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Abstract
Accurate prediction of human clearance is of critical importance in drug discovery. In this study, in vitro – in vivo extrapola-
tion (IVIVE) of hepatic clearance was established using large sets of compounds for four preclinical species (mouse, rat, dog, 
and non-human primate) to enable better understanding of clearance mechanisms and human translation. In vitro intrinsic 
clearances were obtained using pooled liver microsomes (LMs) or hepatocytes (HEPs) and scaled to hepatic clearance using 
the parallel-tube and well-stirred models. Subsequently, IVIVE scaling factors (SFs) were derived to best predict in vivo 
clearance. The SFs for extended clearance classification system (ECCS) class 2/4 compounds, involving metabolic clear-
ance, were generally small (≤ 2.6) using both LMs and HEPs with parallel-tube model, with the exception of the rodents (~ 
2.4–4.6), suggesting in vitro reagents represent in vivo reasonably well. SFs for ECCS class 1A and 1B are generally higher 
than class 2/4 across the species, likely due to the contribution of transporter-mediated clearance that is under-represented 
with in vitro reagents. The parallel-tube model offered lower variability in clearance predictions over the well-stirred model. 
For compounds that likely demonstrate passive permeability-limited clearance in vitro, rat LM predicted in vivo clearance 
more accurately than HEP. This comprehensive analysis demonstrated reliable IVIVE can be achieved using LMs and HEPs. 
Evaluation of clearance IVIVE in preclinical species helps to better understand clearance mechanisms, establish more reliable 
IVIVE in human, and enhance our confidence in human clearance and PK prediction, while considering species differences 
in drug metabolizing enzymes and transporters.
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Introduction

Accurate prediction of human pharmacokinetics (PK) and 
dose is a major goal in drug discovery, because in vivo 
exposure of a compound is critical for the development 
of PK/PD (pharmacodynamics) relationships, establishing 
therapeutic index (TI) and prediction of drug-drug interac-
tions (1). Clearance (2), volume of distribution (3, 4), rate 
and extent of oral absorption (5) and distribution in target 
tissues (e.g., unbound distribution coefficient  (Kpuu) of 

brain) (6–8) are the key parameters determining PK and 
tissue exposure of a compound. Among these parameters, 
clearance is the most sensitive property of drug candi-
dates, since it not only influences dose, but also impacts 
half-life which determines dosing frequency (2, 9, 10). 
Many approaches have been developed to predict human 
clearance based on the elimination mechanisms involved 
(1, 11). For hepatic metabolism, human liver microsomes 
(HLM) and human hepatocytes (HHEP) are the most com-
monly used systems to predict human hepatic clearance 
(12–14). For other clearance mechanisms, such as renal 
clearance (1, 15, 16), biliary clearance (17) and trans-
porter-mediated clearance (18–20), different approaches 
are applied to estimate human clearance. Some of the 
examples include allometric scaling of animal unbound 
renal clearance to predict human renal clearance (1, 15) 
or PBPK (physiologically based pharmacokinetic) mod-
eling (16), using sandwich-cultured human hepatocyte 
data or animal data to predict human biliary clearance 
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(17), and applying uptake rate, PBPK modeling,  Kpuu 
or cynomolgus monkey single species scaling to predict 
transporter-mediated clearance (18–23). To accurately 
predict human clearance, it is essential to understand the 
clearance mechanisms involved (i.e., hepatic metabolism, 
hepatic uptake, biliary secretion, or renal clearance), so 
that appropriate methods can be applied to the predictions. 
Besides in vitro assays with human reagents (e.g., HLM, 
HHEP, and transporter assays), in vivo PK data in preclini-
cal species are highly informative in characterizing human 
drug disposition, while considering species differences in 
drug metabolizing enzymes and transporters. Development 
of in vitro - in vivo extrapolation (IVIVE) of clearance is 
not only essential for human in order to predict human 
clearance from in vitro human reagents, but also critical 
for preclinical species. This is because animal intravenous 
(IV) PK data are readily available early in drug discov-
ery and they can be applied to verify clearance IVIVE in 
preclinical species before human PK prediction. If there 
is a clearance disconnect between in vitro and in vivo in 
animals, careful investigations of clearance mechanisms 
should be made to understand the disconnect and its impli-
cations in human PK prediction.

PK studies of preclinical species are conducted regularly 
in drug discovery to understand clearance, absorption, and 
disposition of drug candidates. Animal PK data are com-
monly used to develop PK/PD relationships in disease mod-
els and to define TI based on toxicity studies. In order to 
develop reliable IVIVE, it is essential to know how well the 
in vitro reagents (i.e., liver microsomes (LMs) and hepato-
cytes (HEPs)) of various species predict in vivo clearance 
and whether empirical scaling factors (SFs) are needed to 
establish reliable IVIVE. Once IVIVE and SFs are devel-
oped using compounds with different extended clearance 
classification system (ECCS) (24) classes, deviations from 
the established IVIVE would suggest potential involvement 
of other clearance mechanisms that are not covered by these 
in vitro reagents. The knowledge gained from preclinical 
IVIVE can then be incorporated into human clearance and 
PK prediction. In this study, clearance IVIVE is examined 
using both LMs and HEPs in four preclinical species (i.e., 
mouse, rat, dog and non-human primate (NHP)) with large 
sets of structurally diverse drug discovery compounds and 
marketed drugs through mining of the Pfizer internal data-
base. Empirical SFs of clearance are developed for each 
ECCS class of the four species. Although ECCS is primar-
ily established to identify clearance mechanisms based on 
human data (24), here we assumed similar classification 
criteria can be applied to preclinical species. The preclini-
cal IVIVE analysis would help to better understand clear-
ance mechanisms, establish more reliable human IVIVE, 
and enhance our confidence in human clearance and PK 
prediction.

Materials and Methods

Material

Cryopreserved male HEPs and male LMs of CD-1 mouse, 
Sprague Dawley and Wistar Han rat, beagle dog and cyn-
omolgus monkey were purchased from by BioIVT (West-
bury, NY), Lonza (Walkersville, MD), XenoTech (Lenaxa, 
KS), and Corning (BD Biosciences, Woburn, MA). Frozen 
plasma and fresh blood was obtained from BioIVT and 
Pfizer labs (Groton, CT). All chemicals were obtained from 
Pfizer Global Material Management (Groton, CT) or pur-
chased from Sigma-Aldrich (St. Louis, MO) unless specified 
otherwise. The 96-well equilibrium dialysis (HTD96) device 
and cellulose membranes with molecular weight cut-off of 
12–14 K were obtained from HTDialysis, LLC (Gales Ferry, 
CT).

Microsomal Stability Assay

The detailed protocol of the microsomal stability assay has 
been discussed previously (13). Briefly, each incubation 
contained test compound (1 μM), LMs (0.25 μM CYP pro-
tein), NADPH (1.3 mM),  MgCl2 (3.3 mM) and potassium 
phosphate buffer (100 mM at pH 7.4). No other cofactors 
were added to the incubation. The incubations were con-
ducted at 37°C. At various time points, an aliquot was sam-
pled and added to acetonitrile with an internal standard (IS, 
CP-628374) to quench the reaction. Samples were analyzed 
using LC-MS/MS and the detailed LC-MS/MS conditions 
have been reported previously (25). The intrinsic clearance 
 (CLint) values in LMs are calculated using Eqs. 1–3 and 
physiological parameters in Table I, where  t½ is the in vitro 
half-life,  CLint,app is the apparent intrinsic clearance,  PRlm 

Table I  Physiological Parameters and Experimental Conditions

a. Physiological parameters are based on SIMCYP™ v20r1 (Certara, 
Sheffield, UK) values for all preclinical species, except for NHP  Qh, 
which was obtained from the reference by Shah and Betts (26)
b. In vitro assay conditions
Qh, hepatic blood flow; PRpLW, microsomal protein per liver weight; 
HEPpLW, hepatic cellularity per liver weight; LWpBW, liver weight 
per body weight;  PRlm, liver microsomal protein concentration in 
incubation;  CDhep, hepatocyte cellularity per volume

Parameters a Mouse Rat Dog NHP

Qh (mL/min/kg) 126 77.4 56.1 43.2
PRpLW (mg/g) 48 46 41 31
HEPpLW (MC/g) 135 108 170 123
LWpBW (g/kg) 51.4 36 30 19.7
PRlm (mg/mL) b 0.21 0.34 0.32 0.21
CDhep (MC/mL) b 0.5 0.5 0.5 0.5
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is the liver microsomal protein concentration in the incuba-
tion, PRpLW is the microsomal protein per liver weight, 
LWpBW is liver weight per body weight, and  fu,lm is the 
fraction unbound under the microsome incubation condi-
tions (Please see section on “Determination of fraction 
unbound of liver microsomes, hepatocytes and plasma”). 
Replicate measures of  CLint,app were geometrically averaged. 
Measures below or above the limits of quantification (BLQ 
and ALQ) were geometrically averaged with quantified val-
ues utilizing Beal’s method M3 if at least half the replicates 
were quantifiable (27).

Hepatocyte Stability Assay

The detailed protocol of the hepatocyte stability assay has 
been discussed previously (13). Briefly, cryopreserved HEPs 
were thawed, and re-suspended in Williams E medium 
(WEM, custom formula number 91-5233EC; Invitrogen, 
Grand Island, NY) supplemented with HEPES and  Na2CO3. 
The cells were counted using the Trypan Blue exclusion 
method. Test compounds (1 μM) were incubated with hepat-
ocytes at 0.5 million cells/mL at 37°C in an incubator (rela-
tive humidity ≥90%, 5%  CO2/air). At various time points, 
an aliquot was transferred into a plate containing acetonitrile 
with IS to quench the reaction. Samples were analyzed by 
LC-MS/MS using conditions reported previously (25). The 
 CLint values in hepatocytes are calculated using Eqs. 1 and 
4–5, and physiological parameters in Table I, where  CDhep 
is the hepatocyte cellularity per volume in the incubation, 
HEPpLW is the hepatocyte cellularity per liver weight, and 
 fu,hep is the fraction unbound under the hepatocyte incubation 
conditions (Please see section on “Determination of fraction 
unbound of liver microsomes, hepatocytes and plasma”). 
Similar to microsomal stability assay, BLQ and ALQ meas-
ures were geometrically averaged with quantified values uti-
lizing Beal’s method M3 if at least half the replicates were 
quantifiable (27). For low clearance compounds that have 
 t½ greater than the detection limit of a four-hour incubation 
(i.e.,  t½ > 8 h), hepatocyte relay assay (14, 28) was used to 
measure  CLint. The details of the hepatocyte relay assay have 
been discussed previously (14, 28). The Excel calculation 

(1)

t 1
2

=
ln 2

−(slope of the ln % remaining of drug vs. time plot)
= min

(2)

Microsome CLint,app =
ln 2

t 1
2

(min)
∙

1

PRlm

∙
1000 μL

mL
= μL∕min ∕mg

(3)

Microsome CLint =
CLint,app ∙ PRpLW ∙ LWpBW

fu,lm
= mL∕min ∕kg

template of the hepatocyte relay assay is included in the 
supplemental material. Both 0.5 and 2 million cells/mL cell 
densities were used in the hepatocyte relay assay depending 
on  CLint,app values.

Determination of Fraction Unbound of Liver 
Microsomes, Hepatocytes and Plasma

The detailed protocol of the microsomal binding assay has 
been reported previously (13). Fraction unbound  (fu,lm) 
under the human microsomal stability incubation condition 
was measured using HTD96 equilibrium dialysis device. 
Human liver microsomes (0.806 mg/mL) spiked with test 
compounds (2 μM) were dialyzed against phosphate buffered 
saline in a humidified  CO2 incubator (5%  CO2/air, 75% rela-
tive humidity) on an orbital shaker (200 rpm, VWR, Radnor, 
PA) for 6 h at 37°C. At the end of the incubation, samples 
were matrix matched, quenched with cold acetonitrile con-
taining IS, and centrifuged (Eppendorf, Hauppauge, NY) 
at 3000 rpm for 10 min. The supernatant was transferred 
to a clean plate and sealed prior to LC-MS/MS analysis. 
The detailed LC-MS/MS method has been reported previ-
ously (29). The calculations for  fu,lm, stability and recovery 
are shown in Eqs. (6)–(8). In silico  fu,lm values from Pfizer 
internal global quantitative structure-activity relationship 
(QSAR) model were sparingly used when fu,p was ≥0.5 and 
 fu,lm was the only missing experimental parameter. Hepato-
cyte fraction unbound  (fu,hep) can be predicted from  fu,lm with 
a protein per cell density conversion factor (PRpC) of 0.468 
established in house (i.e., 1 million cells/mL of hepatocytes 
is equivalent to 0.468 mg/mL human liver microsomes 
(Eq. 9), Table 1S (Excel File) and Fig. 1S in Supplemental 
Material). The Bias, AAFE,  DI90% and  P2fold (for definition 
of these terms, please see data analysis section) for the  fu,hep 
prediction method are 0.97, 1.3, 1.9, and 92%, respectively. 
Binding to microsomes of different species is calculated 
using Eq. 10 with different dilution factors (D) depending 
on the microsomal protein concentrations used for preclini-
cal species compared to human liver microsomes (Table I). 
Plasma protein binding of the different species was meas-
ured using similar protocol as microsomal binding and the 
method has been reported previously (30).

(4)

Hepatocyte CLint,app =
ln 2

t 1
2

(min)
∙

1

CDhep

∙
1000 μL

mL
= μL∕min ∕MC

(5)

Hepatocyte CLint =
CLint,app ∙ HEPpLW ∙ LWpBW

fu,hep
= mL∕min ∕kg

(6)fu,lm =
Receiver Area Ratio

Donor Area Ratio
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(7)
% Recovery =

Donor Area Ratio + Receiver Area Ratio

Donor Area Ratio at Time Zero
x 100%

(8)
Stability as%Remaining =

Area Ratio at Time Last

Area Ratio at Time Zero
x 100%

(9)fu,hep =
1(

1 +
(

1

fu,lm
− 1

)
× cell density∕microsome protein concentration × PRpC conversion factor

)

Blood‑to‑Plasma Ratio

Blood-to-plasma ratio  (Rbp) in multiple preclinical species 
was measured using a method that has been discussed pre-
viously (31). Briefly, test compounds (1 μM) were added 
to fresh blood and incubated at 37°C for both 1 and 3 h 
in an incubator (90% humidity, 5%  CO2/air) on a shaker 
(450 rpm). At the end of the incubations, blood and plasma 
samples were matrix-matched and quenched with cold 
acetonitrile containing IS. Samples were centrifuged and 
supernatant was analyzed with LC-MS/MS. Calculated 
human  Rbp values from the Pfizer internal global QSAR 
model were sparingly used, if  Rbp was the only missing 
experimental parameter.

RRCK Permeability

RRCK (Ralph Russ canine kidney, i.e., low eff lux 
MDCKII (25)) cells were used for permeability measure-
ment using cell monolayer in 96-transwell® format. The 
detailed assay conditions have been reported previously 
(25). Briefly, RRCK cells were seeded on a transwell fil-
ter membrane and grown for 5–7 days. For permeability 
experiments, test compounds (2 μM) were added to the 
donor wells and the  Transwell® plate was incubated at 
37°C for 1.5 h in an incubator (95% humidity, 5%  CO2/
air). At the end of incubation, samples were analyzed 
using LC-MS/MS. Apparent permeability  (Papp) is calcu-
lated using Eq. 11, where Area is the surface area of the 
cell monolayer,  CD(0) is the concentration in the donor at 
time 0, t is time in seconds,  Mr is the mass of compound 
appearing in the receiver as a function of time, and  dMr/
dt is flux of the compound across the cell monolayer. 
Permeability values were used to classify compounds 

(10)Undiluted fu,lm =
1∕D

((
1∕fu,d

)
− 1

)
+ 1∕D

)

into ECCS classes. When experimental values were not 
available, calculated  Papp values from Pfizer internal 
global QSAR model were used.

(11)Papp =
1

Area × CD(0)
×
dMr

dt

LogD and pKa

PFLogD (32) was calculated using an in-house LogD model 
that was developed to predict LogD for any compounds 
based on underlying experimental data from the SFLogD 
(33) and ELogD (34) assays. It takes into account the known 
limitations of the SFLogD (inaccurate for compounds with 
actual LogD above 4.0) and ELogD (inadequate for acidic 
or zwitterionic compounds) assays by performing a logical 
combination of the results from the two assays based on 
the chemical space of the compound being predicted. The 
model uses experimental results when available and global 
statistical model predictions (35) when experimental data is 
unavailable. Experimental acid and base pKa (36) were used 
when available from Pfizer in-house databases or else calcu-
lated using MoKa software (37, 38) (Molecular Discovery 
Limited, London, UK).

In Vivo Animal IV PK

Test compounds were obtained from Pfizer Global Mate-
rial Management (Groton, CT). IV bolus PK studies were 
conducted at BioDuro contract laboratories (Shanghai, 
China) or at Pfizer labs (Groton, CT). All procedures 
performed on these animals were in accordance with 
regulations and established guidelines and were reviewed 
and approved by an Institutional Animal Care and Use 
Committee or through an ethical review process. The 
animal species/strains included in the study were mouse 
(CD-1, CF-1, Swiss Webster, and C57BL6), rat (Sprague 
Dawley and Wistar Han), beagle dog and cynomolgus 
monkey. Animals (fed, n = 2 in most cases) were gen-
erally dosed IV at 0.5 or 1 mg/kg in various vehicles 
depending on compound properties. At various time 
points (e.g., 0, 0.083, 0.25, 0.5, 1, 2, 4, 7 and 24 h), blood 
samples were taken, from which plasma samples were 
prepared. Plasma samples were extracted using a protein 
precipitation method containing IS. Samples were centri-
fuged, and supernatant was quantified using LC-MS/MS. 
PK data were analyzed using noncompartmental analysis 
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(NCA) in Watson LIMS™ (Thermo Scientific, Philadel-
phia, PA). Total plasma clearance  (CLp) was derived 
using dose/AUC 0-∞. If extrapolated AUC beyond the last 
quantifiable time point (AUC extra) exceeded the AUC 0-∞ 
by 25% or more, the IV PK data were not included in the 
analysis. As renal clearance  (CLr) can be a significant 
proportion of total clearance of ECCS class 3A, 3B, and 
4A compounds, hepatic clearance data were not included 
in the analysis for these classes if renal clearance val-
ues were not available. Female rat PK data was excluded 
from the analysis due to potential sex dependent clear-
ance rates (39). Both the well-stirred and the parallel-
tube models were used to convert between hepatic clear-
ance and intrinsic clearance.

Data Analysis

Average fold error (AFE; aka Bias) was used to assess model 
prediction accuracy, i.e., the extent of any systematic under 
prediction bias. AFE and its corresponding 90% confidence 
interval  (AFECI90%) and log-transformed standard deviation 
(σlnAFE) were calculated with eqs. 12–14, where  Obsi are 
the known observations for each compound,  Predi are the 
model predictions for each compound, N is the number of 
compounds;  ni is the number of predictions per compound, 
and Φ−1

(0.95) is the normal inverse cumulative distribution 
for 95% probability.

Two methods were used to assess model prediction preci-
sion and accuracy, absolute average fold error (AAFE) and 
root mean square fold error (RMSFE; aka ε). AAFE provides 
the average absolute spread of model prediction error from 
unity. AAFE and its corresponding 90% confidence inter-
val  (AAFECI90%) and log-transformed standard deviation 
(σlnAAFE) are calculated (40) with eqs. 15–17.

(12)
AFE = e

�∑�
ln

�
Obsi
Predi

�
∙
1
ni

�

N

�

(13)AFECI90%
= e

�
ln(AFE)±Φ−1

(0.95)

�lnAFE√
N

�

(14)
�lnAFE =

�����
∑��

ln
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�
− ln(AFE)

�2

∙
1
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�

N

(15)
AAFE = e

�∑
������

ln

�
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Predi

������
∙
1
ni

�

N

�

(16)AAFECI90%
= e

�
ln(AAFE)±Φ−1

(0.95)

�lnAAFE√
N

�

RMSFE provides the variance of the model prediction 
errors from unity. RMSFE and its corresponding 90% con-
fidence interval  (RMSFECI90%) and log-transformed standard 
deviation (σlnε

2) were calculated (40) with eqs. 18–20.

To provide more intuitive meaning to RMSFE values 
they were transformed into the total deviation index  (DI90%) 
and the probability within a 2-fold error  (P≤2-fold).  DI90% is 
a measure of the fold range that captures 90% of predic-
tion errors. It is basically the 90% confidence interval of the 
model predictions.  DI90% and its corresponding 90% con-
fidence interval  (DI90%,CI90%) are calculated (40) with the 
eqs. 21 and 22.

RMSFE can alternatively be transformed into the more 
intuitive probability of predictions being within 2-fold of 
observed  (P2fold).  P2fold and its corresponding 90% confi-
dence interval  (P2fold,CI90%) are calculated (40) with eqs. 23 
and 24.
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LM and HEP empirical SFs were fit in Microsoft Excel by 
minimizing the −2 log likelihood function (−2LL) per species, 
ECCS class, and clearance model (well-stirred and parallel-tube) 
with lognormal residual error (RMSFE) which negates bias.

Data Simulations for Parallel‑Tube and Well‑Stirred 
Clearance Models

To understand the impact of clearance model misspecifi-
cation, rat HEP  CLint,app was calculated from the observed 
in vivo  CLh(b) using either the parallel-tube or well-stirred 
clearance models for the rat HEP ECCS 2/4 compounds. 
Then the observed  CLh(b),  Rbp,  fu,p, and  fu,lm and calculated 
 CLint,app values were randomly given lognormal variability 
(20% CVs) ten times each to approximate measurement 
errors. The resulting datasets were reanalyzed by both the 
parallel-tube and well-stirred clearance models with applica-
tion of each assay’s limits of detection.

Results

Clearance IVIVE was analyzed using four preclinical spe-
cies (mouse, rat, dog, and NHP) with large datasets from 
Pfizer internal drug discovery compounds and commercial 
drugs with diverse structures.  CLint SFs were developed for 
each ECCS class with both LMs and HEPs using the classi-
fication criteria developed previously with human data (24). 
In vitro ADME data and in vivo animal IV PK data were 
obtained from Pfizer internal database. All the data are avail-
able in the supplemental material (Excel File). Compounds 
with both in vitro quantifiable experimental clearance val-
ues from LMs or HEPs and in vivo clearance values were 
included in the IVIVE analysis. For the other in vitro ADME 
properties  (Papp,  pKa, logD,  Rbp,  fu,p, and  fu,lm), if experi-
mental data were not available (very few cases), in silico 
values from internal global QSAR models were used for the 
analysis. The total numbers of compounds included in the 
analysis are summarized in Table II for each species, ECCS 
class, and LM and HEP reagents. Rat had considerably more 
data (~350 compounds) than the other three species (i.e., 
~40–100 compounds for mouse, dog and NHP). To the best 
of our knowledge, these are the largest datasets reported in 
the literature so far on clearance IVIVE development for 
preclinical species. Clearance empirical SFs were developed 
based on  CLint for all species in each ECCS class (24), when 
there are sufficient compounds in the class (excluding class 
3, as active uptake and biliary clearance can be the major 
clearance mechanism for this class). Both parallel-tube and 
well-stirred clearance models were used to convert between 
 CLh and  CLint. The results from the parallel-tube and well-
stirred clearance model are summarized in Tables III and 
IV and Figs. 1 and 2 including SF, AAFE (absolute average 

fold error),  DI90% (fold range that captures 90% of prediction 
errors) and  P2fold (probability of compounds within 2-fold 
of the observed values). The statistical parameters (AAFE, 
 DI90% and  P2fold) were calculated after the applications of 
the SFs. SFs of class 2/4 are mainly accounting for meta-
bolic clearance, since renal clearance has already been sub-
tracted out from  CLp. For class 3, SFs were not developed, 
as hepatobiliary clearance may contribute significantly to 
clearance, which were not determined in vitro or in vivo. 
For class 1A and 1B, due to insufficient data, SFs were not 
determined for mouse and dog. As transporters may play a 
significant role in clearance of class 1A and 1B, SFs were 
only developed using HEPs (but not LMs), assuming HEPs 
maintain some transporter functions that are relevant to in 
vivo. ECCS class 1A and 1B SFs were determined indepen-
dently as their hepatic uptake is generally mediated by dif-
ference transporters (OAT2 and OATPs respectively) (24). 
The ECCS classes were assigned based on  Papp values, pKa, 
MW and  LogD7.4 using the same classification criteria as 
human (24). ECCS class 4 was further subdivided between 
compounds predominated eliminated by renal clearance 
 (LogD7.4 ≤ 2, class 4A) and those mainly cleared through 
metabolism  (LogD7.4 > 2, class 4B). In general, the parallel-
tube model gave smaller SFs and less variable prediction of 
 CLint than the well-stirred model using both LMs and HEPs 
(Tables III and IV). The IVIVE of  CLint and hepatic blood 
clearance  (CLh(b)) for both LM and HEP of each ECCS 
class for the different species using the parallel-tube liver 
model are shown in Figs. 3, 4, 5 and 6. The same IVIVE 
plots using the well-stirred liver model are summarized in 
the Supplemental Material (Figs. 2S-5S). Since the large 
datasets were pulled directly from the internal database, 
the actual clearance mechanisms involved for the induvial 
compounds were not investigated in detail with mechanistic 
information such as mass balance data and metabolite char-
acteristics. Some compounds in the analysis could have high 

Table II  Number of Compounds Included in the Intrinsic Clearance 
 (CLint) IVIVE Analysis

a Includes known 1A OATP substrates
b ECCS classes
c Total number of compounds
d Number of compounds in each ECCS class

Species Liver Microsome  CLint
(1A/1B a/2/3A/3B/4A/4B) b

Hepatocyte  CLint
(1A/1B a/2/3A/3B/4A/4B) b

Mouse 45 c
(3/5/27/0/0/0/10) d

50 c
(5/8/30/0/0/0/7) d

Rat 324 c
(17/24/242/1/5/2/33) d

367 c
(33/40/260/1/8/2/32) d

Dog 70 c
(5/7/50/0/0/0/8) d

101 c
(9/10/73/1/2/0/6) d

NHP 60 c
(3/17/32/1/5/0/2) d

97 c
(13/24/48/1/8/0/3) d
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extrahepatic metabolism (e.g., blood hydrolysis, involvement 
of extrahepatic enzymes), enterohepatic recirculation (due 
to parent or metabolite back conversion), and/or other non-
hepatic clearance mechanisms. In addition, ECCS classifica-
tion has not been verified on individual compound level. As 

such, uncertainties and variabilities are expected on IVIVE 
and SFs. In general, it indicates over-prediction of in vivo 
clearance when the points are above the line, and it suggests 
under-prediction of in vivo clearance when the points are 
below the line.

Table III  Summary of Empirical Scaling Factors (SF), AAFE,  DI90% and  P2fold of Intrinsic Clearance  (CLint) for Both Liver Microsomes (LM) 
and Hepatocytes (HEP) for All ECCS Classes Using the Parallel-Tube Model

NC: not calculated due to insufficient compounds in the ECCS class

Species Reagent ECCS N SF AAFE DI90% P2fold

Mouse HEP 1A 5 NC
1B 8 NC
2/4 37 3.29 2.4 5.8 48%

LM 2/4 37 2.40 2.5 6.5 46%

Rat HEP 1A 33 6.64 2.2 4.9 53%
1B 40 7.73 2.9 9.0 40%
2/4 294 4.06 2.4 6.4 46%

LM 2/4 277 4.60 2.2 5.8 48%

Dog HEP 1A 9 NC
1B 10 NC
2/4 79 1.94 1.9 4.8 53%

LM 2/4 58 2.59 2.4 8.0 42%

NHP HEP 1A 13 3.23 2.7 7.1 44%
1B 24 9.50 2.6 8.4 41%
2/4 51 1.83 2.1 5.0 52%

LM 2/4 34 2.64 2.0 4.9 53%

Table IV  Summary of Empirical Scaling Factors (SF), AAFE,  DI90% and  P2fold of Intrinsic Clearance  (CLint) for Both Liver Microsomes (LM) 
and Hepatocytes (HEP) for All ECCS Classes Using the Well-Stirred Model

NC: not calculated due to insufficient compounds in the ECCS class

Species Reagent ECCS N SF AAFE DI90% P2fold

Mouse HEP 1A 5 NC
1B 8 NC
2/4 37 4.73 2.6 6.8 45%

LM 2/4 37 3.43 2.7 7.4 43%

Rat HEP 1A 33 7.32 2.1 4.7 54%
1B 40 12.4 3.4 15 32%
2/4 294 6.57 2.7 8.7 40%

LM 2/4 277 7.88 2.6 8.5 41%

Dog HEP 1A 9 NC
1B 10 NC
2/4 79 2.44 2.0 5.1 52%

LM 2/4 58 3.43 2.8 9.7 38%

NHP HEP 1A 13 3.39 2.8 7.5 44%
1B 24 13.2 2.9 11 36%
2/4 51 2.38 2.3 5.9 48%

LM 2/4 34 3.67 2.2 7.3 43%

1621Pharmaceutical Research (2022) 39:1615–1632



1 3

For class 2/4 compounds using the parallel-tube liver 
model, the SFs of intrinsic clearance for all species are ≤2.6 
with the exception of mouse and rat (SF 2.4–4.6) using both 
LMs and HEPs with the parallel-tube model. This suggests 
that in vitro reagents predict in vivo clearance reasonably 
well and a general trend of underprediction was observed for 
the preclinical species. The AAFEs are generally ~1.9–2.5, 
 DI90%s are ~4.9–8.0 and  P2folds are ~42–53%. SFs of LMs 
is trending higher than HEPs in rat, dog and NHP, poten-
tially due to non-CYP mediated mechanisms (only NADPH 
cofactor was added in the screening LM assays), although 
the differences are not very large. SFs for rodents are gener-
ally higher than other species. Rodents are usually the first 

species selected for PK studies to evaluate the in vivo prop-
erties of drug candidates. PK of higher species are typically 
conducted for more promising compounds to further evalu-
ate their ADME characteristics and select species for PD 
and toxicity studies. In addition, rodents tend to have faster 
metabolism than higher species. As such, more compounds 
have higher clearance in rodents than the other species. Inac-
curacy of physiological parameters, lower activities of the 
in vitro reagents, and/or higher propensity for extrahepatic 
clearance may also contribute to the higher SFs in rodents. 
The rat observed/predicted  CLint ratio versus observed  CLh(b) 
relationships for ECCS class 2/4 compounds are shown in 
Fig. 7 using both parallel-tube and well-stirred models to 

Fig. 1  Summary of Empirical Scaling Factors (SF), AAFE,  DI90% and  P2fold of Intrinsic Clearance  (CLint) for Both Liver Microsomes (LM) and 
Hepatocytes (HEP) for All ECCS Classes Using the Parallel-Tube Model

Fig. 2  Summary of Empirical Scaling Factors (SF), AAFE,  DI90% and  P2fold of Intrinsic Clearance  (CLint) for Both Liver Microsomes (LM) and 
Hepatocytes (HEP) for All ECCS Classes Using the Well-Stirred Model
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visualize any systematic bias with increasing clearance. The 
parallel-tube model with both LM and HEP demonstrated 
no increase in the observed/predicted  CLint ratio even as 
 CLh(b) neared  Qh, indicating no changes of prediction bias 
with increasing  CLh(b) (Fig. 7). Using the well-stirred model, 
however, the observed/predicted rat  CLint ratio increased as 
 CLh(b) was near  Qh for both LM and HEP. This indicates 
the well-stirred model tends to underpredict in vivo  CLint 
when clearance is high, especially near  Qh, while the par-
allel-tube model appears to appropriately describe both 
low and high  CLint. To understand if these observations are 

due to clearance model misspecification, simulations were 
conducted on the rat HEP ECCS 2/4 compounds (please 
see Data Simulation in the Methods and Materials section 
for details), and the results are summarized in Supplemen-
tal Material Fig. 6S. The simulations show that the well-
stirred model tend to underpredict  CLint for high clearance 
compounds if liver behaves like a well-stirred organ (i.e., 
can be accurately described by using the well-stirred clear-
ance equation) and more dramatically underpredict if it 
behaves like the parallel-tube model (i.e., can be accurately 
described by using the parallel-tube clearance equation). On 

Liver microsomes; ECCS 2/4 (SF=2.40, N=37)

Hepatocytes; ECCS 2/4 (SF=3.29, N=37)

Fig. 3  Mouse IVIVE of Intrinsic  (CLint) and Hepatic Blood Clearance  (CLh(b)) for Both Liver Microsomes and Hepatocytes for ECCS Class 2/4 
Compounds Using the Parallel-tube Model with unity (dashed black) and 2-fold (dotted blue) lines
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the contrary, the parallel-tube model predicts observed  CLint 
well across the entire  CLh(b) range when the liver behaves 
like the parallel-tube model and progressively overpredicts 
when it behaves like the well-stirred model.

For ECCS classes 1A and 1B, the SFs are generally 
higher than those of class 2/4 (see Table 1S in Supple-
mental Material for statistical analysis). As class 1A and 
1B compounds are acids or zwitterions, transporter-medi-
ated hepatic uptake clearance may play a role and SFs are 
expected to be higher than metabolism dominated class 

2/4. Additionally, transporters may not be functioning at 
the physiological level under the assay conditions. SFs 
for class 1B are generally higher than class 1A, suggest-
ing needing higher SFs for OATP substrates, as most 1B 
compounds are OATP substrates. Rat has high SFs for 
both class 1A (SF 6.64) and 1B (SF 7.73) (Fig. 1 and 
Table  III). NHP has much higher SF for class 1B (SF 
9.50) than 1A (SF 3.23) (Fig. 1 and Table III). Class 1A 
and 1B SFs for mouse and dog were not developed due 
to insufficient compounds in these classes to generate 

Liver microsomes; ECCS 2/4 (SF=4.60, N=277)

Hepatocytes; ECCS 2/4 (SF=4.06, N=294)

Fig. 4  Rat IVIVE of Intrinsic  (CLint) and Hepatic Blood Clearance  (CLh(b)) for Both Liver Microsomes and Hepatocytes for ECCS Class 2/4, 1A 
and 1B Compounds Using the Parallel-tube Model with unity (dashed black) and 2-fold (dotted blue) lines
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reliable SFs. The results indicate in vivo clearance can be 
reasonably predicted with metabolic clearance in HEP 
with scaling factors without the need to measure uptake 
clearance. For class 1A and 1B, the AAFE values are 
~2.2–2.9,  DI90%s are ~4.9–9.0 and  P2folds are ~40–53%. 
 DI90%s are generally higher for class 1A/1B than class 2/4 
suggesting higher uncertainties in clearance prediction 
for class 1A/1B.

Prediction accuracies of in vivo  CLint and  CLh(b) were 
evaluated for ECCS class 2/4 compounds that show LM 
 CLint great than 2-fold that of HEP in rat after applying the 

SFs. Other species were not evaluated due to insufficient 
compounds having disconnects between LMs and HEPs. The 
results are presented in Fig. 8 using the parallel-tube model 
and in Supplemental Material (Fig. 7S) using the well-
stirred model. Rat LM appears to predict in vivo  CLint more 
accurately than HEP for these compounds with 1.1-fold 
overprediction using LM versus 3.5-fold underprediction 
with HEP (Fig. 8). Similar prediction was observed using 
the well-stirred model (Supplemental Material, Fig. 7S) with 
rat LM being more accurate than HEP in predicting  CLint for 
compounds with higher  CLint in LM than HEP.

Hepatocytes; ECCS 1A (SF=6.64, N=33)

Hepatocytes; ECCS 1B (SF=7.73, N=40)

Fig. 4  (continued)
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Discussion

Empirical SFs are commonly used in drug discovery to 
estimate PK parameters, such as clearance and volume of 
distribution, in order to enhance prediction accuracy (3, 
41–46). In this study, a large number of drug discovery 
compounds and commercial drugs were used to evaluate 
clearance IVIVE and develop SFs per ECCS class using 
both LM and HEP for four preclinical species. This is the 
largest study of clearance IVIVEs and SFs reported in 
the literature. In vitro LMs and HEPs generally predict 

clearance well and the derived SFs are relatively small 
(SFs ≤ 2.6) for ECCS class 2/4 compounds in most spe-
cies with the exception of rodents (SFs ~2.4–4.6) using 
the parallel-tube model. The reason for needing larger 
SFs in rodents compared to higher species may be due to 
less active in vitro reagents, inaccuracy of physiological 
parameters, and higher likelihood of extrahepatic clear-
ance. The SFs reported here are specific to the lots of 
LM and HEP used. When purchasing new reagents, it is 
important to select or prepare new lots that have simi-
lar activities as the historical lots in order to generate 

Liver microsomes; ECCS 2/4 (SF=2.59, N=58)

Hepatocytes; ECCS 2/4 (SF=1.94, N=79)

Fig. 5  Dog IVIVE of Intrinsic  (CLint) and Hepatic Blood Clearance  (CLh(b)) for Both Liver Microsomes and Hepatocytes for ECCS Class 2/4 
Compounds Using the Parallel-tube Model with unity (dashed black) and 2-fold (dotted blue) lines

1626 Pharmaceutical Research (2022) 39:1615–1632



1 3

consistent data. If the activities of the new lots are differ-
ent than the lots used to develop SFs, new SFs will need 
to be established for the new reagents. Both parallel-tube 
and well-stirred liver models were used for data analysis. 
The parallel-tube model produced smaller SFs, higher 
accuracy, and lower variability in the clearance predic-
tion than the well-stirred model, especially for high clear-
ance compounds. These data suggest that the parallel-tube 
model better represents in vivo liver physiology than the 
well-stirred model.

The  DI90% values of predictions varied from 4.8–9.0, indi-
cating 90% of the predictions are within 4.8–9.0 fold of the 
observed clearance. The  P2fold values are generally ~40–53%, 
suggesting probably to be within 2-fold of observed  CLint 
value is ~40–50%. These prediction accuracies are generally 
lower compared to actual prediction of candidates for drug 
discovery projects. The reason is because data are pulled 
directly from the database without any curation or detailed 
understanding of the clearance mechanisms involved at the 
individual compound level. Extrahepatic metabolism and 

Liver microsomes; ECCS 2/4 (SF=2.64, N=34)

Hepatocytes; ECCS 2/4 (SF=1.94, N=51)

Fig. 6  NHP IVIVE of Intrinsic  (CLint) and Hepatic Blood Clearance  (CLh(b)) for Both Liver Microsomes and Hepatocytes for ECCS Class 2/4, 
1A and 1B Compounds Using the Parallel-tube Model with unity (dashed black) and 2-fold (dotted blue) lines
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non-metabolic clearance may impact the prediction accu-
racy. In addition, variabilities from both in vitro and in vivo 
studies and limited assay replication may also contribute to 
the uncertainties in prediction.

For some compounds,  CLint values between LM and 
HEP are different. As screening LM assays only have 
NADPH cofactor with no addition of other cofactors, 
when HEP  CLint is higher than LM, non-CYP enzymes 
may be involved in the metabolism (e.g., UGTs, SULTs, 
AO, ADH/ALDH, reductases) (12). On the other hand, 
when LM  CLint is higher than  HEP, cell membrane perme-
ability may be limiting the apparent metabolic rate (13). 

For ECCS 2/4 compounds that demonstrated potential 
passive permeability-limited clearance in vitro (i.e., LM 
 CLint > 2-fold HEP  CLint) in rats, LM (1.1-fold overpredic-
tion) predicted rat in vivo clearance more accurately and 
precisely than rat HEP (3.5-fold underprediction). These 
observations suggest there are differences in hepatocyte 
membrane permeability between in vitro and in vivo. In 
vitro HEP permeability appears to be lower than in vivo in 
rats. In vivo, permeability seems to no longer limit the rate 
of metabolism. Further research is needed to understand 
the underlying mechanisms of the differences between in 
vitro and vivo permeability.

Hepatocytes; ECCS 1A (SF=3.23, N=13)

Hepatocytes; ECCS 1B (SF=9.50, N=24)

Fig. 6  (continued)
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Conclusions

Development of clearance IVIVE and SFs is important 
not only for human, but also for pre-clinical species. SFs 
eliminate systematic biases to improve clearance prediction 
accuracy and minimize the impact of potential limitations 
of in vitro reagents due to the quality of the liver tissues 
(e.g., disease state, enzyme inhibition and induction due to 

medications and alcohol/drug abuse, and lag time to tissue 
collection) and preparation procedures. In this study, we eval-
uated clearance IVIVE and estimated SFs using both LM and 
HEP for mouse, rat, dog, and NHP with large sets of struc-
turally diverse drug discovery compounds and commercial 
drugs. The results indicated that SFs were generally not large 
with the exception of rodents, suggesting that the enzyme 
activities of the in vitro reagents (i.e., LMs and HEPs) are 

Liver microsomes; ECCS 2/4 (N=277)

Parallel-tube (SF=4.60) Well-stirred (SF=7.88)

Hepatocytes; ECCS 2/4 (N=294)

Parallel-tube (SF=4.06) Well-stirred (SF=6.57)

Fig. 7  Ratio of Observed to Predicted Rat Intrinsic Clearance  (CLint) as a Function of In Vivo Hepatic Blood Clearance  (CLh(b)) for Liver Micro-
somes and Hepatocytes and for ECCS Class 2/4 Compounds Using the Parallel-tube or Well-stirred Models with Unity (solid black) Line
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reasonably preserved. The higher SFs for rodents may be due 
in part to a loss of metabolic enzyme activities during reagent 
preparation, inaccuracy of physiological scaling parameters, 
and/or higher propensity for extrahepatic clearance. IVIVE 
analysis using screening data without in-depth understand-
ing of clearance mechanisms for individual compounds are 
inherently more variable and have higher uncertainties com-
pared to well-curated data, with well-understood clearance 
pathways and higher replicate runs. The parallel-tube model 
gives smaller SFs, higher accuracy, and lower variability in 

predictions over a wider hepatic clearance range compared 
to the well-stirred model. Disconnects of  CLint between LM 
and HEP provide additional mechanistic insights on clear-
ance mechanisms. When  CLint LM is greater (2-fold) than 
HEP, passive permeability may limit the rate of metabolism 
in HEP. In these cases, rat LM appears to predict in vivo 
clearance better than HEP, and permeability seems to no 
longer limit metabolism in vivo. However, further studies 
are needed to understand the underlying mechanisms of the 
observation. Examination of clearance IVIVE in preclinical 

Liver microsomes (SF=4.60, 1.1-fold overprediction bias)

Hepatocytes (SF=4.06, 3.5-fold underprediction bias)

Fig. 8  Rat IVIVE for ECCS 2/4 Compounds (N = 56) that Have Liver Microsome Intrinsic Clearance  (CLint) Greater than 2-fold that of Hepato-
cytes after Applying Scaling Factors Using the Parallel-tube Model with Unity (dashed black), Bias (solid red), and 2-fold (dotted blue) Lines
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species provides valuable information in human IVIVE trans-
lation. The SFs help to reduce systematic biases and increase 
the confidence in preclinical IVIVE. When there is an IVIVE 
disconnect of clearance in preclinical species, careful exami-
nation is needed to understand the contributing factors, such 
as extrahepatic metabolism (e.g., AO), transporter medi-
ated clearance (e.g., OATP1B1/1B3), and missing clearance 
mechanisms (e.g., blood metabolism, renal and biliary clear-
ance). The learnings from preclinical species can be applied 
to human translation of IVIVE, while considering potential 
species differences in clearance mechanisms.
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