR 
models predicting M/P ratios [17–23], but because M/P ratio 
data are collected from individual reports, uncertainties in 
subjects, measurement methods, and variations in the number 
of cases may affect the models. A classification model was 
also constructed based on the idea that prediction by linear 
regression is not realistic [24, 25]. Even with the establish-
ment of highly accurate models, predicting milk transferabil-
ity of actively transported drugs remains a challenge [14].

It is important to have organized and curated data for 
QSAR/QSPR model building. Datasets from previously 
reported models included inconsistent M/P ratios for ani-
mals and inconsistent sampling times for milk and plasma. 
Colostrum and mature milk also differ in pH, fat content, and 
secretion, but were not necessarily separated in the dataset. 
In addition, it is more appropriate to evaluate the transfer of a 
drug to milk using the area under the curve (AUC) (M/PAUC​) 
rather than its concentration at a specific time point. This is 
because drug concentrations in maternal plasma and breast 
milk are not always in equilibrium. Furthermore, some drugs 
have been reported to take a longer time to reach equilibrium 
[26, 27]. However, frequent sampling for AUC calculation in 
clinical practice is not easy, and M/PAUC​ is not often reported. 
M/PAUC​ should be used to evaluate milk transfer.

The purpose of this study was to curate M/P ratio data 
and build a binomial classification model based on M/PAUC​ 
for screening drugs involved in active transport in human 
mature milk.

Materials and Methods

Datasets

Human M/P ratio data were obtained from original papers 
with reference to various sources such as books [28, 29] and 
the LactMed database [30]. Only data from mature milk were 

extracted; data from colostrum up to 7 days postpartum were 
excluded. Only data evaluated by AUC were used for M/P 
ratios for model building, and M/P ratios calculated by other 
methods such as single point evaluation were excluded as M/
Pnon-AUC​. Reports of misplaced timing between breast milk 
and maternal blood samples were also excluded. When using 
data for which the M/P ratio was measured at multiple sam-
pling times but the AUC was not calculated, the trapezoidal 
method was used to calculate the AUC. When only blood and 
milk drug concentration graphs were reported, these graphs 
were reproduced and AUCs were calculated. Protein prepara-
tions and metal-containing compounds whose physical prop-
erties could not be predicted by ADMET predictor® were 
excluded. A comprehensive list of selected original articles 
for each compound can be found in Online Resource.

Descriptors

The simplified molecular input line entry system (SMILES) 
format of the compounds was obtained from the public data-
base PubChem [31]. These were incorporated into the ADMET 
predictor® and 254 descriptors were generated. Descriptors 
belonging to the following categories were generated: sim-
ple constitutional descriptors, topological indices, atom-type 
electrophysiological state indices, charge-based descriptors, 
hydrogen bonding descriptors, molecular ionization descrip-
tors, functional groups, Moriguchi descriptors, pattern-recog-
nition flags, and Meylan flags. In contrast, the following cat-
egories were excluded: textual description, indicators, and 3D 
descriptors. The ADMET ModelerTM allows the user to add 
any descriptor from among the 48 descriptors for the calculated 
or simulated physical properties of the compounds in ADMET 
Predictor®, in addition to the 254 molecular descriptors during 
model construction. The choice of descriptors used to build the 
model was made in two steps. First, descriptors were reduced 
in an unsupervised process based on their characteristics and 
relevance to other descriptors. Descriptors were eliminated 
based on three conditions: a coefficient of variation lower 
than the Minimum Coefficient variation setting; a non-zero 
value lower than the Minimum representation; and a Maximum 
absolute with the least amount of information when a pair of 
descriptors shows a higher absolute correlation coefficient than 
the value set in "Max absolute correlation".

This was followed by a supervised prioritization based on 
sensitivity. This was done using the functions 'Input Gradi-
ent', 'Truncated Linear analysis', 'Iterative truncated linear 
analysis', and 'Genetic algorithm'. Descriptor selection set-
tings are described in the following sections for each model.

Artificial neural network (ANN) model settings

Multilayer perceptron was used as the architecture model in 
the ANN. The Kohonen self-organizing map method was 

712 Pharmaceutical Research (2023) 40:711–719



1 3

used for the test set selection [32]. That is, using the Kohonen 
map method, the compounds in the data set are divided into 
three sets: training set, test set, and validation set. This is a 
method of selecting test sets from cells in a toroidal two-
dimensional Kohonen map that clusters compounds by chem-
ical similarity in a descriptor space. The Kohonen size was 
set automatically and the Kohonen map was not reused. The 
minimum test set size was 10%. The settings for descriptor 
number reduction were minimal coefficient of variation: 1, 
minimum representation: 4, and maximum absolute correla-
tion: 0.98. Sensitivity analysis was performed using truncated 
linear analysis. One Monte Carlo attempt was applied, and 
the maximum weight of data was 75%. In each ensemble, 33 
individual networks were used and the network multiplier 
was 5. This number multiplied by the ensemble size repre-
sents the total number of networks trained per architecture. 
The Autofill function was used to set the minimum, maxi-
mum, and step values of hidden neurons and network inputs.

Support vector machine (SVM) model setting

The support vector machine was used as the architecture 
model. The Kohonen map method was used for the test set 
selection. The Kohonen size was set automatically and the 
Kohonen map was not reused. The minimum test set size was 
10%. The settings for descriptor number reduction were mini-
mal coefficient of variation: 1, minimum representation: 4, 
and maximum absolute correlation: 0.98. In the SVM model, 
the descriptor "S+log D,” which is the value of log D pre-
dicted by the ADMET predictor®, was added manually. When 
calculating log D, the pH of the maternal blood was set at 7.4. 
Sensitivity analysis was performed using a genetic algorithm 
(GA) [33]. The target on which the genetic algorithm is exe-
cuted can be selected from the grid, row, or cell. Because the 
cell level is recommended for small datasets, GA was run by 
the cell. The GA’s max steps was 30,000, and its max training 
was 1,000. The number of individual SVM models used in 
each ensemble was 33. The total number of SVM models used 
to train the ensembles was set to 40. These are both default 
settings in the software.

Evaluation of the model using a confusion matrix

To evaluate the model, each index was calculated using a 
confusion matrix (Fig. 1).

Software

DigitizeIt version 2.3.3 (I. Bormann, Braunschweig, Ger-
many) was used to plot blood and milk concentration curves. 
ADMET Predictor® version 10.3 (Simulations Plus Inc., 
Lancaster, CA, USA) was used to generate the molecular 

descriptors. Furthermore, ADMET ModelerTM version 10.3 
(Simulations Plus Inc., Lancaster, CA, USA) was used to 
build the model.

Results

The M/P ratios of 403 compounds were obtained from litera-
ture. Of these, M/PAUC​ was reported for 173 compounds, and 
data for 21 compounds were calculated by replotting the graph. 
Data for the remaining 230 compounds were obtained using 
the M/Pnon-AUC​. Of the 173 compounds with M/PAUC​ data, 129 
compounds, excluding colostrum, were used in the dataset.

ANN model performance

Of the 254 descriptors, 37 under-represented descriptors 
and 40 highly correlated descriptors were excluded. The 
remaining 177 descriptors were used to build the model as 
candidate inputs. Of the 129 compounds, 76 were assigned 
to the training set, 39 to the verification set, and the remain-
ing 14 to the test set. The best model was made using 33 
ANNs, 3 neuron, 24 inputs, and 79 weights. Table I lists 
the effect indicators for model evaluation. The sensitivity 
was 0.969 for the training set and 0.833 for the test set. The 

Fig. 1   Confusion matrix and formulas for each indicator.
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specificity was 0.940 for the training set and 1.000 for the 
test set. Furthermore, the Matthews correlation coefficient 
(MCC) was 0. 878 for the training set and 0.861 for the test 
set. The statistical performance results are shown in Fig. 2a. 
As shown in Table II, the most contributing descriptor in the 
ANN model was EEM_XFC. This descriptor is classified as 
a Charge-based Descriptor. Next was T-RDmtr. The third 
was Pi_AQc, which is also a Charge-based Descriptor. As an 
example, acetaminophen was predicted by the ANN model 
to have M/PAUC​ ≥ 1 with 95% confidence; the sensitivity 
of EEM_XFc was -0.53, that of T_RDmtr was -0.77, and 
that of Pi_AQc was 0.71. On the other hand, for morphine, 
which is predicted to have M/PAUC​ ≥ 1 with 65% confidence, 
EEM_XFc was -0.30, T_RDmtr was -0.64, and Pi_AQc was 
0.70, with acetaminophen having the greater absolute value. 
The maximum uncertainty was 57.5%.

SVM model performance

Of the 255 descriptors, 37 under-represented and 40 highly 
correlated descriptors were excluded. The remaining 178 
descriptors were used to build the model as candidate inputs. 
Of the 129 compounds, 72 were assigned to the training set, 
41 to the verification set, and the remaining 16 to the test set. 
The best SVM ensemble model uses 72 inputs. Table I lists 

the effect indicators for model evaluation. The sensitivity 
for the training set was 0.971 and 0.667 for the test set. The 
specificity was 1.000 for the training set and 1.000 for the 
test set. Moreover, the MCC was 0.979 for the training set 
and 0.787 for the test set. The statistical performance results 
are shown in Fig. 2b. Table II lists the top 10 descriptors 
with the highest contribution. The descriptor with the high-
est contribution in the SVM model was SaaaC, which is an 
Atom-type Electropological State Index. This is followed 
by EEM_NFpl and EEM_XFon, which are Charge-based 
Descriptors. EEM_XFc and T_RDmtr, the first and second 
highest contributors in the ANN model, were in the fourth 
and seventh positions in the SVM model.

Discussion

In this study, we constructed a binary classification model to 
predict M/PAUC​ using two models, ANN and SVM. Descrip-
tors calculated specifically from the molecular structure of 
the compounds were used in the predictions. The perfor-
mance of the models was within the acceptable range for 
both ANN and SVM. The ADMET Predictor® is a software 
package that can rapidly predict ADMET (absorption, dis-
tribution, metabolism, excretion, and toxicity) properties 

Table I   Model Output Statistics of ANN Model and SVM Models

ANN, artificial neural network; SVM, support vector machine; Youden, Youden index; MCC, Matthews correlation coefficient

Models Data set Accuracy Precision Sensitivity Specificity Youden MCC False rate F-measure

ANN Training 0.948 0.857 0.969 0.940 0.909 0.878 0.052 0.910
Test 0.929 1.000 0.833 1.000 0.833 0.861 0.071 0.909

SVM Training 0.991 1.000 0.971 1.000 0.971 0.979 0.009 0.985
Test 0.938 1.000 0.667 1.000 0.667 0.787 0.063 0.800

Fig. 2   Statistical performance 
results for ANN model (a) 
and SVM model (b) using the 
ADMET Modeler™. Blue 
circles: training set data; red 
squares: test set data. FP, False 
positive; TP, True positive; 
TN, True negative; FN, False 
negative.
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based on molecular structures [34]. The predictive model is 
built using carefully selected descriptors and optimal learn-
ing algorithms based on actual measurements collected from 
public sources and academic literature. It shows excellent 
performance in predicting the aqueous solubility of chemicals 
[35], organic compounds [36], and the plasma protein bind-
ing of compounds in humans [37]. The ADMET Modeler™ 
module allows users to build QSAR/QSPR prediction models 
from chemical structures and measured datasets. These were 
also used to develop in silico models to identify androgen-
active chemicals [38] and to build machine-learning models 

to predict chemotherapy-induced peripheral neuropathy [39]. 
The ADMET ModelerTM is equipped with an early learn-
ing stop system to prevent overlearning, compensating for 
the shortcomings of ANNs, which are known to be prone 
to overlearning. The performance of the ANN model was 
checked using confidence analysis. A maximum uncertainty 
of 40–60% is recommended as the statistical stability of the 
model [40]. Therefore, the model we constructed with 57.5% 
uncertainty meets this requirement.

We focused on the AUC to evaluate the M/P ratio. In the 
data collected, M/PAUC​ was obtained for only 43% of the 403 

Table II   Descriptors with High Contributions to Binary Classification Model

ANN model SVM model

Index Name Description Sensitivity Relative 
Sensitiv-
ity

Index Name Description Sensitivity Relative 
Sensitivity

1 EEM_XFc Maximum sigma 
Fukui index on C

0.572 1.000 1 SaaaC Atom-type E-state 
index for aCaa 
groups

2.268 1.000

2 T_RDmtr Relative topological 
diameter: maxi-
mal topological 
distance divided 
by the number of 
atoms

0.468 0.817 2 EEM_NFpl Minimum sigma 
Fukui index on 
polar atoms

2.261 0.997

3 Pi_AQc Sum of absolute 
values of Hückel pi 
atomic charges, but 
only on C atoms

0.450 0.786 3 EEM_XFon Maximum sigma 
Fukui index on N 
and O

2.250 0.992

4 Pi_FPl4 Fourth component 
of the autocorrela-
tion vector of pi 
Fukui( +) indices

0.429 0.750 4 T_RDmtr Relative topological 
diameter: maxi-
mal topological 
distance divided 
by the number of 
atoms

2.250 0.992

5 MinQ Minimal PEOE Par-
tial Atomic Charge

0.404 0.706 5 S + logD octanol–water distri-
bution coefficient 
(log D) calculated 
from S + pKa and 
S + logP

2.243 0.989

6 F_DbleB Double bonds as 
fraction of total 
bonds

0.397 0.694 6 NPA_Q3 Third component of 
the autocorrelation 
vector of estimated 
NPA partial atomic 
charges

2.239 0.987

7 T_Radb Topological equiva-
lent of Radb__3D

0.381 0.666 7 EEM_XFc Maximum sigma 
Fukui index on C

2.236 0.986

8 ArHdrxl_-OH Number of aromatic 
hydroxyl groups

0.323 0.565 8 SecAmine_ > NH Number of primary 
and aliphatic N 
secondary amines

2.225 0.981

9 EEM_XFpl Maximum sigma 
Fukui index on 
polar atoms

0.315 0.551 9 EEM_NFnp Minimum sigma 
Fukui index on 
nonpolar atoms

2.218 0.978

10 T_Rada Topological equiva-
lent of Rada__3D

0.311 0.543 10 NPA_MinQ Minimal Estimated 
NPA Partial 
Atomic Charge

2.186 0.964
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compounds with M/P ratio data. The problems with evaluat-
ing non-AUC M/P ratio with have been discussed in previous 
studies [41]. Furthermore, we excluded colostrum data and 
ultimately built our model with 129 compounds. While some 
of the previously reported models covered more than 300 
compounds, curation allowed us to use a carefully selected 
dataset of compounds in this study. This is the first report of 
curation using these criteria for over 400 compounds.

In this study, the models were constructed to identify 
compounds with M/PAUC​ greater than 1. Of the compounds 
with M/PAUC​ greater than 1 collected from the original arti-
cles, none showed false negative results in either model. 
Specifically, the M/PAUC​ ratios of 1.43 and 1.77 for mir-
tazapine and moxidectin [42, 43], respectively, were less 
than 1 by the ANN model and were false negative, while 
the SVM model correctly predicted their values greater than 
1. The M/PAUC​ ratios of 1.32 and 5.99 for fluvoxamine and 
N-monodesalkyldisopyramide [44, 45], respectively, were 
predicted to be less than 1 by the SVM model and were 
false negative, while the ANN model correctly predicted 
these values greater than 1. Therefore, we believe that a 
combined analysis of various models will also contribute 
to model reconstruction in the future and improvement in 
accuracy, although the results of prediction and reliability 
analyses for compounds near the M/PAUC​=1 boundary value 
need to be carefully considered.

Although the ANN and SVM models had different con-
tributing descriptors, both models were characterized by 
a high number of charge-based descriptors among the top 
10 contributing descriptors. Charge-based descriptors with 
high contributions in the ANN model included EEM_XFc, 
Pi_AQc, Pi_FPl4, MinQ, and EEM_XFpl. Charge-based 
descriptors with high contribution rates in the SVM model 
included EEM_NFpl, EEM_Xfon, NPA_Q3, EEM_XFc, 
EEM_NFnp, and NPA_MinQ. Among them, EEM_XFc, 
EEM_XFp, EEM_NFpl, EEM_Xfon, and EEM_NFnp are 
the sigma Fukui indices, derivatives of the atomic partial 
charge relative to the total number of electrons. The sigma 
charges were provided as input to parameterize the two-
dimensional deformation of the EEM based on Chaves' 
formalism [46] for the EEM kernel. Fukui (+) indicators 
like Pi_FPl4 are related to the Pi electron density in the 
lowest unoccupied molecular orbital (LUMO) [47]. Previ-
ously reported milk transfer prediction models suggested 
that electronic properties play an important role [18, 24, 48], 
consistent with the high contribution of electronic proper-
ties in this study. The "SaaaC" with the highest contribution 
in the SVM model was Atom-type Electropological State 
Indices. It is dominated by the E-state descriptor, an elec-
trophysiological state indicator for the atom type, which is 
incrementally perturbed by the eigenstates of the atoms to 
which they are connected and weighted by the topological 
distance to each other [49]. In addition, "S+logD" simulated 

by ADMET Predictor also has a high contribution in the 
SVM model, confirming that fat solubility is also an impor-
tant factor. S+logD indicates values related to pKa and log 
P. pKa and logP are important factors in the evaluation of 
milk transferability according to previously published mod-
els for predicting milk transfer [16, 17]. We performed a 
preliminary study using descriptors that can be added arbi-
trarily to the ADMET ModelarTM. The results confirmed 
that adding S+logD to the descriptors in the SVM model 
improved its accuracy. A similar trend was not observed in 
the ANN model. We plan to further examine how known 
factors related to milk transfer affect the construction of the 
QSAR/QSPR model.

The M/PAUC​ prediction models developed in this study can 
be used to help evaluate the milk transfer potential of drugs, 
metabolites, impurities, and even enantiomers that have never 
been administered to lactating women. A case of child death 
due to morphine intoxication caused by breastfeeding from a 
mother who took codeine has been reported [50]. Although 
one factor in this case was that the mother was an ultra-
rapid metabolizer of CYP2D6, an enzyme that metabolizes 
codeine, it is important to recognize that exposure to metabo-
lites can affect the infant. Compounds like fluoxetine need to 
be evaluated for metabolites and racemates [51].

Since transporters such as BCRP have been shown 
to be involved in the milk transfer of drugs [52], it is 
important to know whether a compound is a substrate 
drug. If significant milk transfer is observed, contrary 
to the results predicted by pH partitioning theory, active 
transport may be involved. The ADMET Predictor® has a 
module that predicts whether a compound can be a sub-
strate for BCRP. This predictive model showed 85.9% 
concordance for the training set and 85.6% for the test 
set [40]. Thus, the QSAR model can predict the charac-
teristics of drug milk transfer, including the involvement 
of transporters, which are difficult to predict based on 
the physicochemical properties alone. However, BCRP 
is not the only transporter whose expression increases in 
the mammary gland during lactation; there are also the 
sodium/iodide symporter and Organic Cation Transporter 
1, and there may be other transporters that are not yet 
known [52]. If predictive modeling indicates that active 
transport may be involved in milk transfer of a target com-
pound, more detailed clinical data is needed.

This study has several limitations, including data con-
sistency for model building. We curated the reported data 
in order to build an accurate model. However, the M/
PAUC​ data were collected from various papers and thus the 
target patients and measurement methods were not stand-
ardized. In addition, M/P cannot be quantitatively evalu-
ated in the classification model constructed in this study. 
Due to the ethical challenges in conducting large clinical 
trials in lactating women, much of the data must rely on 
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case reports. We hope that further clinical data will be 
available in the future, as well as improvements in the in 
silico prediction accuracy. Furthermore, the compounds 
to which the ADMET predictor® can be applied only 
include organic compounds consisting of boron, carbon, 
nitrogen, oxygen, sulfur, phosphorus, fluorine, chlorine, 
bromine, and iodine. Therefore, it is unsuitable for the 
prediction of compounds containing metals or polymers. 
However, the constructed predictive model can be applied 
to many drugs, and polymeric compounds are less likely 
to migrate into milk. For example, the milk: serum ratios 
of abatacept and tocilizumab have been reported to be 
0.003–0.005 and 0.001–0.002, respectively [53, 54].

It is not appropriate to predict the advisability of breast-
feeding during drug therapy solely on the basis of the M/P 
ratio; the child's drug intake and metabolic capacity should 
also be considered. A physiologically based pharmacoki-
netic model for predicting milk transfer of drugs has been 
constructed and is anticipated to be applied to some drugs 
[55, 56]. As new drugs are launched, medical profession-
als evaluate milk transfer based on the results of animal 
experiments, physicochemical properties of compounds, 
or past case reports, and consider drug therapy for lactat-
ing women as a time-consuming process. If in silico pre-
diction can be used to evaluate the milk transfer properties 
of drugs quickly and easily, the possibility of achieving 
compatibility between drug therapy and breastfeeding can 
be increased. It is also necessary to analyze the prediction 
results obtained by machine learning not only with one 
model but a combination of models to avoid deterioration 
of the prediction accuracy [57]. We believe that the model 
developed in this study can assist in the evaluation of the 
milk transfer characteristics of compounds, especially 
those involving active transport by BCRP.

Conclusions

The purpose of this study was to develop a model to 
predict whether the human M/PAUC​ would exceed 1 for 
screening drugs transported actively in milk transfer. We 
built a milk transfer prediction model based on QSAR/
QSPR using two methods, ANN and SVM. These two 
models showed satisfactory performance. Subsequently, 
in the process of building the predictive model, we con-
firmed the high contribution of the charge-based descrip-
tor. The specific charge-based descriptor types and con-
tribution rates, their relationship to active transport, and 
their effects on M/P ratios require further investigation but 
the charge properties indicated that these may be added to 
molecular weight, plasma protein binding, lipid solubil-
ity, and acid–base properties as factors to evaluate milk 
transfer of drugs.

Although further study is needed for the descriptors, we 
believe that the model constructed in this study can play an 
auxiliary role in evaluating the milk transferability of drugs.
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