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ABSTRACT
Purpose Physiologically-based pharmacokinetic (PBPK)
models are essential in drug development, but require param-
eters that are not always obtainable. We developed a meth-
odology to investigate the feasibility and requirements for pre-
cise and accurate estimation of PBPK parameters using pop-
ulation modelling of clinical data and illustrate this for two key
PBPK parameters for hepatic metabolic clearance, namely
whole liver unbound intrinsic clearance (CLint,u,WL) and he-
patic blood flow (Qh) in children.
Methods First, structural identifiability was enabled through
re-parametrization and the definition of essential trial design
components. Subsequently, requirements for the trial compo-
nents to yield precise estimation of the PBPK parameters and
their inter-individual variability were established using a novel
application of population optimal design theory. Finally, the

performance of the proposed trial design was assessed using
stochastic simulation and estimation.
Results Precise estimation of CLint,u,WL and Qh and their
inter-individual variability was found to require a trial
with two drugs, of which one has an extraction ratio
(ER) ≤ 0.27 and the other has an ER ≥ 0.93. The proposed
clinical trial design was found to lead to precise and accu-
rate parameter estimates and was robust to parameter
uncertainty.
Conclusion The proposed framework can be applied to
other PBPK parameters and facilitate the development
of PBPK models.

KEY WORDS paediatrics . physiologically-based
pharmacokinetic . populationmodelling . population optimal
design

ABBREVIATIONS
Θ Fixed effect
CLint,u,WL Whole liver unbound intrinsic clearance
CLp Total (bound and unbound) plasma clearance
mre Mean relative estimation error
PBPK Physiologically-based pharmacokinetics
Qh Hepatic blood flow
re Relative estimation error
rrmse Relative root mean square error
ω2 Inter-individual variance

INTRODUCTION

Physiologically-based pharmacokinetic (PBPK) models are an
essential tool to predict the pharmacokinetics (PK) of new
compounds in various human populations. PBPK models
quantify how drug molecules, characterized by drug-specific
parameters reflecting their properties, interact with organisms
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which are defined by system-specific parameters reflecting an-
atomical and physiological measures. Predictions are made by
feeding drug-specific parameters into a PBPK model with the
system-specific parameter values of the population of interest.
This has been proven useful for instance to define first-in-child
doses (1) (2) (3) or support paediatric clinical trial design. (2) (4).

System-specific parameter values for PBPK models can be
either obtained experimentally by direct measurements or
they can be derived from clinical PK data through model
parameter estimation (5–7). The latter not only allows for
coping with a lack of experimental data, which may be par-
ticularly relevant in special patient populations, but is also the
most robust approach which has been well described by
Tsamandoura et al. (8). For instance, it has been found that
ontogeny functions estimated from clinical PK data per-
formed markedly better than those developed from in vitro
measurements (7). However, estimating parameter values is
not always trivial due to structural identifiability issues.
Structural identifiability refers to the possibility to uniquely
estimate model parameters given a model and ideal, error-
free data (9,10). Without a guarantee of structural
identifiability, parameter estimates will be either non obtain-
able or random and unreliable (11). In such cases global struc-
tural identifiability, meaning that only one unique solution
exists for each parameter, can be obtained by fixing or using
priors for somemodel parameters, while estimating the others.

Once global structural identifiability of model parameters
is achieved, population modelling of longitudinal data can be
used for estimation of the PBPK parameters and their inter-
individual variability. However, structural identifiability of a
model does not guarantee precise and unbiased parameter
estimates, as this depends on the information content of the
data. Therefore, model parameters should also be numerically
identifiable, meaning that accurate and precise estimates can
be obtained given real, observed data. Numerical
identifiability can in general terms be achieved by designing
studies that yield sufficiently rich data (12). Evaluation and
optimization of trial designs for population PK analyses can
be achieved without time-consuming clinical trial simulations
using optimal design software (13). Optimal design software
packages approximate the Fisher information matrix (FIM) of
population models and rely on the Rao and Cramer bound
that states that the inverse of the FIM is the lower bound of the
variance-covariance matrix of any unbiased estimator of
the parameters. While to date population optimal design
is routinely used in optimizing trials for the precise es-
timation of population PK parameters (14), it has never
been applied to the estimation of population PBPK
parameters.

For drugs undergoing hepatic metabolism, the part of a
paediatric PBPK model describing this clearance contains
two key parameters that cannot be directly measured and that
cannot be simultaneously estimated from the PK data of one

drug, due to identifiability issues, namely whole liver unbound
intrinsic clearance (CLint,u,WL) and hepatic blood flow (Qh).
As illustrated in Fig. 1, both contribute to the overall hepatic
metabolic clearance. The extraction ratio (ER) of a drug re-
flects the relative contribution of these two parameters to he-
patic metabolic clearance.On one hand, clearance of high ER
drugs reflects Qh, while clearance of low ER drugs reflects
CLint,u,WL. To achieve global structural identifiability, Qh is
often fixed while CLint,u,WL is estimated based on PK data
(5,15). As Qh cannot be directly measured in very young chil-
dren, its value is often fixed to an assumed percentage of
cardiac output (5,15). When this assumed percentage is how-
ever not correct, the estimation of CLint,u,WL values and en-
zyme ontogeny functions may be biased. Therefore, there is a
need for other methodologies that allow us to cope with the
lack of experimental data on system-specific parameters. Even
though paediatric PBPK models have been proven to predict
clearance of many drugs with reasonable accuracy (15–17),
such methods would ultimately improve and accelerate the
development and validation of these models in various paedi-
atric populations.

The aim of this paper was to develop an analysis frame-
work to investigate whether population modelling approach
can be used to estimate PBPKmodel parameters from clinical
PK data and establish the required criteria for such estima-
tions. The developed analysis framework depends on firstly
establishing the data requirements for structural identifiability
of PBPK model parameters. Then on a subsequent applica-
tion of innovative population optimal design theory to define a
clinical trial design that yields precise estimates of the relevant
model parameters. And lastly on the evaluation of the perfor-
mance of the proposed trial design in terms of bias and im-
precision of parameter estimates using stochastic simulation
and estimation. The approach is illustrated using the simulta-
neous estimation of Qh and CLint,u,WL in the paediatric pop-
ulation as an example.

MATERIALS AND METHODS

An analytical workflow was developed, which is composed of
the three following steps: structural identifiability, optimal de-
sign and evaluation of the optimized design performance. R
version 3.3.1 was used for calculations, data management and
visualizations (18). For optimal design procedures of step 2 of
the analytical workflow, the PFIM program 4.0 running in R
was used (19). PBPK simulations were performedwith Simcyp
software (Simcyp, Sheffield, UK) V15.R1 to derive PBPK
model parameters value for optimal design procedures in step
2 and the stochastic simulations and estimations in step 3.
Stochastic simulations and estimations were performed in
step 3 using NONMEM version 7.3 (20) and Perl-speaks-
NONMEM software package version 4.6.0 (21).
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Step 1: Structural Identifiability

The dispersion model (equations 1–6) was used to describe
hepatic plasma clearance based on PBPK-principles. This
model was selected as it has been reported to better predict
clearance than the well-stirredmodel for high clearance drugs,
while both models lead to equivalent clearance predictions for
other drugs (22,23).

CLp ¼ CLb� B : P ð1Þ
CLb ¼ Qh� ER ð2Þ
ER ¼ 1−FH ð3Þ
FH ¼ 4a

1þ að Þ2exp a−1ð Þ=2DNf g− 1−að Þ2exp − aþ 1ð Þ=2DNf g ð4Þ

a ¼ 1þ 4RN � DNð Þ1=2 ð5Þ
RN ¼ fu=B : Pð Þ � CLintu;WL=Qh ð6Þ

In these equations CLp is the total (bound and unbound)
plasma clearance, B:P is the blood to plasma ratio, CLb is the
whole blood clearance, Qh is the hepatic blood flow,
ER is the hepatic extraction ratio, FH is the hepatic
availability, fu is the unbound drug fraction in plasma,
CLint,u,WL is the whole liver unbound intrinsic clearance, RN

is the efficiency number and DN is the dispersion number,
which was taken to be 0.17 (23).

In the dispersionmodel, CLp values can be directly derived
from PK data of intravenously administered drugs. In the
paediatric population, the unbound drug fraction in plasma
(fu) and the blood to plasma ratio (B:P) of a drug can be
obtained experimentally and, assuming these values were ob-
tained precisely and accurately, they were fixed in the model
(equation 1–6). Qh and CLint,u,WL are thereafter the only two
parameters that remain to be estimated. As in this case the
dispersion model can be written as a single equation with two
unknowns, clinical data on the PK of one drug will not yield

structural identifiability. Therefore clinical trial scenarios were
explored based on obtaining PK profiles of two different
drugs, in which case there would be two equations for clear-
ance, each with two unknowns. Global structural
identifiability can then be obtained if the unknowns are the
same in both equations.

Using this approach, Qh is a system-specific parameter that
will be the same for two drugs administered to individuals
from the same population, assuming the drugs do not alter
Qh. CLint,u,WL is however a parameter that combines system-
specific properties (i.e. isoenzyme abundance) and drug-
specific properties (i.e. isoenzyme activity measured in in vitro
systems as intrinsic clearance (μl / min) per functional unit of
system). This means that even when two drugs are metabo-
lized by the same isoenzyme, their CLint,u,WL value is likely to
be different. Therefore a re-parameterization of CLint,u,WL

was performed to separate system-specific parameters from
drug-specific parameters.

The ratio in CLintu,WL (CLintratio) of drug A and drug B
that are metabolized by the same isoenzyme is equivalent to
the ratio in the activity for the metabolizing isoenzyme of the
two drugs according to equation 7. Therefore, this parameter
is a drug-specific parameter.

CLintratio ¼ CLintu;WL B

CLintu;WL A

¼ isoenzyme activity B� isoenzyme abundance
isoenzyme activity A � isoenzyme abundance

¼ isoenzyme activity B
isoenzyme activity A

ð7Þ

This ratio does not vary with age, as the isoenzyme activity
towards a drug is believed to be unaffected by maturational
processes. When fixing CLintratio obtained for the two drugs,
one unique CLintu,WL value can be estimated in a patient

Fig. 1 The relationships between
extraction ratio (ER), whole liver
unbound intrinsic clearance
(CLint,u,WL) and hepatic blood flow
(Qh) for the adult and paediatric
population. Without knowing Qh,
the ER of a drug is unknown,
making it mathematically impossible
to disentangle Qh and CLint,u,WL

from clinical concentration-time
data of one drug. CL: is the blood
clearance of the unbound drug, see
equations 1–6.
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population for the two drugs according to the re-
parametrization in equations 8 and 9:

CLintu;WL ¼ CLintu;WL A ð8Þ
CLintu;WL B ¼ CLintu;WL � CLintratio ð9Þ

Step 2: Optimal Design for Precise Population
Parameter Estimates

Because population PK modelling disentangles inter-
individual variability in PK parameters from residual unex-
plained variability, this method allows for the estimation of
population PK parameter values Θ and their inter-
individual variability ω2 which is characterized as described
in equation 10. In order to obtain precise estimates of Θ and
ω2 for CLint,u,WL and Qh, a global sensitivity analysis of the
uncertainty of these parameters with respect to the drugs ERs
was undertaken using PFIM 4.0 (see under uncertainty section
in methods). Defining the relationship between parameter un-
certainty and the drugs ERs enables optimization of the trial
design, by selecting drugs based on their ER. ER was chosen
as the trial design parameter to optimize because it reflects the
relative information content of drug clearance values regard-
ing CLintu,WL and Qh (See Fig. 1).

Clinical Trial Design

The clinical trial design is illustrated in Fig. 2. To allow for
structural identifiability, the clinical trial design was composed
of two arms. The patients in each arm belonged to the same
paediatric population, for which 1-year-olds were chosen, and
the drugs administered in each arm were eliminated by the
same isoenzyme and had different extraction ratios. In order
to ensure that the sampling design was informative enough,
while only focusing on the optimization of drug’s ER, the
number of patients and blood samples were chosen to be high,
with 45 patients included in each arm and 7 blood samples
drawn in each patient. This choice allowed us to assess the
impact of the drug’s ER on the performance of the trial design
without a confounding impact of patient or sample number.
Finally, in order to assess the impact of the drug’s ER on the
performance of the design without any confounding impact of
sampling times, drug dosing, and number of patients and
sampling times, these parameters were adapted to the drugs’
properties. To do so, drugs were administered as a constant
rate infusion with infusion rate and sampling times adapted to
the drugs clearance and half-life respectively, and each arm of
the study included the same number of patients and sampling
times. The infusion rate was set to reach the same arbitrary
steady state concentration of 70 mg/L. Sampling times were
drawn every half-life, from the first half life after the start of
the infusion up to seven half-lives.

Hypothetical Drug Combinations

A total of 99 hypothetical drugs were generated and each
unique combination was tested in the design. In order to re-
duce computational costs and increase interpretability of the
results, fu and B:P were taken to be 1. Using the dispersion
model, population values of CLintu,WL(ΘCLintu;WL ) were cal-
culated to be such that ER values ranged from 0.01 to 0.99.
This required population values of Qh (ΘQh) which was ob-
tained by simulating 500 male and 500 female individuals of
1 year in Simcyp and estimating the population parameter
value using the Bfitdist^ function from the fitdistrplus R pack-
age (24) in R.

Studied Models and Parameters

For illustration, the proposed workflow is applied to identify-
ing Qh and CLint,u,WL in the paediatric population. As none
of the parameters in the dispersion model are impacted by
absorption or distribution processes, it is possible to study this
PBPK sub-model in full while simplifying the remaining as-
pects of the PKmodel for the purpose of this work. Therefore,
for each drug in the design (drug A and B), the structural
model was a one compartment PK model with a volume of
distribution VA and VB respectively and with constant intra-
venous infusion (see PFIM model code in supplementary
material 2 and corresponding model equations in
supplementary material 1). Clearance was parameterized
as defined by the dispersion model (equation 1–6).
CLintu,WL for drug A and B was parameterized accord-
ing to equations 8 and 9 respectively. The differential equa-
tions of the models, as implemented in PFIM can be found in
supplementary material 2.

Inter-individual variability was implemented on all fixed
effects except on fu, B:P, DN and CLintratio. Inter-individual
variability on fu and B:P can be measured and are therefore
attainable parameters. DN is a model specific parameter with
a fixed value taken from literature. And as a drug-specific
parameter, CLintratio is not subject to inter-individual variabil-
ity. For the other parameters, inter-individual variability was
assumed to follow a log normal distribution and implemented
using equation 10, in which η is normally distributed with a
mean of 0 and a variance of ω2 (see eq.10)

Pi ¼ θ� eη ð10Þ

A proportional residual error model for each arm in the
design with a standard deviation σ of 0.1 was assumed, to yield
the same impact of the model error on the parameter uncer-
tainty between study arms and study designs.

Information on the values and estimation of the fixed ef-
fects, inter-individual variability and residual errors imple-
mented in the models can be found in Table I.
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Design Evaluation with PFIM 4.0

The models, parameters and designs described above were
implemented in PFIM 4.0 (19). Concentration-time profiles
obtained for both drug A and B were simultaneously analysed
to enable for the estimation of Θ and ω2 for CLint,u,WL and
Qh. The clinical design parameter to optimize for precise
estimation of these parameters was the ER of each of the
two drugs in the design. To do so, the population Fisher in-
formation matrix (FIM) was evaluated for each drug combi-
nation in PFIM 4.0. The expected standard errors for each
population parameter were calculated as the square root of
the diagonal of the inverse of the FIM and reported in PFIM
outputs with corresponding relative standard errors (rse).
Parameter uncertainties were assessed using their rse with
precise estimates being defined as having an rse ≤ 30%.

Uncertainty

ER, which is the design variable that was optimized, is depen-
dent on the relative contribution of CLint,u,WL and Qh to
overall hepatic metabolic clearance, but not on their absolute
values since there is an infinity of combinations of CLint,u,WL

and Qh values leading to a specific value of ER. Hence, com-
binations ofΘCLintu;WL andΘQh that lead to similar ER values
are estimated with the same rse%. Therefore no uncertainty
on the ΘCLintu;WL and ΘQh was implemented in the design
evaluation procedure to avoid unnecessary computations,
meaning that only one value for ΘCLintu;WL and one value for
ΘQh as displayed in Table I was used in the PFIM runs.

For each combination of hypothetical drugs, the analysis
was repeated for different values ofω2

CLintu;WL
and ω2

Qh in order
to account for uncertainty in these parameters. The range in
ω2
CLintu;WL

was set from 0.1 to 0.8, while the range in ω2
Qh was

set from 0.1 to 0.6, both reflecting realistic ranges (see
supplementary material 1). Then, design evaluations were

repeated using each combination of the upper and lower un-
certainty value of the defined range for ω2

CLintu;WL
and ω2

Qh,
running 4 possible inter-individual variance scenarios in total
yielding a global sensitivity analysis of the uncertainty of
CLint,u,WL and Qh. Only the lowest and highest values for
ω2
CLintu;WL

and ω2
Qh were retained in the uncertainty analysis

since this yields the extreme values for the rse values. Rse
results of all variance scenarios were collapsed for each hypo-
thetical drug combination into one single precision category
reflecting the worst case scenario of all variance scenarios. The
PFIMmodel file, input file, and the R command to launch the
PFIM evaluation runs for all combinations of hypothetical
drugs for one uncertainty scenario are provided in supplemen-
tary material 2 to 4. The table containing the drug properties
used for the PFIM runs are provided in supplementary
table 1.

Step 3: Investigation of Performance of the Proposed
Design

In step 2, the requirements for ER of the two drugs yielding
numerical identifiability of fixed effectΘ and inter individual
variability ω2 of CLint,u,WL and Qh were identified. In the last
step of the developed approach, the performance of the pro-
posed design was investigated in terms of bias and imprecision
using stochastic simulation and estimation (sse).

First, two drugs meeting the ER requirements defined in
step 2 were selected and their ER was converted to expected
plasma clearance (CLp) values in a one year old using the
expected age-appropriate ΘQh value derived from Simcyp
in step 2. The volume of distribution of each drug was used
together with their expected CLp to derive their expected
half-life. Since the clinical trial design depends on the half-
life and CLp of the two drugs for establishing sampling times
and infusion rate respectively these parameters were used for
its implementation.

Fig. 2 Overview of the clinical trial design. Qh is the hepatic blood flow, CLint,u,WL is the whole liver unbound intrinsic clearance as define in equations 8 and 9.Θ
represents the fixed effect andω2 represents the inter individual variance. Cogs indicate trial design variables which are adapted to the drug properties in order to
prevent them from being confounding factors when assessing the impact of the drug’s ER on the performance of the design.
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Because the true value of ΘQh might differ from the value
derived from Simcyp in step 2, the selected drugs might have
an ER differing from their expected ER. Therefore, uncer-
tainty in both Θ and ω2 values of CLint,u,WL and Qh, were
accounted for in the sse. This was performed by sampling each
of these parameters 1000 times from a uniform distribution.
For the population parameters the range of the distribution
entailed the typical values from step 2 ± 50%. For the vari-
ance parameters the range of the distribution entailed the
range defined for the parameter uncertainty in step 2.
Sampling of population parameter values ΘQh and ΘCLintu;WL

was restricted, such that their corresponding CLp values
yielded a variation of ± 30% of the drugs’CLps value derived
from the ERs of the selected drug A and drug B. This mimics
the accepted 30% uncertainty of the reported CLp value in
literature. The performance of the design settings were
assessed using relative estimation error re (equation 11), mean
relative estimation error mre (equation 12), and and relative
root mean square error rrmse (equation 13) for Θ and ω2

CLint,u,WL and Qh, using only the runs for which minimiza-
tion was successful.

Relative estimation errori %ð Þ ¼ esti−truei
truei

� 100 ð11Þ

Mean relative estimation error %ð Þ ¼ 1
N

∑N
i¼1

esti−truei
truei

� 100 ð12Þ

Relative root mean square error %ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

∑N
i¼1

esti−trueið Þ2
truei2

� 100

s

ð13Þ

In these equations, true is the true parameter value used in
the simulation step, est is the estimated parameter value from
the estimation step, and i is the run index, ranging from 1 to
N, the total number of runs for which minimization was
successful.

RESULTS

Step 1: Structural Identifiability

Qh and CLint were found to be structurally identifiable when
the concentration-time profiles from a clinical trial with 2
arms were simultaneously analysed. Each arm of the trial re-
quired patients from the same population and administration
of different drugs metabolized by the same isoenzyme for
which the ratio in intrinsic clearance (CLintratio) is known.

Step 2: Optimal Design for Precise Population
Parameter and Variance Estimates

Precision of fixed effects and variance values for CLint,u,WL

and Qh obtained with combinations of two drugs in the de-
scribed clinical trial design are summarized in Fig. 3. Except
for drug combinations with similar extraction ratio ER (i.e.
drug combinations near the line of unity), most drug combi-
nations will lead to a preciseΘCLintu;WL estimate. However, for
the estimate of ω2

CLintu;WL
to be precise, at least one of the drugs

should have a low extraction ratio. ForΘQh, most drug com-
binations leading to precise estimation include one drug
with a high ER, while for precise estimation of ω2

Qh, at
least one drug with an ER ≥ 0.93 is required. Finally,
precise estimation of all parameter estimates (rse ≤30%)
requires one drug with an ER ≥ 0.93 and one drug with
an ER ≤ 0.27. Parameter estimation with rse ≤ 50%
(corresponding to the blue and green areas in Fig. 3) for all
parameters, requires one drug with an ER ≥ 0.85 and one
drug with an ER ≤ 0.41.

Supplemental fig. 1 shows the results presented in Fig. 3,
but separated for the four variance scenarios. As shown by
both Fig. 3 and supplementary figure 1, ω2

CLintu;WL
and ω2

Qh
drive the threshold for the highest and lowest ER value re-
quired in the drug combination for precise estimation of all
parameters respectively. Supplementary figure 1 also shows
that the value of each of these thresholds are driven by both
ω2
CLintu;WL

and ω2
Qh. For precise parameter estimates, an in-

crease in ω2
Qh from 0.1 to 0.6 leads on one hand to a decrease

in the threshold for the highest ER value required in the drug
combination from 0.79 to 0.56 when ω2

CLintu;WL
is equal to 0.1

and from 0.93 to 0.80 when ω2
CLintu;WL

is equal to 0.8. On the
other hand, such an increase in ω2

Qh also leads to a decrease in
the threshold for the lowest ER value required in the drug
combination from 0.48 to 0.27 when ω2

CLintu;WL
is equal to

Table I Estimated and Fixed Model Parameters

Parameters Values Estimated and fixed parameters

Fixed effects

ΘCLintu;WL [0.10–156] L/h Estimated

ΘQh 20.3 L/h Estimated

Θfu 1 Fixed

ΘB : P 1 Fixed

ΘVA 4 L Estimated

ΘVB 4 L Estimated

ΘDN 0.17 Fixed

ΘCLintratio . [0.00065–
0.97000]

Fixed

Inter-individual variability

ω2
CLintu;WL

[0.1–0.8] Estimated

ω2
Qh [0.1–0.6] Estimated

ω2
VA

0.25 Estimated

ω2
VB

0.25 Estimated

Residual error

σA 0.1 Estimated

σB 0.1 Estimated

Θ fixed effect; ω2 inter-individual variance. ΘVA , ΘVB , correspond to fixed
effects for the volume of distribution of drug A and B respectively

209 Page 6 of 12 Pharm Res (2018) 35: 209



0.1 and from 0.76 to 0.55 when ω2
CLintu;WL

is equal to 0.8. The
reverse is observed regarding ω2

CLintu;WL
, with an increase in

ω2
CLintu;WL

leading to an increasing threshold for the highest
ER value required in the drug combination for precise esti-
mates of ω2

Qh and ΘQh, and an increasing threshold for the
lowest ER value required in the drug combination for precise
ω2
CLintu;WL

estimates.
The results on ER requirements for drug A and B are

independent of the age of children as the ER does not depend
on absolute values of ΘQh and ΘCLintu;WL . However, the ERs
of drugs are often unknown, especially in special patient pop-
ulations, because as presented in Fig. 1, ER in children chang-
es due to maturation of both CLint,u,WL and Qh and the
impact of these changes are isoenzyme-dependent due to dif-
ferent maturation patterns.

To facilitate the identification of model drugs for which
clinical data could be obtained to precisely estimate popula-
tion values and variance of CLint,u,WL and Qh at different
ages, maturation patterns of different isoenzymes were used
to identify isoenzymes and ages for which drugs with the low-
est and highest ER required for such estimation are likely to
exist. To do so, the dispersion model in combination with
maturation patterns for CLint,u,WL of various isoenzymes as
implemented in Simcyp V15 (see supplementary material 1)
were used to calculate expected ER values for the hypothetical
drugs that are substrates of these isoenzymes in children of
various ages.We found that drugs with an ER ≤ 0.27 are likely
to exist for all investigated isoenzymes at all ages (results not
shown). However, drugs with an ER ≥ 0.93 are likely to exist
only for specific isoenzyme pathways and ages, as shown in
Table II by the increased blue and red boxes with younger
ages for most isoenzyme pathways. This is, because low en-
zyme maturation will reduce the overall ER of drugs. As a
result, drugs metabolized by slowly maturing isoenzymes such
as CYP2E1 and UGT2B7, are unlikely to have a high ER at
young ages. On the other hand, drugs metabolized by fast
maturing isoenzymes, such as CYP1A2 or UGT1A4, with a
very high ER over a wide range of paediatric ages are likely to
exist and could be used as model drugs.

For convenience, to identify drugs with desired ER values,
the ER values have also been translated into the required total
plasma clearance values (CLp) for various paediatric ages.
This is presented in Table III, which shows for instance that
in a one year old child, ER ≤ 0.27 and ER ≥ 0.93 translate into
a CLp ≤ 5.5 L/h and a CLp ≥ 18.9, respectively.

Step 3: Investigation of Bias

The performance of a clinical trial design resulting from step 1
was evaluated using sse with one drug with an ER of 0.94 and
one drug with an ER of 0.2 in one year old children. The
uncertainty on ΘCLintu;WL and ΘQh included in the sse, lead
to the simulation of 1000 combinations of ΘCLintu;WL and

ΘQhwith a range of ER from 0.09 to 0.38 and from 0.76 to
0.99 for the drug with the lowest and the highest ER respec-
tively. Minimization was successful in 78.3% of the sse runs.
The mre was ≤7.5% for all parameters (Table IV), and the
rrmse was below 31%. The confidence interval (5th and 95th
percentile) of the re was below or around 20% for ΘCLintu;WL

and ΘQh. Higher values were found for ω2
CLintu;WL

and ω2
Qh,

with values below or around 47%.

DISCUSSION

The aim of this paper was to develop an analysis framework to
investigate the feasibility and clinical trial requirements for the
estimation on clinical data of PBPK parameters with a popu-
lation PK approach. This work represents, to our knowledge,
the first application of population optimal design principles for
the estimation of PBPK parameters. Being able to a priori
define trial requirements that yield sufficiently informative da-
ta (i.e. numerical identifiability), is essential for a decisionmak-
ing process when costs and benefits of performing a study need
to be weighed. The complex design requirements derived in
our example for instance, would not be easy to define and
would likely not have been met using conventional study de-
sign approaches. The execution of clinical trials that yield
uninformative data that do yield numerical identifiability is
both unethical, especially in vulnerable populations, and
cost-inefficient.

While we focused on CLint,u,WL and Qh in a paediatric
population, the analysis workflow herein developed can be
applied to other PBPK parameters, a different number of
parameters, and for other populations. In these cases, the
workflow would contain the same steps as outlined here: struc-
tural identifiability, optimal design and evaluation of the op-
timized design performance.

In our example, in the first step of the workflow, structural
identifiability for the estimation of both CLint,u,WL and Qh
was found possible when PK data of a minimum of two drugs
were simultaneously analysed. In addition, both drugs must be
administered in patients groups from the same population,
metabolized by the same isoenzyme, and their CLintratio
should be known. CLintratio is the ratio of the in vitromeasured
intrinsic clearance of the drugs and is a drug-specific param-
eter (equation 7).

In the second step, the use of optimal design not only
allowed to optimize the characteristics of drugs to include in
the clinical trial design in order to solve numerical
identifiability issues, but also acts as a safeguard ensuring glob-
al identifiability of the model parameters. Indeed, optimal
design identifies models that are either globally or locally
structurally non identifiable since their Fisher information ma-
trix is non invertible (25). We found that given the described
trial design, the two drugs included in the trial should have an
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ER ≥ 0.93 and an ER ≤ 0.27, in order to precisely (rse ≤ 30%)
estimate Θ and ω2 for CLint,u,WL and Qh. These require-
ments might not be easy to meet since drugs with ER ≥ 0.93
are rare, especially in very young children whose isoenzyme
maturation can lead to a decrease in ER with decreasing age
(26). This is shown in Table II, displaying isoenzymes and ages
for which drugs with ER values that meet these criteria exist
within the set of hypothetical drugs tested. These results show
that characterization of isoenzyme specific ontogeny is chal-
lenging in very young children not only due to the sparsity and
lack of available data in this population, but also due to intrin-
sic characteristics of the system which leads to a decrease in
ER with decreasing age. Drugs metabolized by fast maturing
isoenzymes were found to be the best model drugs to estimate
Qh and CLint,u,WL simultaneously. For instance, CYP1A2
substrates are likely to have the required ERs in children as
young as 6 month even in situations whereΘCLintu;WL andΘQh

deviate up to ± 50% of their expected values. UGT1A4

substrates are likely to have the required ERs in children as
young as term neonates of one day, but only in situations
whereΘCLintu;WL andΘQh values correspond to their expected
value or are up to +50% and− 50% of their expected value
respectively. To support the selection of such model drugs
from existing drugs, the requirements in ER were translated
into CLp values in the conversion table (see Table III) using
reported hepatic blood flow values. Overall, these results do
highlight the importance of investigating the clinical trial re-
quirements a priori, as otherwise the chances of successfully
estimating PBPK model parameters from clinical PK data
using population approach will be very low.

In the last step of our analysis workflow, stochastic simula-
tions and estimations were used to assess the performance of
the optimized study design, since optimal design only ad-
dresses parameter precision. While step 2 defined the ER of
the two drugs required in the clinical trial, in practice the
selected drugs might have an ER deviating from their

Fig. 3 Parameter precision as a function of the extraction ratios (ER) of the two drugs studied in the clinical trial. Θ represents the fixed effect, ω2 the inter-
individual variance in the parameter. CLint,u,WL is the whole liver unbound intrinsic clearance as defined in equations 8 and 9, Qh is the hepatic blood flow. For
each tested drug combination, the precision of the parameter estimates are summarized, with each pixel representing the results for all four variance scenarios
(i.e.: ω2

CLintu;WL
and ω2

Qh of 0.1 and 0.1, 0.1 and 0.6, 0.8 and 0.1 or 0.8 and 0.6 respectively) according to the following colour scheme: green indicates

relative standard errors (rse%) ≤ 30% for all scenarios, blue indicates rse% is between 30 and 50% for at least one variance scenario, and red indicates
rse%> 50% for at least one variance scenario.
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Table II Identification of Isoenzyme Pathways and Ages for which Combinations of Two Drugs Leading to Precise Qh and CLint,u,WL Fixed Effects and Inter-
Individual Variability Estimates is Theoretically Possible

Isoenzyme Uncertainty 1 day 1 month 6 months 1 year 2 years 5 years 15 years 25 years
Qh - 50%

CLint,u,WL +50%
none

Qh + 50%
CLint,u,WL - 50%

Qh - 50%
CLint,u,WL +50%

none
Qh + 50%

CLint,u,WL - 50%
Qh - 50%

CLint,u,WL +50%
none

Qh + 50%
CLint,u,WL - 50%

Qh - 50%
CLint,u,WL +50%

none
Qh + 50%

CLint,u,WL - 50%
Qh - 50%

CLint,u,WL +50%
none

Qh + 50%
CLint,u,WL - 50%

Qh - 50%
CLint,u,WL +50%

none
Qh + 50%

CLint,u,WL - 50%
Qh - 50%

CLint,u,WL +50%
none

Qh + 50%
CLint,u,WL - 50%

Qh - 50%
CLint,u,WL +50%

none
Qh + 50%

CLint,u,WL - 50%
Qh - 50%

CLint,u,WL +50%
none

Qh + 50%
CLint,u,WL - 50%

UGT1A4

UGT1A6

UGT2B7

CYP1A2

CYP2C18_19

CYP2D6

CYP2E1

CYP3A4_5

UGT1A1

The cells indicate whether within the set of hypothetical drugs (see supplementary material 1) a combination of two drugs exist with whichQh and CLint,u,WL fixed
effects and inter-individual variability estimates can be obtained with rse≤30% (green), 30%< rse≤50% (blue), or rse> 50% (red). Calculations are performed
for a situation in which ΘQh and isoenzyme maturation are set to values as implemented in Simcyp V15 or to a value that is 50% higher or lower reflecting
extreme scenarios of uncertainty on ΘQh and ΘCLintu;WL .
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expected values, which was accounted for in the sse.
Uncertainty in fixed effects and inter-individual variability
for CLint,u,WL and Qh was also accounted for in the sse.
This step allowed for the assessment of whether further inves-
tigation to optimize the clinical trial design would be
needed to ensure unbiased parameter estimates.
Absolute mean ree was below 7.5% for all parameters
and the rrmsee was below 31%, meaning that on aver-
age the estimates both are accurate and precise. The
confidence interval (5th and 95th percentile) of the relative
estimation error was below or around 20% for ΘCLintu;WL

and ΘQh. Higher values were found for ω2
CLintu;WL

and ω2
Qh

which was expected due to parameter uncertainty and the
general difficulty in estimating inter-individual variability.
Overall, the sse showed that the proposed clinical trial design
is robust to parameter uncertainty.

Once existing model drugs with the required ER are iden-
tified, clinical data to estimate Θ and ω2 for CLint,u,WL and
Qh can be sought. The source of these data could either be
new clinical trials or historical data from studies meeting the
defined design requirements.

An advantage of PBPK models is that quantification of
system-specific model parameters, likeQh and the maturation
profile of CLint,u,WL for each isoenzyme, needs to be per-
formed only once. Once Qh has been quantified for instance
using substrates for the CYP1A2 orUGT1A4 isoenzymes, this
can be implemented in the PBPK model either as fixed value
or as prior in order to estimate Θ and ω2 for CLint,u,WL for
any other drug or other isoenzyme pathway in the same pop-
ulation. This is important because both CLint,u,WL and Qh
cannot be directly measured and because identifiability is im-
portant for the estimation of PBPK model parameters (27).

While in this work we focus on popPBPK parameter esti-
mation for a specific age, the scalability of the rse results with
regard to ER allows for the applicability of design require-
ments across the entire age range. Since most paediatric PK
studies include patients of a range of ages, estimation of a
maturation function would be preferable over the estimation
of parameter values for each specific paediatric age. In the
future this work could be extended to the design of studies
for the estimation of such maturation functions. This will re-
quire the a priori definition of the most suitable covariate for
maturation function and optimization of study designs for the
estimation of parameters in continuous covariate functions,
the latter of which is not yet available in the PFIM software.

In the developed analytical workflow, optimal design prin-
ciples were applied in an innovative manner. The clinical
design parameter optimized was the ER of the drugs included
in the clinical trial. In a classical optimal design setting, opti-
mized clinical design parameters include the number of pa-
tients and samples, sampling times, and drug dose. In this
work, in order to assess the impact of the drug’s ER on the
performance of the design without any confounding impact
these design parameters, these parameters were set such as to
have the same impact for each hypothetical drug in the study.
To do so, drugs were administered as a constant rate infusion
with infusion rate and sampling times adapted to the drugs
clearance and half-life respectively, and each arm of the study
included the same number of patients and number of blood
samples. Practically, such design adaptation on half-life and
clearance means that when normalizing sampling times over

Table III Conversion Table to Convert the Extraction ratio (ER) Values of
0.27 and 0.93 to Total Plasma Clearance (CLp, equation 1) in Various
Postnatal Ages Using Expected Hepatic Blood Flow (Qh) Values and fu and
B:P Values Taken to be 1

Expected ΘQh

(L/h)
CLp (L/h)
corresponding
to ER= 0.27

CLp (L/h)
corresponding
to ER= 0.93

25 years 87.0 23.5 80.9

15 years 89.2 24.1 83.0

5 years 41.5 11.2 38.6

2 years 30.0 8.1 27.9

1 year 20.3 5.5 18.9

6 months 13.0 3.5 12.1

1 month 7.5 2.0 7.0

1 day 6.4 1.7 6.0

Expected ΘQh is the fixed effect for the hepatic blood flow derived from
Simcyp simulations

Table IV Assessment of the Clinical trial Performance Based on the Precision and Accuracy of the Parameter Estimates of the sse with Uncertainty

ΘCLintu;WL

ΘQh
ω2
CLintu;WL

ω2
Qh

re 5th percentile −16.2935 −18.356 −44.4268 −47.0063

re 50th percentile 0.715404 −1.6823 −9.7909 −10.7792

re 95th percentile 23.68881 16.63842 41.03665 46.80308

mre 1.548568 −1.19669 −7.38877 −7.24315

rrmse 12.21483 10.9555 26.24813 30.54991

Θ fixed effect,ω2 inter-individual variance. CLint,u,WL is the whole liver unbound intrinsic clearance as define in equations 8 and 9 andQh is the hepatic blood flow

RE relative estimation error; MRE mean relative estimation error; RRMSE relative root mean square error
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the drug’s half-life, sampling times and measured concentra-
tions are identical between different drugs (between each arm
of the design and between different drug combinations tested),
which in turn allows for the same impact of sampling times
and dosing regimen on the design performance. Another in-
novative feature of the workflow is that the optimal design is
not given as a unique solution as classically performed, but as a
range of solutions. This was done by investigating the param-
eter space of the design variable to optimize (ER) and catego-
rization of the results by level of precision.

The number of patients and samples in the assessed trial
designs in step 2 of the workflow were selected to be relatively
high, so that these variables would not be limiting to the op-
timization of trial requirements regarding the definition of ER
values. Once the important design features relevant for the
research question of interest have been defined in the pro-
posed workflow, traditional optimal design procedures could
be applied to further optimize the trial design regarding these
variables.

In the developed workflow, computational cost was tre-
mendously reduced through the optimization of a scalable
variable and the use of extreme variance scenarios to account
for parameter uncertainty. The ER of a drug is a scalable
variable, as it can be converted to clearance values in any
paediatric age by using the expected hepatic blood flow in
the corresponding age which represents the scaling factor.
Indeed, ER reflects the relative contributions of Qh and
CLint,u,WL to the hepatic metabolic clearance, but is indepen-
dent of the absolute value of these two parameters. Therefore,
the results of the optimal design analysis obtained for one age,
one year-olds in our example, can be extended to any other
ages, allowing to reduce the computational cost and to facili-
tate results interpretation. Moreover, the ER summarizes the
influence of all drug-specific parameters (e.g.: drug binding to
plasma proteins, drug distribution in red blood cells, etc.), and
therefore, accounting for uncertainty in ΘCLintu;WL and ΘQh

becomes unnecessary in the optimal design phase and the
result obtained in our example for drugs with an unbound
drug fraction in plasma or fu of 1 and blood to plasma ratio
or B:P of 1 can be translated to drugs for which these param-
eters take different values. Testing all combinations of extreme
ω2
Qh and ω

2
CLintu;WL

values lead to results reflecting the best and
worst case scenarios in terms of parameter precision. Because
we defined precise parameter estimates as rse < 30% in all
tested variance scenarios, the final results reflect the worst case
scenarios and account for all untested intermediate variance
scenarios.

In conclusion, this work presents an analysis framework
that allows for the a priori identification of clinical trial require-
ments that would allow for the estimation of PBPK model
parameters from clinical data using population modelling.
The example on CLint,u,WL and Qh shows that it may be
unlikely to design an adequate clinical trial, without the

knowledge obtained by the application of this analysis frame-
work. Being able to identify PBPK parameters that cannot be
obtained by direct experimental measurements in a time and
cost efficient manner would greatly improve the development
of PBPK models and their predictive performance.
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