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ABSTRACT Physiologically-based pharmacokinetic (PBPK)
models explicitly incorporate tissue-specific blood flows, par-
tition coefficients, and metabolic processes. Since PBPK
models are derived using physiologic parameters and interac-
tions of the compound with tissue components, these models
are considered to be Bbottom up^ as opposed to Btop down^.
Modeling approaches can be characterized as either a
posteriori (observational) or a priori (based solely on theory).
Furthermore, approaches can be mechanistic (structure and
components based on mechanisms) or empirical (based on
observations alone). Both Bbottom up^ and Btop down^ ap-
proaches can incorporate either empirical or mechanistic
components. In this perspective, we discuss some of the
methods and assumptions of current PBPK modeling ap-
proaches. Specifically, we discuss drug partitioning into phos-
pholipids and neutral lipids, use of blood-plasma ratios to
estimate basic drug tissue partitioning, and clearance of neu-
tral and acidic drugs. Based on these discussions, we believe
that current PBPKmodels are mechanistic but a posteriori and
semi-empirical.
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The quote by George Box BAll models are wrong but some
are useful^ (1) is often used to remind ourselves that the com-
plexity of any real system or process cannot be captured with
simple models. In pharmacokinetics, compartmental models
are simple models that can capture most complexities in ob-
served plasma concentrat ion-t ime (C-t ) prof i les .
Physiologically-based pharmacokinetic (PBPK) models offer

the advantages of explicitly modeling tissue-specific blood
flows, partition coefficients, and metabolic processes. Since
PBPK models are derived using physiologic parameters and
interactions of the compound with tissue components, these
models are considered to be Bbottom up^. For example, tissue
partition coefficients are often predicted using Bcomposition-
based^ models in which interactions with proteins and lipids
are either measured experimentally or derived (2–4). Given
the usefulness of PBPKmodels, it is generally believed that the
current approach to model parameterization is mechanistic
and accurate. This commentary reviews current PBPK ap-
proaches and discusses some inconsistencies between some of
these approaches and basic physicochemical principles.

SEMANTICS IN PBPK MODELING

The difference between Bbottom up^ versus Btop down^ ap-
proaches is well defined. In PK modeling, compartmental
models are primarily Btop down^, since observed C-t profiles
are used to construct mathematical relationships. PBPK
models, on the other hand, are Bbottom up^ since they are
built with basic physiological information and drug-specific
characteristics. Modeling approaches can also be character-
ized as either a posteriori (observational) or a priori (based solely
on theory). Furthermore, approaches can be mechanistic
(structure and components based on mechanisms) or empiri-
cal (based on observations alone). Both Bbottom up^ and Btop
down^ approaches can incorporate either empirical or mech-
anistic components. For example, Btop down^ compartmental
models can be semi-empirical, since physical meaning can be
assigned to empirically calculated parameters (e.g. biphasic
distribution indicates slow equilibration with some tissues).
PBPK models, while Bbottom up^, can be constructed with
empirical, semi-empirical, or mechanistic components. For
the most part, PBPK models are mechanistic, since model
structure is based on physiological processes. However, there
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seems to be an aspiration to create PBPK models that are a
priori, i.e. based on first principles. A priori models do not re-
quire parameterization since a 1:1 relationship (y =mx + c,
wherem = 1 and c = 0) betweenmodel components and phys-
iological processes is assumed. Modeling complex biological
systems from first principles is not the norm. Most chemical
interactions are modeled with linear free energy relationships,
which incorporate mechanistic theories and thermodynamic
principles. As discussed below, presumed a priori components
in PBPK models include: 1) determining the binding constant
for ionizable bases and acidic phospholipids from the
blood:plasma ratio (BP), 2) equating neutral phospholipids to
30% n-octanol and 70% water, and 3) predicting drug-
adipose partitioning with a vegetable oil:water partition coef-
ficient. Each of these points and a misconception concerning
drug clearance predictions is discussed in detail below.

TISSUE PARTITIONING

Tissue partition coefficients are frequently modeled using
composition-based models in which different classes of drugs
interact with different tissue components. In some current
PBPK models, tissue lipids are divided into neutral lipids,
neutral phospholipids, and acidic phospholipids (Fig. 1). The
primary assumptions of these models are that ionized bases
bind only to acidic phospholipids, and uncharged compounds
bind to neutral phospholipids and neutral lipids (2). Other
than plasma proteins and lipoproteins, nonspecific binding
to proteins is usually ignored.

Binding to acidic phospholipids –The premise that ionized
bases bind only to acidic phospholipids is based on a report
that the tissue partition coefficients for bases correlate with the

tissue phosphatidylserine (PS) content (5). This premise was
supported by additional experiments that measured binding
affinities of bases to PS in a hexane-water system, essentially
an ion pairing experiment. Can we expect that interactions
with membranes are well represented by ion pairing in hex-
ane? For a net-neutral phospholipid in hexane, e.g. phospha-
tidylcholine, the negative phosphates are already paired with
the positive choline groups. The net negative charge of PS
provides another negative charge to pair with the ionized base
and increases the partitioning into hexane. However, mem-
branes are highly ordered lipid bilayers with negatively
charged phosphates at the interface between the polar head
groups and the hydrophobic core of the membrane. Since a
hydrophobic amine can pair with the phosphate group, favor-
able ionic interactions between ionized bases and all mem-
brane phospholipids are expected. This in fact is observed
since artificial immobilized phosphatidylcholine membranes
have high affinities for hydrophobic amines (6).

Although the membrane partitioning of some bases is sen-
sitive to PS content, this is not always true. For example,
chlorpromazine (7) and propranolol (8) show a 2-fold increase
with increasing PS, and amiodarone is insensitive to PS con-
tent (9). As reviewed by Balaz (10), the interactions between
compounds and the membrane are likely a highly complex
function of membrane lipid composition and fluidity, func-
tional groups (H-bond donors, H-bond acceptors, etc.), and
the spatial orientation of both the drug molecule and the
lipids. Therefore, simple in vitro models (e.g. ion-pairing in
hexane) are unlikely to accurately represent drug-membrane
interactions in a generalizable manner.

Despite the possible deficiency described above, tissue par-
tition coefficients for bases are well predicted. A possible ex-
planation for these reasonably good predictions is the use of

n-octanol
Triglycerides

Phosphatidylcholine
Phosphatidylserine

Phosphatidic acid

Fig. 1 Chemical structures of a
neutral phospholipid (phosphatidyl
choline), acidic phospholipids
(phosphatidyl serine and
phosphatidic acid), neutral lipids
(triglycerides), and n-octanol.
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blood-to-plasma partitioning (BP) to calculate the acidic phos-
pholipid binding constant, KaAP. The commonly used equa-
tion to calculate tissue partition constants, including erythro-
cytes, is dominated by the acidic phospholipid binding term
(see Fig. 2). This term is itself calculated from BP (essentially
unbound partitioning into erythrocytes). It is noteworthy that
tissue binding for bases in vivo is highly correlated with eryth-
rocyte partitioning (See Hinderling (11) and Fig. 2). Thus,
KaAP is calculated from erythrocyte partitioning, which is itself
highly correlated with tissue partitioning, and KaAP is then
used to calculate tissue partitioning. This process is circular
and there is no mechanistic evidence that this correlation is
due to binding to acidic phospholipids. In fact, there are more

carboxylate groups due to the sialic acids of the glycocalyx
surrounding the erythrocyte than there are acidic phospho-
lipids in the erythrocyte membrane (12). This suggests that
although BP can be used to predict the tissue partition coeffi-
cients of bases, the approach is empirical since the mechanism
is unknown.

There is another unexpected advantage of using BP to
calculate tissue KaAP values. Normally, drug volume of distri-
bution (Vss) is very sensitive to the experimental value of the
free fraction in plasma (fup). Since fup is also an important
determinant of BP, when calculating tissue partitioning (Kp

values) from BP, errors in fup will largely cancel (Fig. 2). This
has been shown previously using a generic PBPK model to
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Fig. 2 Correlation between Log KpuRBC and unbound Log Vss for basic drugs (n=48), with equations to calculate tissue partitioning of basic drugs (from Rodgers
et al. (3)). Data taken from Rodgers and Rowland (26). A similar correlation was reported by Hinderling (11). The acidic phospholipid binding component is
assumed to be predominant, and acidic phospholipid tissue partition coefficient is assumed to be equal to as acidic phospholipid erythrocyte partition coefficient.
Notations are defined as follows: [AP−]T: acidic phospholipid concentration in tissue, [AP

−]BC: acidic phospholipid concentration in red blood cell, BP: blood to
plasma ratio, few: fraction of drug in extracellular water, fiw: fraction of drug in intracellular water, fnl: fraction of neutral lipids in tissue, fnp: fraction of neutral
phospholipids in tissue, fup: unbound fraction of drug in plasma, H: hematocrit, i: the ith tissue from a total of n tissues representing the whole body, KaBC: acidic
phospholipid erythrocyte partition coefficient, KaAP: acidic phospholipid tissue partition coefficient, Kpu: tissue partition coefficient of plasma unbound drug, KpuBC:
erythrocyte partition coefficient of plasma unbound drug, pHBC: pH of red blood cell, pHiw: pH of intracellular water, pHp: pH of plasma, Pow: drug octanol to
water partition coefficient, Ptp: tissue partition coefficient of total drug (same as Kp); X= 1+ 10pKa-pHiw; Y= 1+ 10pKa-pHp.
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simulate the effect of plasma protein binding errors on Vss

prediction (13).
Binding to neutral phospholipids – Current methods as-

sume that only uncharged molecules will bind to neutral phos-
pholipids. This binding is modeled using n-octanol:water par-
tition coefficients (Log P). In the original (14) and subsequent
methods to parameterize binding to neutral phospholipids
(2–4), it is assumed that neutral phospholipids behave like
70% water and 30% neutral lipids. This ratio is based upon
a reported hydrophilic/lipophilic balance (HLB) of 14 for lec-
ithin. The HLB scale for nonionic detergents is 0–20.
Therefore, a value of 70% is used (14). In reality, phospho-
lipids are ionic and the HLB scale can be much higher for
ionized compounds (15). Use of a different scale would result
in a much greater percent of lipid. Also, a wide range of HLB
values are reported for lecithin and the most commonly re-
ported values are 3–9.

Irrespective of the HLB analysis, neither the polar head
group nor the lipophilic core of the lipid bilayer is well repre-
sented by n-octanol or water (16). The reason for the popular
use of Log P as a hydrophobicity measure is the presence of
both H-bond acceptors and donors in n-octanol. According to
Leo et al. (17), BSince many NH andOH groups are present in
enzymes and membranes, it is not surprising that alcohol:
water systems give better correlations and thus have become
more widely used as extrathermodynamic reference systems^.
Thus, Log P, while very useful as a general hydrophobicity
measure, was never intended to provide a 1:1 relationship
with neutral lipid partitioning.

Further, the ordered nature of the phospholipidmembrane
is important. Hydrophobic molecules with H-acceptors or do-
nors can reside at the interface of the polar head group and
hydrophobic core of the membrane (10). Therefore, similar to
acidic phospholipids, hydrophobic cations and other amphi-
philic molecules can also partition into neutral phospholipids.
Predicting these interactions will require more information
than simply Log P. Rather than attempting to represent mem-
brane partitioning with Log P alone, QSAR methods, as ap-
plied to many biological systems, may be more successful.

Binding to neutral lipids – An important consideration in
PBPK modeling is that adipose tissue is significantly different
in its lipid content compared to other tissues. Early attempts to
calculate adipose Kp values using Log P were unsuccessful
(14). Since adipose is predominantly composed of triglycer-
ides, vegetable oil:water partitioning (Log Pvo) was considered
instead. In reality, Log Pvo is rarely measured. Instead, a linear
relationship between Log P and Log Pvo is used to calculate
the Log Pvo value. Linear relationships were originally de-
scribed by Hansch (18), and were developed using primarily
volatile organic compounds. Thus, the Kp,vo could be calcu-
lated by combining measurements of vegetable oil:air and
air:water partitioning. A single linear relationship between
Log P and Log Pvo is unlikely, given that vegetable oil has

no H-bond donors and is essentially anhydrous, while n-
octanol has an H-bond donor and contains 2 M water. Most
of the volatile organic compounds used by Hansch were very
small, and could be classified as H-bond donors or acceptors.
Two linear equations were therefore derived, one for H-bond
acceptors, and one for H-bond donors (18). The two equa-
tions had the same slope but the Y-intercepts differed by one
log unit. Given the fact that most drug molecules have multi-
ple donor and acceptor functionalities, it is difficult to believe
that these equations will accurately predict Log Pvo for all
compounds. In fact, Hansch later stated that this model works
best in the absence of strong H-bond donors (19). A plot of
experimental Log Dvo (Log Dvo is calculated from pKa and
Log Pvo) data versus values calculated from Log P (20,21) for
n= 32 drugs is shown in Fig. 3. The average fold error for
these compounds is 5.1, and the calculated Log Dvo values
for several compounds are poorly predicted.

Another potential problem with using vegetable oil as a
representative solvent is the variability in the oil composition.
Others have used pure compounds such as trioleolylglycerol
as a solvent (22). Excellent correlations with partition coeffi-
cients with other oils are observed, but the intercepts can vary
by more than a log unit. Given the importance of adipose
partitioning for some drugs and the sensitivity of this compo-
nent to Dvo, errors in this value can result in inaccurate Vss

predictions.
Inaccuracies in Vss predictions are often observed after

clinical data becomes available. In order to accurately simu-
late drug disposition, modifications to the model must be
made. Any of the model parameters can be altered to obtain
the correct Vss, including Dvo, Log P, tissue volumes etc.
However, the modified model will now have a Btop-down^,

6000x

180x

37x

15x

Fig. 3 Experimental versus calculated LogDV:O for 32 compounds.
Experimental values were obtained from Poulin and Theil (20) and
Oldendorf (21). Calculated values were calculated from LogP using Eq. 7 in
Poulin and Theil (20) and pKa. Red: acidic drugs, blue: basic drugs, green:
neutral drugs. The dashed and dotted lines represent 2-fold and 3-fold error,
respectively. The example outliers highlighted are ascorbic acid (6000×),
methotrexate (300×), methylphenidate (180×), pentobarbital (37×), and
toluene (15×).
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empirical component. Also, since the origin of the errors in
tissue Kp values is unknown, tissue specific information is lost.

CLEARANCE PREDICTIONS

Clearance and Vss are independent PK parameters.
Compared to tissue partitioning and Vss predictions,
predicting clearance with PBPK models has been more chal-
lenging. Since in vitro clearance data is readily available, PBPK
modeling offers an attractive method to incorporate this data
for in vivo clearance predictions. Certain processes can be eas-
ily predicted, such as renal elimination without active secre-
tion or reabsorption. Other clearance processes such as
glucuronidation remain very difficult to model, possibly due
to lack of good in vitro assays that mimic in vivo metabolism. In
general, many clearances are poorly predicted, and when clin-
ical data becomes available, scaling factors are required to fit
the PBPK model to the clinical data (23).

Some of these scaling factors are consistent. For example,
hepatic clearance of acidic and neutral drugs is usually under-
predicted and scaling factors are required to obtain accurate
clearance predictions. Poulin et al. proposed an albumin-
mediated transport mechanism that increases the extracellular
concentration of drug at the plasma membrane (24), resulting
in an increased intracellular concentration and increased
clearance. We have recently reported that highly protein
bound neutral and acidic drugs require a scaling factor of
12, whereas bases did not require a scaling factor (13). While
this is consistent with an albumin-mediated uptake mecha-
nism, in the absence of an active transport or an energy-
dependent process, increased concentrations at the mem-
brane cannot increase intracellular concentrations at equilib-
rium. According to the basic thermodynamic principle of mi-
croscopic reversibility, the equilibrium across a membrane
can only be altered by energy-dependent processes or a chem-
ical gradient generated by energy dependent processes (e.g.
pH).

Reported examples of albumin-mediated transport are
usually associated with increased rates of drug uptake and
not increased equilibrium intracellular concentrations. For
example, several reports of albumin mediated transport into
hepatocytes are discussed by Iwatsubo et al. (25). Several
mechanisms have been proposed including a conformational
change in albumin at the cell surface and increased rates of
diffusion through a rate-limiting unstirred water layer. If up-
take into the cell is rate limiting, an increase in the rate of
uptake will result in an increase in the rate of metabolism.
However, rate limiting hepatic uptake will result in an over-
prediction in hepatic clearance since intracellular concentra-
tions will be less than unbound extracellular concentrations.
Also, most PBPKmodels today are not permeability-rate lim-
ited and instantaneous equilibrium with the blood is assumed.

Within this model formalism, only processes that alter the
equilibrium intracellular concentration can affect clearance.
In the absence of a known active transport mechanism, cur-
rent scaling factors must be regarded as empirical and not
mechanistic.

Balaz describes structure-based subcellular PK models as a
posteriori semi-empirical models, because Bthe modeled system
is not known in sufficient detail to allow for the formulation of
a priori theoretical models^. To summarize the discussion
above, i) drug partitioning into phospholipids and neutral
lipids is unlikely to be represented by a single solvent model
system, ii) while BP provides a reasonable estimate of basic
drug tissue partitioning, the mechanism is unknown, and iii)
the mechanism responsible for increased intracellular concen-
trations of neutral and acidic drugs is unknown. Thus, it is not
currently possible to build an a priorimechanistic PBPK mod-
el. This is essentially true for all biological systems. It is unrea-
sonable to expect a 1:1 correlation between a physiological
process and an artificial in vitro system. Therefore, we believe
that current PBPK models are mechanistic but a posteriori and
semi-empirical. This point is not just an issue of semantics.
Believing that models can be constructed a priori makes a
search for more predictive relationships appear to be a step
backwards. In reality, a deeper understanding of the mecha-
nisms involved, leading to more predictive relationships, may
be necessary to improve PBPK models. With respect to
George Box’s quote above, PBPKmodels are useful but there
is ample room for improvement.
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