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ABSTRACT
Purpose To examine the interlaboratory variability in CLint
values generated with human hepatocytes and determine
trends in variability and clearance prediction accuracy using
physicochemical and pharmacokinetic parameters.
Methods Data for 50 compounds from 14 papers were com-
piled with physicochemical and pharmacokinetic parameter
values taken from various sources.
Results Coefficients of variation were as high as 99.8% for
individual compounds and variation was not dependent on
the number of prediction values included in the analysis.
When examining median values, it appeared that compounds
with a lower number of rotatable bonds had more variability.
When examining prediction uniformity, those compounds
with uniform in vivo underpredictions had higher CLint, in vivo

values, while those with non-uniform predictions typically had
lower CLint, in vivo values. Of the compounds with uniform
predictions, only a small number were uniformly predicted
accurately. Based on this limited dataset, less lipophilic, lower
intrinsic clearance, and lower protein binding compounds
yield more accurate clearance predictions.
Conclusions Caution should be taken when compiling in vitro
CLint values from different laboratories as variations in exper-
imental procedures (such as extent of shaking during incuba-
tion) may yield different predictions for the same compound.
The majority of compounds with uniform in vitro values had
predictions that were inaccurate, emphasizing the need for a

better mechanistic understanding of IVIVE. The non-
uniform predictions, often with low turnover compounds,
reaffirmed the experimental challenges for drugs in this clear-
ance range. Separating new chemical entities by lipophilicity,
intrinsic clearance, and protein binding may help instill more
confidence in IVIVE predictions.
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ABBREVIATIONS
BDDCS Biopharmaceutics Drug Disposition Classification

System
CLint Intrinsic clearance
CLH Hepatic clearance
CV Coefficient of variation
fu Fraction unbound
HBA Number of hydrogen bond acceptors
HBD Number of hydrogen bond donors
IVIVE In vitro to in vivo extrapolation
MRT Mean residence time
MW Molecular weight
PSA Polar surface area
VDss Steady state volume of distribution

INTRODUCTION

Clearance is one of the most fundamental pharmacokinetic
parameters, and its accurate in vivo prediction is necessary for
compound prioritization and first-in-human estimates.
However, the surprising inaccuracy in predictions from in vitro
to in vivo extrapolation (IVIVE) has recently been reviewed (1,2).

The typical IVIVE process involves measuring an intrinsic
clearance (CLint) in microsomes or hepatocytes and applying
biological scaling factors and a model of hepatic disposition to
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estimate an in vivo hepatic clearance (CLH). In an attempt to
eliminate the systematic error with IVIVE, groups have begun
applying regression or empirical based scaling factors (3).

When examining the widespread IVIVE error, significant
interlaboratory in vitro variability has been noted (1,4,5). While
variability may result from interdonor differences, pooled lots
are now commonly used to reduce lot-to-lot variation, or may
result from differences in the biological scaling factors applied,
efforts have been directed toward reaching a consensus (6,7).
There could also be variation due to the use of fresh vs. cryo-
preserved hepatocytes, however previous studies have not
found significant differences (8,9).

When collating in vivo hepatic clearance values from intra-
venous studies, Stringer et al. (5) found low variability; howev-
er, upon examining in vitro hepatocyte CLint values, the au-
thors found large coefficients of variation (CVs), which in-
creased with increasing CLint. Nagilla et al. (4) noted the pau-
city and variability of in vitro literature data, explaining that
CLint values should be taken from a consistent assay rather
than arbitrarily chosen from different literature sources. Now
that more data have been generated, we reexamine the
interlaboratory variability, and search for trends with variabil-
ity and physicochemical and pharmacokinetic parameters.
We also examine trends in prediction accuracy for com-
pounds with uniform in vitro values.

METHODS

A total of 14 papers were examined (Table I) and overlapping
values were found for 50 compounds with data generated in
human hepatocytes (Supplementary Table I). All in vitro CLint
values were scaled to a predicted CLint,in vivo (Eq. 1) using
consistent scaling factors of 120 × 106 hepatocytes/g liver
and 21.4 g liver/kg body weight, and the fraction unbound
in the hepatocyte incubation (fuhep) values taken from the
Wood et al. (2) database:

Predicted CLint; invivo ¼ CLint;invitro

f uhep
⋅120⋅21:4 ð1Þ

Coefficients of variation (CV) were determined as standard
deviation divided by the average.

Values for hepatic clearance (CLH,in vivo) (ml/min/kg), frac-
tion unbound in the blood and plasma (fub, fup), and intrinsic
clearance (CLint, in vivo) (ml/min/kg) were taken from Wood
et al. (2). CLint, in vivo values were calculated using the well-
stirred model (since the difference in bias between the well-
stirred and parallel tube model, the two extremes for models
of hepatic disposition, was determined to be minimal) (2).

The ChEMBL database (https://www.ebi.ac.uk/chembl)
(21) was used to obtain values for molecular weight (MW),

logP, logD, polar surface area (PSA), number of hydrogen
bond donors (HBD), number of hydrogen bond acceptors
(HBA), number of rotatable bonds, and number of aromatic
rings.

Values for the steady state volume of distribution (VDss)
(l/kg) and mean residence time (MRT) (hr) were found for
45 compounds in Obach et al. (22).

Classification within the Biopharmaceuticals Drug
Disposition Classification System (BDDCS) was determined
using Benet et al. (23) and Hosey et al. (24).

Main metabolizing enzyme information was found for 33
compounds in El-Kattan et al. (25)

The relationship between variability and the properties was
evaluated by examining the coefficient of correlation R2.

The accuracy of predictions was determined based on
whether the predicted CLint values fell within two fold of the
observed CLint values (Eq. 2).

0:5≤
observed CLint

predicted CLint
≤2 ð2Þ

RESULTS

Coefficients of Variation and Physicochemical
Parameters

Data for 50 compounds were evaluated and each compound
had values from 2 to 9 sources. Of the 50 compounds, 17 had

Table I Human Hepatocyte Data Examined for this Evaluation

Source Human Hepatocytes Donors

Akabane et al. (10) Cryopreserved Individual, 9–11 donors

Blanchard et al. (11) Cryopreserved Individual, 2 donors

Floby et al. (9) Fresh Individual, 7 donors

Hallifax et al. (8) Fresh Individual, 5 donors

Hallifax et al. (12) Cryopreserved Individual, 5 donors

Jacobson et al. (13) Cryopreserved Pooled, 2 donors

Lau et al. (14) Cryopreserved Pooled, 5+ donors

Lu et al. (15) Cryopreserved Pooled, 4 donors

McGinnity et al. (16) Fresh Individual, 1–90 donors

Naritomi et al.
(17)

Cryopreserved Individual, 5–7 donors

Riley et al. (18) Not Reported Individual, 3+ donors

Soars et al. (19) Cryopreserved Individual, 3 donors

Sohlenius-Sternbeck
et al. (20)

Cryopreserved Pooled, 2–5 donors

Sohlenius-Sternbeck
et al. (3)

Cryopreserved Pooled, 5 donors
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n = 2, preventing a statistically relevant CV from being calcu-
lated. For the remaining 33 compounds, the CVs ranged from
8.53–99.8%. The potential for CV dependence on the

number of values (n) was examined first. Pindolol with the
second lowest CV of 19.0% had data from three sources,
and triazolam with the second highest CV of 99.4% similarly

a b

Fig. 1 The dependence of CV (a) and the largest fold difference (b) on n.

Fig. 2 Trends between various physicochemical and pharmacokinetic properties and CV.
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had data from three sources. Imipramine, with n = 5 had the
lowest CV of 8.53%. Therefore, a high value of n did not
necessarily cause high CV values as shown in Fig. 1a. The fold
difference between the highest and lowest predictions for each
compound was also examined and there did not appear to be
a dependence on n (Fig. 1b).

Sixteen physiochemical and pharmacokinetic properties were
examined in relation to CV (Fig. 2) and there were no direct
correlations here as the highest R2 value was only 0.071. The 5
largest correlations are reported in Table II. The data were then
divided into a lower CV group (CV< 50%) and higher CV
group (CV ≥ 50%) and median parameter values were exam-
ined (Table III). The largest relative difference was seen with fub
and fup values, followed by the number of rotatable bonds. In the
lower CV half, 29% of compounds had ≥7 rotatable bonds
compared to 6.3% of compounds with higher CV.

BDDCS class, molecular species, and main metabolizing
enzymes were also examined. BDDCS Class 1 drugs ap-
peared to have a wider range of CV values than Class 2 drugs
(Fig. 3a). When examining molecular species, neutral drugs
had the highest CV values (Fig. 3b). Looking at main metab-
olizing enzymes, compounds metabolized by CYP3A4 ap-
peared to have the highest CV values (Fig. 3c). For CYP3A4
substrates, 38% had a CV > 90%, while no CYP2D6,
CYP1A2, CYP2C, and UGT substrates had CVs > 90%.

Given the difference seen between BDDCS classes, the data
were also split by class 1 and class 2 compounds (n =21 and 11
respectively). Examining the same physiochemical properties
with CV for both classes, there were no correlations for
BDDCS class 1 compounds (every R2 value was less than 0.10).
For BDDCS class 2 though, there were potential trends (Fig. 4a).
The number of HBA and HBD and number of aromatic rings
had the largest correlations, however the smaller number of com-
pounds should be noted. The lack of correlation with BDDCS
class 1 compounds is shown in Fig. 4b for comparison.

Uniformity of Predictions and Physicochemical
Parameters

Next the variability relating to the accuracy of predictions was
examined. Accurate predictions are typically defined as pre-
dictions that fall within two fold of observed values (16,26,27).
Here, if a compound had predictions all falling either within
two-fold or outside two-fold, it was categorized as Buniform^.
If a compound had some predictions falling within two-fold,
and some falling outside two-fold, it was categorized as Bnon-

Table II Highest Correlations, R2, of CV with Parameters

#Rot Bonds #Aromatic Rings fuhep fup #HBD & HBA

CV 0.071 0.059 0.037 0.031 0.027
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uniform^. The same properties were then examined to deter-
mine if any drive the difference between the two categories.

Returning to the 50 compiled compounds, there were 31
uniform compounds and 19 non-uniform compounds. Of the
uniform predictions, 6 (19%) were accurate predictions, and 25
(81%) were inaccurate underpredictions. The most distinct dif-
ference between the uniform and non-uniform categories was
seen with CLint, in vivo. Compounds with uniform predictions
typically had higher CLint,in vivo values (Fig. 5). Furthermore,
37% of non-uniform predictions had CLint, in vivo values
<10 ml/min/kg compared to 10% of uniform predictions.

Accuracy of Predictions and Physicochemical
Parameters

Finally, all 31 compounds with uniform predictions were fur-
ther examined. It is expected that new understandings of
mechanisms wil l help reduce the current IVIVE
underprediction, but for now, it is important to know which
new compounds may yield results that will be accurate, and
which may not. Here only 6 compounds had accurate

predictions, limiting the power of the evaluation. Despite this,
there were accuracy distinctions when considering logD,
CLint, in vivo, and fup (Table IV). Of the accurate predictions,
83% had a logD of <1.0 compared to 28% of inaccurate
predictions. 42% of compounds with logD of <1.0 had accu-
rate predictions and 5.0% of compounds with logD ≥1.0 had
accurate predictions. For CLint, in vivo, 31% of compounds with
CLint, in vivo < 100 ml/min/kg had accurate predictions com-
pared to 6.7% with CLint, in vivo ≥ 100. Finally, for fup, 11% of
predictions with fup < 0.1 were accurate compared to 33% of
predictions with fup ≥ 0.1.

DISCUSSION

Variability in the in vitro data generated and used for IVIVE
can significantly affect clearance predictions. This compilation
found varying reported data for 50 compounds. Of these, 33
had n ≥ 3, and CV values for the same compoundwere as high
as 99.8%. Trends were sought in hopes of determining in the
future which new compounds may yield more reliable

a b c

Fig. 3 Trends between CV and BDDCS class (a), molecular species (b), and main metabolizing enzyme (c).

a b

Fig. 4 The highest correlations of CV with physicochemical properties for BDDCS class 2 compounds (a) and the lack of correlation for BDDCS class 1
compounds (b).
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predictions than others. However, after confirming that vari-
ability was not dependent on n, no direct trends appeared with
the physicochemical properties examined.

Uponmore generally splitting the compounds into low and
high CV groups though there appeared to be marked relative
differences in the median values for fub and fup and the aver-
age number of rotatable bonds. After further examining the
binding values though, an obvious trend did not appear. For
fub, 35% of the low CV group had high protein binding (fu ≤
0.05) and 31% of the high CV group also had high binding. A
similar result was seen with fup where 47% of the low CV
group had high protein binding and 38% of the high CV
group did also. A difference did hold for rotatable bonds
where in the lower CV half, 29% of compounds had ≥7 ro-
tatable bonds compared to 6.3% of compounds with higher
CV. It has previously been shown that decreasing rotatable
bond count is paralleled by increasing permeation rate (28),
and here this may lead to larger variability. Wood et al. (29)
previously examined the importance of the unstirred water
layer (UWL) on clearance predictions with hepatocytes.
Given that the UWL has been shown to reduce the apparent
permeability of highly permeable compounds, the authors
showed that shaking of incubations can lead to 3 to 5-fold
higher CLint values (29). Perhaps the increase in variability

noted with lower rotatable bond counts (and thus higher per-
meability) could be related to experimental differences for
incubation shaking among laboratories and moving forward,
this factor should be considered for new chemical entities.

Interestingly BDDCS class 1 drugs had a larger CV range
than BDDCS class 2 drugs and neutral drugs had more varia-
tion than acidic or basic. Although the number of drugs with
main metabolizing enzyme information was more limited,
CYP3A4 substrates had higher CV values, perhaps due to the
potential of extrahepatic metabolism. When examining R2

values with class 2 drugs and different properties, the number
of HBA and HBD stood out, which has also been shown to be
related to permeation rate (28,30). As more data are generated
and shared, it would be useful to reevaluate these potential
trends and their statistical significance with a larger sample size.

Some compounds had large CV values, however upon fur-
ther examination, no matter which value was used, the predic-
tions would have fallen outside of two-fold of the observed value
and been considered inaccurate. For instance for triazolam that
had a CV of 99.9%, data from three sources underpredicted by
3.8, 14, and 29 fold. For these cases, the compounds were
deemed to have Buniform^ predictions. The main difference
noted between uniform and non-uniform compounds was that
uniform compounds had higher CLint, in vivo values. The majority
of the uniform compounds were uniformly inaccurate (80%),
and all of these inaccurate compounds were underpredicted.
This is not unexpected given the high inaccuracy previously re-
ported (1,2) and emphasizes the need to find a mechanistic rea-
son for the underprediction. It has been noted that compounds
with high CLint,in vivo commonly have large error (2,31,32), which
explains why these compounds would have uniform inaccurate
predictions. More low clearance (CLint, in vivo <10 ml/min/kg)
compounds fell in the non-uniform category, confirming the ex-
perimental challenges for low turnover compounds (5,33).

Finally, trends in accuracy for the 31 compounds with uni-
form predictions were examined. More or less confidence
could theoretically be placed in a new compound’s extrapola-
tion results if any trends exist and accordingly more or less
experiments may be needed. Of the 50 drugs examined, only
6 compounds had uniform accurate predictions, limiting the
power of the evaluation. Of the accurate compounds, there
were 5 accurate BDDCS class 1 and 0 accurate class 2 com-
pounds (the 6th accurate compound was class 3) supporting
the hypothesis that class 1 drugs would have more accurate
predictions (1). Based on this dataset it appears that less lipo-
philic, lower intrinsic clearance, and lower protein binding
compounds have more accurate predictions. The intrinsic
clearance finding agrees with the idea of CLint dependent
underprediction mentioned earlier, and the protein binding
finding agrees with previous studies concluding that highly
bound compounds have more inaccuracy (34,35). It will be
useful to reevaluate these trends as more uniform, accurate
data are generated for compounds.

Fig. 5 Relationship between compounds with uniform vs. non-uniform pre-
dictions and CLint, in vivo.

Table IV Properties of Compounds with Accurate, Uniform Predictions

Parameter #Accurate #Inaccurate %Accurate

LogD

<1.0 5 7 41.7%

≥1.0 1 18 5.26%

CLint, in vivo

<100 5 11 31.3%

≥100 1 14 6.67%

fup
<0.1 2 17 10.5%

≥0.1 4 8 33.3%
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CONCLUSIONS

This investigation highlights the interlaboratory variability
in generated CLint values and the need for consistent and
improved methodologies. Compounds with lower rotatable
bond counts and therefore higher permeability had more
variability, perhaps due to experimental differences in incu-
bation shaking and the role of the unstirred water layer.
Compounds with uniform predictions typically had higher
CLint, in vivo values and uniform underpredictions, confirming
a lack ofmechanistic understanding with IVIVE; while com-
pounds with non-uniform predictions typically had lower
CLint, in vivo values, reaffirming the current experimental
challenges for compounds falling within this clearance
range. While only a limited number of uniform predictions
were accurate, lipophilicity, intrinsic clearance, and protein
binding may be determinants of accurate IVIVE.
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