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ABSTRACT

Purpose To evaluate a random forest model that counts sili-
cone oil droplets and non-silicone oil particles in protein for-
mulations with large class imbalance.

Methods In this work, we present a novel approach for au-
tomated image analysis of flow microscopy data based on
random forest classification enabling rapid analysis of large
data sets. The random forest approach overcomes many of
the limitations of traditional classification schemes derived
from simple filters or regression models. In particular, the
approach does not require a priori selection of important mor-
phology parameters.

Results We analyzed silicone oil droplets and non-silicone oil
particles observed in four model systems with protein concen-
trations of 20, 50 and 125 mg/mL. Filters based on random
forests achieve higher classification accuracies when com-
pared to regression based filters. Additionally, we showcase a
procedure that allows for accurate counting of particles
>] pm.

Conclusions Our method is generally applicable for classifi-
cation and counting of different classes of particles as long as
class morphologies are differentially expressed.
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ABBREVIATIONS

CART  Classification and regression tree
ECD  Equivalent cirlcular diameter
ESD  Equivalent spherical diameter
mAb  Monoclonal antibody

NSO  Nonssilicone oil

PFS Pre-filled syringe
SO Silicone oil

INTRODUCTION

All protein formulations contain subvisible particles, and dis-
crimination between proteinaceous particles and other parti-
cles is key in assessing product stability and potential risk fac-
tors (1). Regulatory agencies require manufacturers of protein
therapeutics to control subvisible particles in drug products to
ensure the safety and efficacy of the drug as well as to demon-
strate process consistency. More recent concerns regarding the
potential immunogenicity of proteinaceous aggregates have
led to increased scrutiny by regulatory health authorities
(1-3). Limits on particle counts are specified in pharmacopeias
for particles >10 and >25 pm, while particles >2 and >5 pm
are typically reported for information purposes.

According to USP <788>, the preferred method for the
determination of subvisible particles in biopharmaceutical for-
mulations is light obscuration (Method 1), and in the case of
samples with high viscosity or reduced clarity, membrane mi-
croscopy (Method 2) may be used. However, light obscuration
is not able to distinguish between particles of different compo-
sitions, which are common in formulations manufactured in
pre-filled syringes (PFS). This limitation is a major drawback
in terms of particle characterization, in particular in
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biopharmaceutical industry where most of the interest in fo-
cused on quantitation of proteinaceous particles. Over the
past few years, new technologies have been introduced into
the area of particle analysis and are considered to be orthog-
onal techniques to light obscuration (4,5). Several of these new
technologies are able to distinguish between different types of
particles, thus providing additional information about product
stability. For example, flow microscopy (based on different
morphologies) and Archimedes microchannel resonator
(based on differences in particle buoyancy) have been
reviewed in the informational chapter USP <1787> (6-8).
Increasingly, pharmaceutical companies are manufactur-
ing protein therapeutics in PFS because of their ease of han-
dling and administration, especially in indications for which
home use is desired. However, silicone oil is used as a plunger
lubricant in PFS, and so it can migrate into the product in the
form of droplets. Common techniques, such as light obscura-
tion, are not able to distinguish silicone ol (SO) droplets from
non-silicone 0il (NSO) particles present in solution (9). In con-
trast, flow microscopy is able to distinguish between particles
of different morphologies by taking digital images of individ-
ual particles (8,10). This technique has been successfully used
to distinguish spherically shaped particles from other particles
present in solution. Flow microscopy allows for the differenti-
ation of silicone oil and/or air bubbles from other species,
such as proteinaceous particles (7,11,12). State-of the-art sys-
tems, such as the FlowCam (Fluidlmaging Technologies) or
MFT (ProteinSimple), report up to 35 different morphology
measurements per image, e.g., aspect ratio, curcularity, elc. Filters
based on these morphology measurements can be used to
distinguish silicone oil droplets from other particles. Early
studies have suggested an aspect ratio > 0.85 to identify spheri-
cally particles, while more recent studies suggest circularity
(Hu) > 0.95, or a combination of several parameters (7,8,11).
While these single morphology filters work reasonably well for
particles larger than 10 pm, their accuracies in the size range
below 10 pm are usually inferior compared to regression
models due to the decreased number of pixels available to
obtain accurate morphology information from an image. In
addition, different morphology parameters are necessary for
discrimination of SO and NSO in different size regimes de-
pending on the morphologies of the NSO particles (11). In
stability studies involving protein therapeutics in PFS, the im-
balance in the number of SO and NSO particles can affect
count accuracies, which can be a problem for assessing the
aggregation stability of a PFS product. Even with morphology
filters having an accuracy of about 90%, a small prevalence of
NSO often results in large errors in NSO counting, thereby
providing inaccurate stability information of the product (7).
In this paper, we describe a method for constructing mor-
phology filters that is based on the random forest, a statistical
machine learning method derived from decision trees (see (13)
for an introduction). In our context, random forests are used
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to create predictive models that map morphology data of a
given particle to a classification (SO or NSO). Random forests
are easy to use and are implemented in most popular software
packages. However, some of the concepts we cover in this
paper can be adapted easily to other machine learning
methods. In addition, we showcase a counting method called
the mixture method to account for less-than-perfect classifica-
tion, which often leads to over-counting of NSO particles
whenever the prevalence of SO particles is large.

Filters based on the random forest were used to analyze
particles in four different model systems spanning the concen-
tration range from 20 mg/mL up to 125 mg/mL protein. All
particles were generated artificially and classified in the train-
ing and validation sets as SO or NSO in the size range above
1 um, which is at the detection limit of typical flow micro-
scopes. Training and validation sets using particles from each
model system were created. The training sets were used to
build the random forest filters, and the validation sets were
used to assess their classification and counting accuracies. The
relative importance of various morphology parameters is also
assessed for different size ranges and protein particle genera-
tion methods

MATERIALS AND METHODS
Materials

Monoclonal antibodies were produced by Genentech, Inc.
(South San Francisco, California). mAbl was formulated at
125 mg/ml and mAb2 at 20 mg/mL with buffers, stabilizers,
and surfactants typical of biopharmaceutical formulations.
BSA was purchased from Sigma-Aldrich at a purity >98%.
From these materials four different model systems with artifi-
cially generated particles were created. Thermally stressed
antibody samples of mAbl and mAb2 were generated by
heating 20 mg/mL of mAb 1n the presence of 150 mM sodi-
um chloride to 73°C for 5 min. Stir stressed mAb1 sample was
generated by stirring 20 mg/mL mAb at 500 rpm overnight.
Heat stressed BSA was generated by heating 50 mg/mL BSA
in PBS at pH 7.4 to 80°C under stirring at 500 rpm. The
generated proteinaceous mAb1 particles were diluted into
0.22 pm filtered mAb1 sample (125 mg/mlL). mAb2 particles
were diluted into 0.22 pm filtered mAb2 sample (20 mg/mL).
BSA particles were diluted into 0.22 pm filtered BSA sample
(50 mg/mlL). Protein particle concentrations in each model
system were ~50,000 particles/mL >2 um.

Silicone oil stock solution was generated by spiking 2%
(v/v) silicone oil (Dow Corning 360 medical fluid, 1000 cSt)
into freshly filtered mAb formulation buffer or PBS. The so-
lution was vortexed for 1 min and sonicated for an additional
10 min. An aliquot of this stock solution was spiked into the
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filtered mAb and BSA solutions to a concentration of ~50,000
particles/mL >2 pm.

Flow Microscopy

All samples were compared on two different flow microscopes.
The first flow microscope was a MFI 5200 (ProteinSimple)
equipped with a 100 pm silane coated flow cell, 5% objective,
monochrome camera, and peristaltic pump. The instrument
was autofocused using 10 pm Duke size standards and con-
trolled with the MFI View software version 2R3.0.1.24.2461
while MVAS version 1.3 was used for image processing.

The second flow microscope was a FlowCAM VSII (Fluid
Imaging Technologies) equipped with a Sony SX90CR color
camera. A 10X objective and a 90 um field-of-view cell were
used for all measurements. The system was focused using
high-magnification focusing beads and autofocus (Fluid
Imaging Technologies). Particle detection thresholds were se-
lected as 12 for dark pixels and 15 for light pixels. Distance to
nearest neighbor was set to 2 with 3 closed-hole iterations.
Images were processed using VisualSpreadsheet v3.4.11
(Fluid Imaging Technologies).

Instrument performance was verified by measuring 10 pm
Count-CAL bead standards at the beginning of each session
on both MFT and FlowCam systems.

Modeling Software

The random forest filters were created using R, a software
environment for statistical computing (14), in conjunction with
the caret package (Classification And REgression Training)
(14). The caret package includes numerous functions that sim-
plify and streamline the creation of predictive models. The
package contains tools for splitting data (for creating training
and validation sets and for K-fold cross-validation), model
tuning (for selecting classification parameters), estimation of
variable importance, as well as methods for balancing error
in unbalanced data sets. Numerous predictive modeling ex-
amples using the caret package can be found in (13,15).

Random Forest Filters

The decision tree is a popular machine learning method that
uses a set of binary rules to predict class memberships (16).
These rules depend on algorithms, such as CART (17), and
are readily available in many statistics software packages.
These algorithms are computationally fast and do not impose
strict assumptions on the data.

Filters based on decision trees have been used in multiple
disciplines, such as pharmacology (18), physics (19), molecular
biology (20), and medicine (20-22). In our context, the meth-
od provides a predictive filter that takes morphological infor-
mation about a particle and provides a prediction for the

particle’s class (NSO or SO). This predictive filter is construct-
ed by learning from particles with known class and morpho-
logical information. The filter can then take the morphologi-
cal information from an unknown particle and provide its
predicted class (either NSO or SO). An example of such a
decision tree is shown in Fig. la. The tree keeps branching
until one of several predetermined stopping rules of the
CART algorithm are reached (17).

Instead of a single decision tree, an ensemble of stochasti-
cally generated decision trees can be used together. This col-
lection of decision trees is called a random forest, and it be-
longs to the class of supervised learning algorithms. Random
forests were developed to overcome some of the limitations of
decision trees, such as unstable predictions (i.e. sensitive to
small perturbations of the inputs) and over-fitting (23).
Because they are robust with respect to over-fitting, a large
number of variables can be used as inputs, so that little or no a
priori selection of the variables is required. In addition, random
forests are computationally efficient for large datasets, and can
produce very accurate results with minimal tuning. The meth-
odology is flexible so that internal estimates obtained during
model construction can be used to monitor error, accuracy,
and variable importance (i.e. importance of morphologies for
accurate classification). Each tree in the random forest is
allowed to vote on the class for a given particle, and the num-
ber of votes for a specific class is aggregated to obtain an
average vote, p, over all trees. A cutoff ¢ is then used to classify
the particle: if p > ¢ then the particle is classified as NSO,
otherwise it is classified as SO. The cutoff ¢ is treated as a
tuning parameter that is determined as the forest is created,
via K-fold cross-validation and optimization of the ROC
curve (13). This choice of cutoff is robust to class imbalance
as demonstrated in previous work (13).

In general, a random forest is constructed from a training
set, and a test or validation set is then used to evaluate predic-
tion performance. For our application, the particle data from
our four model systems were split randomly into two sets; 80%
of the particles were retained for training and the remaining
20% were used for validation. In general, a random forest
should be comprised of a large number of trees in order to
obtain the best overall accuracy. However, a very large num-
ber of trees will often result in small gains in accuracy and will
increase computational costs (e.g., memory usage, processing
time, etc.). Recently, a range between 64 and 128 trees per
forest was recommended in order to obtain a good balance
between classification performance and computational cost
(24). In this paper, every random forest is composed of 128
trees.

Logistic S-Factor

Filters based on the random forest were compared to predic-
tive filters based on the S-factor (11). The S-factor of a particle
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Fig. I (a) Example of a decision tree used in a random forest filter to separate SO from NSO (only the first three nodes are shown). Particles that satisfy the
condition, e.g. aspect ratio >0.850, get placed in the right node, while particles that do not satisfy the condition get placed in the left node. (b) Random forest filter
applied to each particle to obtain an average vote percent from all decision trees to predict whether a particle is SO or NSO. Note that the number of trees in the

forest is independent of the number of morphology parameters.

is defined as the product of its Gircularity, Aspect Ratio, IntSTD,
and IntMax, which are morphology parameters that are de-
rived from particle images by the MFI microscope software.
However, IntMax is not readily available for the FlowCam, so
that the S-factor is redefined for FlowCam as the product of
similar morphology parameters reported by the system’s soft-
ware: Gircularity (Hu), Aspect Ratio, Sigma Intensity, and Intensity
Sum.

The S-factor filter described in (11) works by finding a
cutoff value for classification that lies between the average S-
factor values of the SO and NSO classes. Manual optimiza-
tion is used to determine an optimal cut-off value for classifi-
cation. This classification procedure is equivalent to creating a
filter based on a logistic regression with the S-factor as the sole
predictor variable (13).

As with the random forest approach, the logistic regression
s fitted using S-factor values from the training data. For a new
particle with unknown class, the logistic regression fit provides
a percentage p, similar to the vote percentage that indicates
how likely the particle belongs to the NSO class. K-fold cross-
validation is also used to choose the optimal threshold value ¢
for classification via the ROC curve as with the random forest:
if p> ¢ then the particle is classified as NSO, otherwise it is
classified as SO. Validation data is used to compute perfor-
mance measures for the logistic regression filter based on the
S-factor.

Counting Methods

We consider multiple counting methods in this paper. One
obvious method (referred to as the Classification method) in-
volves using a predictive filter, such as a random forest or
logistic regression, to predict the classes of particles in a new
test set and then counting the predicted classes. However, if
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the overall prevalence in a test set is heavily skewed towards
the majority SO class, NSO counts will be overestimated,
even if the filter achieves a high degree of accuracy. This
simple scheme gives accurate class counts only when predic-
tion 1s perfect.

The problem of quantifying class counts using less than
perfect predictive filters (a common occurrence for real-
world applications) has received some attention recently, no-
tably in (25,26). In this paper, we show how the Mixture meth-
od described by Forman (25) can be used to obtain more
reliable counts of SO and NSO particles.

The following four counting methods are considered in this

paper:

*  Classtfication: a predictive filter (e.g., random forest or lo-
gistic regression) is used to predict the class membership
(SO or NSO) of particles in a test sample; the number of
NSO particles is the sum of the predicted NSO cases.

*  Mixture: the distributions Do and Dy of vote percentages
among the NSO and SO classes are estimated from the
training set. Estimation of the vote distributions is accom-
plished during training of a predictive filter via K-fold
cross-validation. The observed distribution of votes D,
of a test set 1s regarded as a mixture of the distributions

D NSO and Dgoi

Dy = aDyso + (1 —a)Dso

The Probability-Probability plot method described in (25)
1s used to estimate the mixture parameter o. The estimate of o
multiplied by the total number of particles in the test set is used
as the estimate of the number of NSO particles in the test set.
*  Curculanity or Circularity (Hu): Particles with Circularity or
Circularity (Hu) < 0.95 are classified as NSO; the number

of NSO particles is the sum of the predicted NSO cases
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»  Aspect Ratio: Particles with Aspect Ratio <0.85 are classi-
fied as NSO; the number of NSO particles is the sum of
the predicted NSO cases

All of the counting methods listed above are compared
with respect to the true count of NSO in a given test sample.

Evaluation of Classification Accuracies and Counting
Errors

The classification accuracy of a predictive filter was assessed
by computing the confusion matrix on an independent vali-
dation set. The confusion matrix is a tabulation of the true and
false predictions for each particle class (see Figure S1).
Classification accuracy was determined as the percentage of
true predictions for both SO and NSO particles (diagonal
elements of the confusion matrix) while the percentage of mis-
classification was described by the percentage of false predic-
tions for both SO and NSO particles (off-diagonal elements).

Counting errors were assessed by comparing the predicted
number to the true values for both SO and NSO particles.
The absolute error for counting is defined as:

(V) SO particles|predicted] — (N) SO particles [truth]

rr0r[(N') SO counting] =
%% enor|(N).SO counting) (NSO particles [truth] |

RESULTS AND DISCUSSION

Artificially generated protein particles were prepared and
spiked into formulations of mAbl, mAb2, and BSA at con-
centrations 20, 125 and 50 mg/mL, respectively. These dif-
ferent formulations were used to account for differences in
refractive indices between protein particles and surrounding
solution as well as different morphologies of protein particles.
Typically this concentration range can change the refractive
index of the solution from 1.33 up to >1.36 thereby changing
the sensitivity of detection of translucent particles, which relies
on the optical contrast between the particle and the solution
(27). In particular, proteinaceous particles and SO droplets
have a refractive index that is usually <1.4 thereby hampering
reliable detection in higher concentration formulations (re-
fractive index of 1.4046 in case of Dow Corning 360
Medical Fluid, 1000 cSt). In addition, differences in particle
morphologies can have an impact on classification accuracy
using current methods of classification.

In this study, we compare performance of the two most
commonly used flow microscopes in biopharmaceutical indus-
try, FlowCam VSII (color) and MFI 5200. The same samples
from all model systems were measured on both instruments,
allowing for a direct comparison of performance. The mea-
sured data sets were split into size bins of 1 um for particles

larger than 1 pm up to 10 pm. In each size bin, a training set
consisting of artificially generated data was used to create a
predictive filter (80% of the data) and a validation set (20% of
the data) was used to assess classification and counting accu-
racy. For all model systems we examined the following param-
eters in each size bin:

*  Variable importance for classification (Fig. 3)
* Classification accuracy for SO and NSO particles (Fig. 5)
*  Counting accuracy for SO and NSO particles (Fig. 7)

It should be pointed out here that there are several differ-
ences between the flow microscopes used in this study that can
impact a fair comparison. The cameras used in this study are
different, i.e. MFI uses a monochrome camera while the
FlowCam has a color camera. Another difference is the used
magnification, which is 5% for the MFI and 10X for the
FlowCam. In addition, the FlowCam does not correct for
refraction effects for smaller particles, which over-sizes them
as shown in a recent publication (28). Finally, the FlowCam
does allow for more user optimization of the binarization set-
tings for data acquisition. Despite these differences we think
that a comparison between both instruments is useful.

Morphology Parameters Obtained by Flow Microscopy

Flow microscopy takes images of individual particles and pro-
vides their morphology parameters. For our application, we
used both FlowCam and MFI for flow imaging. The
FlowCam is capable of reporting up to 35 different particle
morphology parameters, while the MFI is capable of
reporting 10 morphology parameters; these are grouped into
three classes:

1. Basic shape parameters,
2. Advanced morphology parameters,
3. Gray scale and color measurements.

A listing of all the morphology parameters provided by the
FlowCam and MFT instruments is given in Table S1, and
detailed information on each parameter is available on each
manufacturer’s website. It should be noted that several of the
morphology parameters are not independent of each other,
e.g. compactness 1s inversely proportional to circularity.

SO droplets are spherically and can be distinguished from
other particles that are not spherically. Previous studies have
reported the use of single morphology parameters for classifi-
cation of SO and NSO. For example, particles with aspect
ratio > 0.85 (ratio of width/length) are classified as SO. These
single parameter filters work well for particles >10 pm, but
have low accuracy for smaller sizes. The main reason for the
poor performance is that the morphologies vary in importance
for correct classification in the different size ranges; this is
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partly due to an increase of measurement error in the mor-
phologies of smaller particles (where the flow imaging software
cannot easily determine whether a pixel of an image is part of
a particle or part of the background). In addition, morphol-
ogies of protein particles are variable and depend on several
factors such as stress or storage condition. These differences in
morphologies are important to pick the best morphology pa-
rameters for classification. Thus, it is unlikely that only a cou-
ple of morphology parameters can be used together for accu-
rate classification across all size ranges. In more recent work, a
combination of multiple morphology parameters using regres-
sion models was applied to classify SO and NSO particles. In
general it was found that, in addition to aspect ratio and circu-
larity (Hu), the following morphology parameters are impor-
tant for classification of SO:

*  IntMean (intensity mean of all pixels of the particle),

*  IntSTD (intensity standard deviation between higher and
lower intensity values within a particle),

*  IntMin (intensity of the darkest pixel of the particle), and

*  IntMax (intensity of the brightest pixel of the particle).

Note that FlowCAM and MFT report different morphology
parameters of a particle, e.g. FlowCam does not report inten-
sity minimum and intensity maximum, which hampers trans-
fer of regression models between instruments. The complexity
of morphology parameters necessary for particle classification
requires a thorough statistical evaluation about their impor-
tance in different size regimes and this is still lacking in the
current literature. Examples of factors that will influence pa-
rameter importance for classification are magnification of the
objective used, sample illumination intensity, camera type
(monochrome us. color), and flow cell dimensions. In general,
regression-based filters require a priori knowledge about pa-
rameter importance because the parameters included in the
model must be selected ahead of time and the relative impor-
tance of each parameter must be mathematically defined be-
fore analysis while random forest filters are able to rank pa-
rameter importance for classification without a priori knowl-
edge and thus do not give predefined weight to each param-
eter (see below).

Artificially Generated Protein Particles and Silicone oil
Droplets

Four model systems containing artificially generated protein
particles and SO droplets are used to test classification and
counting accuracy of the random forest filters. Representative
particle images taken on both FlowCam and MFI 5200 are
shown in Fig. 2. It can be seen that morphologies and particle
opaqueness are different in each system. The mAbl particles
generated by stirring are the most opaque particles while the
BSA particles generated by heat are the most translucent ones.
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Fig. 2 FlowCam (color) and MFI images of representative particles found in
the artificially generated samples.

mAbl and mAb2 particles generated by heat have an inter-
mediate translucency. Similar morphologies using compara-
ble stress conditions have been reported previously (7,29).
Qualitatively, the parameters in this study encompass the gen-
eral appearance of the stressed particles shown in literature.
Quantitatively, parameters such as grey scale parameters (e.g.
transparency, edge gradient, sigma intensity, etc.) span a
range for the particles investigated in this work.

The corresponding particle size distributions are shown in
Fig. S2. These size distributions also demonstrate different
cases of imbalanced data sets, e¢.g. the mAbl (stir) sample
has a lot of very small particles and very little large particles
resulting in a significant imbalance of SO and NSO particles
above 5 pm while the mAb2 (heat) sample has significantly
more NSO particles above 10 um. The BSA (heat), mAb]
(heat) and mAb2 (heat) are more balanced below 10 pm.
These differences can significantly impact counting accuracy
when the predictive filter is imperfect (see below).

Building a Random Forest Classification Filter

The random forest approach uses a training set that contains
morphology information on particles with known identity. As
with all supervised learning algorithms, the better the training
set the more accurate the prediction, which is both the
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strength and weakness of the methodology. Ideally, the goal is
to build an accurate filter by using a representative (1.e. very
large) and balanced dataset (comparable amounts of SO and
NSO). We create filters using morphology information ob-
tained from flow microscopy images of SO and NSO particles
for each model system. In our work we compare MFI5200
and FlowCam (color). In general, the image quality of
FlowCam is superior compared to the MFI 5200 (10), but a
thorough comparison of filter performance between instru-
ments is still lacking in the literature.

First, we created a database containing defined SO and
NSO particles for each model system (two different mAbs as
well as BSA). Each database contains morphology informa-
tion of particles >1 um, and details for all size bins are shown
in Tables 52 and S3.

A random forest filter was created for each size bin, using
training particles from the corresponding size bin (80% of the
particle data set). The accuracies of the classification and
counting methods were evaluated using the remaining 20%
of the particles as an independent validation set. It is

O Aspectratio

+ IntMean

important to point out that accuracy should always be assessed
on an independent data set that was not used to create the
predictive filter. If we assess accuracy on the training set (initial
80% of data), we obtain >99.9% accuracy for classification
and counting for all particles >1 pm in all model systems.

Importance of Morphology Parameters in Different
Size Ranges

Each random forest filter is able to evaluate the importance of
morphologies for accurate classification in each size bin.
Importance for a given morphological parameter is defined
as the mean decrease in accuracy of the random forest filter
whenever that parameter is omitted from the training data.

The plots in Fig. 3 display the importance of each mor-
phology parameter measured with the MFI by size bin for the
four different model systems. It should be stressed here that
variable importance varies by size bin, as well as by model
system.
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Fig. 3 Relative importance of different morphology parameters for correct classification by MFI using random forest filters in the different size ranges: (@) mAb |
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For mAbl1 (heat) particles in the larger size bins the top
three parameters are aspect ratio, IntSTD and IntMean. When
one of these parameters is omitted from the training data,
accuracy decreases by at least 10% (Fig. 3a). At smaller parti-
cle size bins, IntMin becomes more important, while most
morphologies decrease in importance. For the smallest size
bin, no parameter has variable importance greater than 5%.

The situation is different for BSA (heat) particles where the
same morphology parameters remain important throughout
the size bins, indicating that the random forest filter will per-
form better under this model system. Comparing these find-
ings with the other two model systems shows that different
protein particle morphologies require different morphology
filters for accurate classification due to the varying parameter
across all size bins and model systems. One interesting obser-
vation for all systems is that circularity has very low variable
importance (~5%), indicating that a very good random forest
filter can be constructed with the remaining eight parameters.

The corresponding importance plots for data obtained
with FlowCam (color) can be found in Figure S3. For clarity
only the top five most important parameters are shown. The
remaining 30 morphology parameters have very low variable
mmportance (less than 5% i all size bins) indicating that they
are not useful for classification. Similar to MFI, parameter
importance varies by size bin and model system. However, a
different set of parameters is important for classification under
FlowCam. In addition to aspect ratio and sigma intensity, the new
parameters include edge gradient, curcularity (Hu), circle fit, and
transparency. Despite increased image quality with FlowCam,
variable importance is much smaller for individual morphol-
ogies. This is an indication that morphologies under
FlowCam are less differentially expressed between SO and
NSO particles.

In general, the varying importance among morphology
parameters emphasizes the strength of the random forest ap-
proach. The regression-based filters require a priors knowledge
about parameter importance, while the random forest filters
automatically determine parameter importance for
classification.

Classification Accuracy of the Random Forest Filter

The random forest uses a particle’s information from all mor-
phologies, and outputs a new measure: the vote percentage for
the NSO class. This can be regarded as a new composite feature
that can be used to separate particles into SO or NSO. Three
density histograms' of NSO vote percentages separated by the
known particle class are displayed in Fig. 4. In the ideal case, the
vote percentage histograms should be clearly separated, with the
histogram for SO clustered at 0 and the one for NSO clustered at

! The density histogram is a smoothed version of the relative histogram such
that the entire area of the histogram equals 1.
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Fig.4 Separation ofthe new observable “vote percentage” of SO (blue) and
NSO (red) particles using the random forest filter based on BSA heat particles:
(@) particles in largest size bin 210 um (ideal separation), (b) particles in size
bin 5-6 um (little overlap), (c) particles in smallest size bin -2 um (more
overlap and misclassification).

1. This separation occurs for particles >10 pm and is indicative of
a predictive filter with very high accuracy (Fig. 4a). In the smaller
size bins, the separation is still good, but there is more overlap
between the SO and NSO vote histograms; this overlap results in
a higher misclassification rate. In the smallest size bin 1-2 pm,
this overlap is more pronounced, resulting in a misclassification
rate of more than 10% in SO particles and nearly 20% in
NSO particles (see below).
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Confusion matrices on the independent validation sets are
computed in order to evaluate the classification accuracies of
the random forest filters (see Materials and Methods and
Fig. S1). The classification accuracies for each model system
using both MFI and FlowCam (color) per individual size bin
are displayed in Fig. 5. Classification accuracy is strongly de-
pendent on protein particle morphology, as well as instrument
type. For particles >5 pm, MFI produces filters with classification
accuracies >90% for both SO and NSO particles. Performance
below 5 pm depends strongly on protein particle morphologies,
e.g., mADbl (heat) classification accuracies are as low as 60% for
SO and 68% for NSO in the smallest size bin, but classification
accuracies of BSA (heat) remains fairly constant at around 88%
for SO overall and down to 80% for NSO in the smallest size bin.
This finding is interesting as the BSA (heat) sample has the most
translucent NSO particles, which are easier to separate from SO
particles than NSO  particles in the other three model systems.

Random forest filters based on MFI outperform filters
based on FlowCam (color) in every model system. At least
for our model systems, MFI filters have accuracies 5-10%

® SO (MFI 5200)

® SO (FlowCam color)

a mADb1 (heat)

classification accuracy (%)

5?—2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1010-Inf
particle size bin(um)

(o mADb2 (heat)

classification accuracy (%)

60f

5?—2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1010-Inf
particle size bin(um)

higher compared to FlowCam (color) filters in most size bins,
except for smaller particle sizes below 3—4 pm. For the three
mADb systems analyzed on FlowCam there is a constant de-
crease in classification accuracy for particle sizes below 10 pm
in contrast to MFT classification, which remains fairly constant
down to 5 pm. Interestingly, accuracies of FlowCam filters are
fairly constant for BSA heat particles with >90% for SO par-
ticles and >85% for NSO particles across all size ranges. The
difference in classification accuracy is most likely due to the
use of the color camera, which is known to create edge arti-
facts that are more problematic for smaller particles as well as
known over-sizing effects of smaller particles in the FlowCam

(28).

Comparison to a Regression Model Containing Four
Parameters

We compare the random forest filters to filters based on the
logistic S-factor (see Materials and Methods for more details).
The corresponding classification accuracies for all model

m NSO (MFI 5200)
m NSO (FlowCam color)

b mAb1 (stir)

classification accuracy (%)

60f

5?—2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1010-Inf
particle size bin(um)

d BSA (heat)

classification accuracy (%)

5?—2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1010-Inf
particle size bin(um)

Fig. 5 Comparison of the random forest predictive filters to classify SO droplets and NSO particles across the four model systems: (@) mAb| (heat) (b) mAb |

(stir) (€) mAb2 (heat) and (d) BSA (heat).
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® SO (Random Forest)

® SO (logistic S-Factor)

a mAb1 (heat)

classification accuracy (%)

‘? -2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1010-Inf
particle size bin(um)

c mADb2 (heat)

classification accuracy (%)

5?—2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1010-Inf
particle size binjum)

m NSO (Random Forest)

m NSO (logistic S-Factor)

b mAb1 (stir)

classification accuracy (%)

? -2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1010-Inf
particle size bin(um)

d BSA (heat)

70

classification accuracy (%)
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5?—2 2-3 3-4 45 56 6-7 7-8 8-9 9-1010-Inf
particle size bin(um)

Fig. 6 Comparison of the random forest and logistic S-Factor filters based on MFI datasets: (@) mAb| (heat) (b) mAb| (stir) (€) mAb2 (heat) and (d) BSA (heat).

systems are shown in Fig. 6 (the original S-Factor plots are
shown in Fig. S4). In general, the random forest fits outperform
the logistic S-factor filters in every model system. The smallest
difference in classification accuracy is for mAb 2 (heat), most
likely due to the fact that the parameters ntSTD, aspect ratio and
IntMax vsed in the S-factor belong to the five most important
morphology parameters for classification in the random forest
filter (see Ig. 3).

The largest difference in classification accuracy can be seen
for the BSA (heat) particles, where it is consistently 5-15%
higher for the random forest filters. This is again in agreement
with parameter importance in Fig. 3 where importance re-
mains fairly constant across all size ranges and IntMax is not
important for classification at all (<1% decrease accuracy in
all size bins). Also, in this system, there is a higher misclassifi-
cation rate for NSO particles compared to SO particles.

Counting Accuracy

Classification and counting are two different, but related
problems. For example, consider the two datasets in Fig. S1.
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Assuming a 90% classification accuracy and a balanced
dataset in this example results in misclassification of 10 parti-
cles as SO and 10 particles as NSO. Summing up the SO and
NSO particles gives correct values for counting since the er-
rors cancel each other out. PFS typically have highly unbal-
anced datasets such that the number of SO particles exceeds
the number of NSO particles by a large margin (e.g. in
Fig. S2bfor particles =5 pm). For the case with a larger prev-
alence of SO particles, the errors do not cancel out, resulting
in significant over-counting of NSO particles (Fig. S1b).
Ultimately, flow microscopy is a counting assay, so that
accurate counting is desired. To obtain accurate counts, we
implemented the mixture method to account for unbalanced
prevalences in the data (see Materials and Methods for
details). This 1s illustrated in Fig. 7 where we compare
counting errors of all filters for the four different model sys-
tems. For balanced datasets, such as BSA (heat) and mAbl
(heat), counting errors are below 10% for particle sizes down
to 3 um. Below this point, the single morphology filters (aspect
ratio or circularity) result in larger counting errors. In contrast,
the random forest filters coupled with the mixture method
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Fig. 7 Counting accuracy of the different predictive fitters using the MFI datasets: (@) mAb| (heat) (b) mAb! (stir) (€) mAb2 (heat) and (d) BSA (heat).
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have counting errors below 5% for all molecules and size bins
except for the smallest size bin of mAb1 (heat).

Counting errors using the logistic S-factor are variable de-
pending on the model system. For the balanced datasets of
mADb]1 (heat) and BSA (heat) error rates are below 10% in all
size bins. For mAb1 (stir), the amount of SO particles is much
higher than NSO particles above 5 pm, which leads to over-
counting of NSO particles. While filters based on the logistic
S-factor perform reasonably well for the three other model
systems, they tend to over-count NSO particles the most,
resulting in counting errors of up to 50% for particles =5 pm.

In general, the mixture method can be used with any pre-
dictive filter and is not limited to the random forest. To dem-
onstrate this we coupled the fits based on the logistic S-factor
with mixture method. Applying the mixture method gives
similar counting errors compared to the random forest filters
in all model systems. In the case of mAb1 (stir), counting errors
fall below 20%.

We analyzed counting accuracies described above (see
Figure S5). Since classification accuracy is higher for MFI
based filters, they will also be associated with higher counting
accuracy. Thisis apparent in the unbalanced mAb] (stir) sam-
ple under FlowCam, where counting errors for NSO particles
can be nearly 200% under the Classification method, even for
particles >9 pm.

In summary, the random forest filters combined with the
mixture method had the smallest counting errors over all
model systems (below 10% for the NSO particles) compared
to all other classification and counting methods. Application
of the mixture method for both the random forest filters and
the logistic S-factor filters increase counting accuracies across
all size bins.

While this work was done with stressed model systems, the
classification and counting methodology demonstrated here
can be applied to unstressed samples. It is recommended that
the training set be created using real-world samples to ensure
that representative particles are used for training. The use of
real-world samples for training requires manual classification
of the training set. Manual classification can typically be done
consistently for particles >5 pm by trained analysts, but may
not be possible for particles smaller in size. This is a general
limitation for real-world samples, which can have different
particle morphologies than artificially generated particles.

CONCLUSION

We have developed a novel approach to classify and count SO
and NSO particles in biopharmaceutical formulations. Our
random forest method does not require a priori knowledge of
parameter importance and achieves high classification accu-
racies, which was determined on particles from independent
validation sets. We used morphology information of SO and
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NSO particles in four different model systems for training of
the statistical algorithm. This is done to account for variations
in optical contrast as well as particle morphologies.

Accurate quantification of particle counts is performed
using a mixture model method in which particles are classified
using a random forest, which in turn is used to count particles
in the NSO and SO classes. The mixture method can be
combined with any prediction model to deliver high counting
accuracies.

In our analysis we observed that classification accuracy of
the MFTI is higher than for the FlowCam (color) in all model
systems. This is somewhat unexpected as image quality 1s su-
perior and might due to several reasons such as the color
camera, which is known to cause fuzzy particle edges as well
as software settings that can influence how efficient the bina-
rization is. However, implementation of the mixture method
in conjunction with the random forest model results in high
counting accuracy for both MFI and FlowCam indicating that
the mixture method can be used to improve counting with
imperfect prediction models. A future study should evaluate
performance of the FlowCam with monochrome camera,
which was not available in our study.

In conclusion, our methodology is generally applicable to
quantify counts of NSO particles in biopharmaceutical formu-
lations. The methodology is not limited to quantification of
just SO and NSO particles and can be used to classify and
count different types of particles as long as their morphology
parameter distributions are sufficiently different. A possible
future application may be differentiation of different types of
foreign particles and potentially stressed protein particles.
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