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ABSTRACT
Purpose For nonlinear mixed-effects pharmacometric
models, diagnostic approaches often rely on individual param-
eters, also called empirical Bayes estimates (EBEs), estimated
through maximizing conditional distributions. When individ-
ual data are sparse, the distribution of EBEs can Bshrink^
towards the same population value, and as a direct conse-
quence, resulting diagnostics can be misleading.
Methods Instead of maximizing each individual conditional
distribution of individual parameters, we propose to randomly
sample them in order to obtain values better spread out over
the marginal distribution of individual parameters.
Results We evaluated, through diagnostic plots and statistical
tests, hypothesis related to the distribution of the individual
parameters and show that the proposed method leads to more
reliable results than using the EBEs. In particular, diagnostic
plots are more meaningful, the rate of type I error is correctly
controlled and its power increases when the degree of
misspecification increases. An application to the warfarin
pharmacokinetic data confirms the interest of the approach
for practical applications.
Conclusions The proposed method should be implemented
to complement EBEs-based approach for increasing the per-
formance of model diagnosis.

KEYWORDS modeldiagnostics .modelingandsimulation .
pharmacokinetics and pharmacodynamics

ABBREVIATIONS
EBE Empirical Bayes estimates
MAP Maximum a posteriori
MCMC Markov Chain Monte Carlo
PD Pharmacodynamics
PK Pharmacokinetics
PPC Posterior predictive checks
VPC Visual predictive checks

INTRODUCTION

Mixed-effects modelling is nowadays established as a gold-
standard approach for the analysis of longitudinal pharmaco-
kinetics (PK) and pharmacodynamics (PD) data. These
models are widely used for their ability to describe different
levels of variability, and in particular inter-individual variabil-
ity. Usually, a mixed-effect model is composed by two main
components: the model for the observations including the
structural model and the residual error model; and the model
for the individual parameters, including their relationships
with the individual covariates as well as the correlation struc-
ture of the random effects (1,2).

Model diagnosing represents a key activity aimed at build-
ing confidence around the developed models before using
them for any purpose, such as prediction or simulation.
Several diagnostic tools already exist for evaluating the struc-
tural model and the residual error model; among them the
individual fits, the residual-based diagnostic plots and predic-
tion versus observation plots (3–5). Visual predictive checks
(VPC) and posterior predictive checks (PPC) are also powerful
tools based on the posterior predictive distribution for evalu-
ating simultaneously all the features of the model (6,7).

Electronic supplementary material The online version of this article
(doi:10.1007/s11095-016-2020-3) contains supplementary material, which is
available to authorized users.

* Benjamin Ribba
benjamin.ribba@roche.com

1 Inria Saclay & CMAP, Ecole Polytechnique, University Paris-Saclay,
Saint-Aubin, France

2 Roche Pharma Research and Early Development, Roche Innovation
Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland

Pharm Res (2016) 33:2979–2988
DOI 10.1007/s11095-016-2020-3

http://dx.doi.org/10.1007/s11095-016-2020-3
http://crossmark.crossref.org/dialog/?doi=10.1007/s11095-016-2020-3&domain=pdf


Herein, we will focus on diagnosing the model for the in-
dividual parameters where diagnostics are often performed to
check their marginal distributions, to detect some possible
relationships between individual parameters and covariates,
or some possiblecorrelations between random effects.
Corresponding diagnostic plots are usually based on the em-
pirical Bayes estimates (EBEs) of the individual parameters
and EBEs of the random effects.

It is known that the use of EBEs for diagnostic plots and
statistical tests is efficient with rich data, when a significant
amount of information is available in the data for recovering
accurately all the individual parameters. On the contrary, in
case of sparse data, tests and plots can be misleading when the
estimates of the individual parameters shrink towards the
same population values. Diagnostic tools relying on EBEs
are therefore not recommended for high shrinkage (8,9).

The objective of a diagnostic tool is two fold: first is to check
if the assumptions made on individual parameters are valid;
then, if some assumptions are rejected, diagnosis tools should
give some guidance on how to improve the model. Model
diagnostics is therefore used to eliminate model candidates
that do not seem capable of reproducing the observed data
(2,4,5). In such process of model building, by definition, none
of the features of the Bfinal model^ should be rejected. As is
the usual case in statistics, it is not because this Bfinal^ model
has not been rejected that it is necessarily the Btrue^ one. All
that we can say is that the experimental data does not allow us
to reject it. It is merely one of perhaps many models that
cannot be rejected.

The objective of this paper is to propose a new approach
for diagnosing models using individual conditional distribu-
tion and formally compare this method to the EBE-based
classical approach through numerical experiments based on
simulated data.

There exists few useful methods for statistical testing in
mixed-effects models. Several existing test procedures only
concern linear mixed-effects models (10–12) or generalized
mixed-effects models (13–15). Furthermore, the aim of most
of these procedures is to detect possible misspecifications of the
random-effects structure. Other specific features of the model
are considered by several authors, such as the normality of the
random effects (16,17), or the error distribution (18).

Bootstrap is a popular method for the global validation of a
nonlinear mixed-effects model (19). Even if bootstrapping is
an appealing approach, it requires an important computing
effort for validating a single model which needs to be fitted
many times. Then, it cannot be used for model building, but
only for validating the final model. Another method for a
global test and which relies on the use of a random projection
technique is described in (20).

We propose a general approach for testing separately sev-
eral features of a mixed-effects model. The method consists in
generating individual parameters and individual random

effects using their conditional distributions. Then, the sampled
parameters, the sampled random effects and the original ob-
servations can be used together for producing diagnostic plots
and building statistical tests.

Herein, we use a one compartment PK model for oral
administration to illustrate the practical properties of the pro-
posed method. The design is such that a limited information
about the individual absorption rate constant kai, for individ-
ual i,can be obtained from the data. We compare then diag-
nostic plots and statistical tests when parameters are given by
the EBEs or by a random sample of the conditional
distributions.

METHODS

Empirical Bayes Estimates Versus Random Sampling
from the Conditional Distribution

Calculating the EBE of an individual parameter consists in
estimating ψi by maximizing the conditional distribution
p(ψi|yi) where yi= (yij, 1 ≤ j ≤ ni) is a sequence of observations.
This conditional mode, also known as the maximum a posteriori
(MAP) estimate of ψi, is the most likely value of the individual
parameter ψi, given the observations and a given population
distribution p(ψi).

However, when the data are sparse, individual estimates of
a parameter can Bshrink^ towards the same population value,
which is the mode of the population distribution of this pa-
rameter. For a parameter ψi which is a function of a random
effect ηi, we can quantify this phenomena by defining the so-
called η -shrinkage (9) as:

η−shrinkage ¼ 1−
var η̂ i

� �
ω2 ;

where var η̂ i
� �

is the empirical variance of the η̂ i ’s and η̂ i
the empirical Bayes estimate of ηi that maximizes p(ηi|yi).

Saying that the observations yi provide little information
about ηimeans that η̂i is close to 0. This results as a high level
of shrinkage (close to 1) whenever var η̂ i

� �
≪ω2. Estimates of

the ψi are therefore biased because they do not correctly re-
flect the marginal distribution p(ψi). In particular, their empir-
ical variance is much reduced.

Alternatively, individual parameters ψi can be drawn from
the conditional distribution p(ψi|yi) rather than taking the
mode. The resulting estimator is unbiased in the following
sense:

p ψið Þ ¼ E p ψi

���yi
� �� �

: ð1Þ

This relationship is a fundamental one when considering
mixed-effects models. It means that, if we randomly draw a
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vector yi of observations for an individual in a population and
then generate a vector ψi using the conditional distribution
p(ψi|yi), the distribution of ψi is the population distribution
p(ψi). In other words, even if each ψi is randomly generated
using its own conditional distribution, the fact of pooling them
allows us to look at them as if they were a sample from p(ψi).

A consequence of this important property is that any diag-
nostic plot based on such simulated individual parameters can
be used confidently.

To conceptually illustrate the difference between EBEs and
sampled parameters, we will consider 10 individual parame-
ters ψ1, …, ψ10 and 10 observations y1, …, y10 so that each
individual only has one unique observation. The 10 condition-
al distributions and their modes (i.e. the 10 EBEs) are shown
Fig. 1a while 10 parameters randomly sampled from these
distributions are displayed Fig. 1b.

Because of the η -shrinkage (there is only one observa-
tion per individual), we can see Fig. 1c that the empirical
distribution of the EBEs is concentrated around the mean

ψpop of the population distribution. On the other hand,
Fig. 1d shows that the empirical distribution of the sam-
pled parameters correctly represents this population
distribution.

Pharmacokinetic Model

Throughout the manuscript, we will use a simple and classical
PK model to illustrate the proposed approach for model di-
agnostic and hypothesis testing. The model is a one compart-
ment PK model for single oral administration, with first order
absorptionand linear elimination:

C t;ψð Þ ¼ D ka

V ka−Cl
e− Cl=Vð Þ t−e−ka t

� �
:

where D is the amount of drug administered at time 0. Here,
the PK parameters are ψ= (ka, V, Cl).

a b

c d

Fig. 1 Illustration of how sampling from conditional distributions can describe population distribution compared to EBEs in case of shrinkage. (a–b) Conditional
distributions of ψ1,…,ψ10 and (a) the EBEs maximizing these 10 conditional distributions (circles), (b) individual parameters sampled from these 10 conditional
distributions (stars); (c–d) Population distribution of ψ and (c) the EBEs, (d) the sampled parameters. The model used to generate this illustration is: yi=ψi+ εi
whereψi∼N ψpop;ω

2
� �

and εi∼N 0; σ2
� �

. In that case, the conditional distribution ofψi given yi is a normal distribution withmeanμi= V(yi/σ
2 +ψpop/

ω2) and variance V=σ2ω2/(σ2 +ω2). We used ψpop = 10 and ω2 =σ2 = 1 for this numerical example.
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We then assume an exponential error model for the ob-
served concentration:

yi j ¼ C ti j ;ψi

� �
eεi j ;

where εi j∼N 0; a2
� �

. Here, yij is the concentration measured
for patient i at time tij and ψi= (kai, Vi, Cli).

We assume that the individual PK parameters ai, Vi and Cli
are log-normally distributed. Furthermore, a linear relation-
ship between log-weight and each log-parameter is assumed:

log kaið Þ ¼ log kapop
� �þ βkalog wi=wpop

� �þ ηka;i; log V ið Þ
¼ log V pop

� �þ βV log wi=wpop
� �þ ηV ;i; log Clið Þ

¼ log Clpop
� �þ βCl log wi=wpop

� �þ ηCl;i;

where wi is the weight of patient i and wpop the typical weight
in the population.

The random effects are normally distributed:
ηi ¼ ηka;i ; ηV ;i; ηCl;i

� �
∼N 0;Ωð Þ. Variances of the random ef-

fects, i.e. the diagonal elements ofΩ, are (ωka
2 ,ωV

2,ωCl
2 ) and the

correlations between random effects are (rka,V, rka,Cl, rV,Cl).
PK data for N = 150 patients were simulated with this

model using D= 100 mg and the following values of the pop-
ulation parameters: kapop = 1, Vpop = 10, Clpop = 1, ωka= 0.3,
ωV= 0.2, ωCl= 0.2 and a= 0.15. The volume is function of
weight in this example: βV= 1 while βka= βCl= 0. We further-
more assume that log-volume and log-clearance are positively
correlated: rV,Cl= 0.6 while rka,V= rka,Cl= 0.

Individual weights were sampled from a normal distribu-
tion with mean wpop = 70 kg and standard deviation 7 kg.

Simulated Designs and Tested Model

We used a design with 3 sampling times per patient: (2 h, 4 h,
8 h, 12 h) for 1 ≤ i ≤ 50; (4 h, 12 h, 24 h, 48 h) for 51 ≤ i ≤ 100

and (1 h, 8 h, 12 h, 24 h) for 101 ≤ i ≤ 150. The simulated
concentrations of the 150 individuals are displayed Fig. 2.

While the data were simulated with a model where βV= 1
and rV,Cl= 0.6, we first fitted this data with a Bwrong^ model,
where βV= 0 and rV,Cl= 0.

DIAGNOSING TOOLS

The process of model building is an iterative process where, at
each iteration, we make some hypotheses about the joint dis-
tribution of the individual PK parameters.

We then fit this model to the PK data and produce some
diagnostic plots. The objective of these plots is to evaluate
graphically which of the hypotheses can be considered as valid
and which one should be rejected. Then, rejecting some of the
hypotheses leads to proposing a new model which in turn
needs to be evaluated. Ideally, this process of model building
should lead to a final model for which none of the diagnostic
plots detect any misspecification.

Here, we will make the following hypotheses:

& The PK parameters are log-normally distributed.

1. There is no relationship between the covariate (the
weight) and the PK parameters:

βka= βV= βCl= 0.

2. There is no correlation between random effects:

rka,V= rka,Cl= rV,Cl= 0.
We will fit this model to the simulated data, calculate indi-

vidual parameters by using EBE or by sampling from the
conditional distributions and produce the following plots:

Fig. 2 Simulated PK data for 150
patients with three different designs
(50 patients per design). Simulated
PK data of individuals subjected to
design 1 (2 h, 4 h, 8 h, 12 h) are
depicted in red. Design 2 (1 h, 8 h,
12 h, 24 h) in green, and design 3
(4 h, 12 h, 24 h, 48 h) in blue.
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& Comparison of the empirical distribution of the (ψi) with
their theoretical distribution given by the model. We can
for instance compare histograms and probability density
functions (pdf).

& Visualization of the possible relationships between covar-
iates and parameters, or between covariates and random
effects, through scatter plots.

& Visualization of the possible relationships between ran-
dom effects through scatter plots.

Using diagnostic plots for model building remains quite
empirical. Indeed, there is no well defined decision rule to
decide which hypotheses made on the model are incorrect
and should be rejected. Some quantitative criteria associated
to these plots might be helpful for the modeller to take such
decision. In other word, we would like to derive formal statis-
tical tests from diagnostic plots.

Testing our hypotheses about the distribution of the indi-
vidual PK parameters can be carried out with some standard
statistical tests, such as:

& Kolmogorov-Smirnov test for testing the fit of
distributions,

& Pearson’s test for testing linear correlations between - pos-
sibly transformed - covariates and random effects: the test
statistic is based on Pearson’s correlation coefficient and
follows a t-distribution with N-2 degrees of freedom if the
samples follow independent normal distributions.

& Pearson’s test for testing linear correlations between ran-
dom effects.

The fundamental property (1) ensures that any statistical
test based on such sampled individual parameters is unbiased:
the effective level of the implemented test is precisely the de-
sired level α. We can then expect that each of the proposed
statistical test will wrongly reject the null hypothesis (i.e. reject
the model being evaluated when it is correct) with probability
α.

Controlling the level of each of these tests is important of
course, but their role is mainly to detect misspecification in the
model. It is therefore essential to also evaluate the power of
these tests in order to know which kind of misspecification can
be identified with a reasonable probability.

SAMPLING INDIVIDUAL PARAMETERS
FROM CONDITIONAL DISTRIBUTIONS

In practice, sampling ψi from the conditional distribution
p(ψi|yi) can be done by Markov Chain Monte Carlo
(MCMC) (21).

For the numerical experiments presented below, we
used the Metropolis-Hastings (MH) algorithm described

in (2) and that combines several proposal distributions.
in order to get samples of the individual conditional dis-
tributions, we run 200 iterations of this algorithm and
used 10 independent Markov chains per individual. We
then kept the individual parameters obtained from all the
chains at the last iteration.

This MH algorithm was initially implemented in
Monolix1 together with the SAEM algorithm used for
the estimation of the population parameters (2). Monolix
then returns individual parameters and random effects
sampled from the conditional distributions and use them
for the diagnostic plots.

On the other hand, diagnostic plots derived from
NONMEM2 are only based on EBEs (individual parameters
and random effects). Nevertheless, since the MCMC algo-
rithm implemented in Monolix is also implemented in
NONMEM, it should be possible to also return the sampled
individual parameters together with the EBEs.

RESULTS

Diagnostic Plots

Estimated parameters under this model are: kâpop ¼ 0:99,
V ̂

pop ¼ 10:2, Cl̂pop ¼ 1:02, ω̂
ka ¼ 0:14, ω̂

V ¼ 0:25,
ω̂

Cl ¼ 0:19, â ¼ 0:156.
Even if the number of subjects is quite large (N= 150), the

data can be considered sparse (4 sampling points per individ-
ual), providing especially a limited information on the absorp-
tion process. The η− shrinkage for ka, V and Cl are respec-
tively 88%, 20% and 20% when it is computed using the
EBEs. Then, even if the histograms of the EBEs displayed
Fig. 3 (top row) look quite different from the log-normal dis-
tributions obtained with theestimated population parameters
(in solid red lines), we cannot conclude that the population
distributions of the individual PK parameters are misspecified.

Fig. 3 (middle row) shows that identification of relationships
between covariates and individual parameters is much less
sensitive to shrinkage: EBEs correctly identify the linear rela-
tionship existing between log-weight and log-volume, while
the other PK parameters ka and Cl do not clearly seem to be
function of weight. This good behavior can be explained by
the fact that such relationship is related to the central tendency
of the distributions of the PK parameters, which ispretty well
approximated by the modes.

The η− shrinkage also strongly impacts the joint distribu-
tion of the random effects.We can see Fig. 3 (bottom row) that
the joint distribution of the estimates of the random effects
does not reflect correctly the true distribution. Artificial

1 http://lixoft.com/products/monolix/
2 https://nonmem.iconplc.com/
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correlations wrongly appear between all the random effects.
This diagnostic plot does not allow to detect that only the
correlation between ηV and ηCl is relevant.

On the other hand, creating diagnostic plots based on sam-
pled parameters and sampled random effects allows us to use
all these diagnostic plots for decision making. Figure 4 (top
row) shows a very nice fit between the empirical distributions
of the individual PK parameters and the theoretical pdf’s.
Based on this plot, we can conclude that there is no reason
for rejecting the hypothesis that the three PK parameters are
log-normally distributed.

Figure 4 (middle row) shows a correlation between log (w)
and log (V): based on this plot, we can then reject the hypoth-
esis that βV= 0 while, in the contrary, there is no reason for
rejecting the hypothesis that βka= βCl= 0.

Only a correlation between ηV and ηCl clearly appears
Fig. 4 (bottom row): we can then reject the hypothesis that
rV,Cl= 0, as it was assumed in the model. On the other hand,
there is no reason for rejecting the hypothesis that rka,V =
rka,Cl= 0.

Statistical Tests

Type I Error

In the following, we will test formally each of the hypothesis of
the model being evaluated and check if the Btrue^ model can
be identified.

First, we can test separately if each PK parameter fol-
lows a log-normal distribution defined by the estimated
parameter s . Tab le I g ive s the p-va lues o f the
Kolmogorov-Smirnov tests when either the EBEs or the
sampled individual PK parameters are used. Results con-
firm what could be seen in Fig. 3: because of the strong
shrinkage for ka, EBEs of ka do not follow the estimated
population distribution. On the other hand, the tests
based on sampled PK parameters are not affected by
the η -shrinkage. Then, both the diagnostic plot displayed
Fig. 4 and the p-values of these three tests can be used
with confidence to decide not to reject the hypothesis that
the PK parameters are log-normally distributed.

Fig. 3 Diagnostic plots with EBEs. Top row: Empirical distributions of the individual parameters maximizing the conditional distributions. The estimated population
pdf’s are displayed in solid line. Middle row: Relationships between log-weight and random effects maximizing the conditional distributions. Bottom row:
Relationships between random effects maximizing the conditional distributions.
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Then, we can test if there exists some linear correlation
between the log-weight and the log-parameters. Results pre-
sented Table I show that EBEs and sampled parameters give
similar results for these tests. Both lead to the conclusion that a
significant correlation exists between log-weight and log-
volume.

Lastly, we can test if there exists some linear correlation
between the random effects.

Results presented Table I confirm what could be seen in
Figs. 3 and 4: empirical Bayes estimates of the η’s creates some
artificial correlations while sampled random effects correctly
reproduce the correlation structure of the randomeffects.
Based on this test, we can conclude with high confidence that
r(ηV, ηCl) ≠ 0.

Controlling the significance level α of a statistical test
means that the effective rate of type I error, i.e. the rate of
falsely rejected null hypotheses, is expected to be α. Here,
the probability to reject the null hypothesis cannot be
computed in a closed form, but it can be estimated by

Fig. 4 Diagnostic plots with sampled parameters. Top row: Empirical distributions of the individual parameters sampled from the conditional distributions. The
estimated population pdf’s are displayed in solid line. Middle row: Relationships between log-weight and random effects sampled from the conditional distributions.
Bottom row: Relationships between random effects sampled from the conditional distributions. For visual purpose, the conditional distributions were sampled five
times for each individual resulting in generating 5 times more points than in the previous figure.

Table I Kolmogorov-Smirnov tests for the probability distributions of the
individual PK parameters, the relationships between weight and parameters,
and the joint distribution of the random effects

Null hypothesis p-value

EBEs Sampled parameters

log kað Þ∼N log ð0:99ð Þ ; 0:142Þ <10− 10 0.58

log Vð Þ∼N log ð10:2ð Þ ; 0:252Þ 0.43 0.71

log Clð Þ ∼N log ð1:02ð Þ ; 0:192Þ 0.85 0.82

r(log (w), log (ka)) = 0 0.11 0.66

r(log (w), log (V)) = 0 < 10− 10 < 10− 10

r(log (w), log (Cl)) = 0 0.19 0.40

r(ηka, ηV) = 0 0.007 0.40

r(ηka, ηCl) = 0 0.02 0.49

r(ηV, ηCl) = 0 3 10− 6 9 10− 6
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Monte-Carlo. We have simulated 500 replicates of the
data under the null hypothesis and performed each of
the proposed statistical tests at levels α = 0.05 and α =
0.10, for each replicate, and using either the EBEs or
the sampled parameters and random effects.

Table II provides the rates of falsely rejected null hypoth-
eses for each of these tests. We can see that the significance
levels α= 0.05 and α= 0.10 are very well controlled when
sampled PK parameters and sampled random effects are used
for any of these tests.

On the other hand, a strong bias is observed when the
EBEs are used for testing the distribution of the parameters
or the correlation between random effects. The rate of type I
error of the tests concerning the relationship between weight
and PK parameters is more correctly controlled.

Power of the Tests

We finally explore how the statistical tests behave under sev-
eral alternative hypotheses. We have simulated 200 replicates
of the same experiment using the previous design and under
various parameter scenari. For each of these scenari, the esti-
mated power of the test is the proportion of rejected null
hypotheses among the 200 replicates. Only tests of level α=
0.05 have been performed for this power analysis (similar
conclusions were obtained with α= 0.10).

In the first experiment, the values of population PK
parameters used for drawing the individual PK parame-
ters are different from the values defining the null hypoth-
esis, i.e. kapop = 1, Vpop = 10 and Clpop = 1. Figure 5 top
row confirms that tests based on EBEs are biased and
should not be used for testing the marginal distribution

of the parameters. Indeed, even if they look quite power-
ful, the type I error is significantly overestimated. The
threetests based on sampled parameters are unbiased,
even if a misspecification in the distribution of ka is diffi-
cult to detect with this design.

We see Fig. 5 bottom row that an effect of moderate
size of the covariate (weight) on V and Cl is correctly
detected using either the EBEs or the sampled PK param-
eters. On the other hand, the design only allows to detect
an important effect on ka. We also see that, contrary to
the previous examples, tests based on EBEs can be used
for detecting a relationship between the covariate and an
individual parameter. Indeed, these tests seem to be un-
biased and slightly more powerful than the tests based on
sampled parameters.

We then investigate if linear correlations between PK pa-
rameters can be detected. Figure 5 shows that a clear bias is
introduced when EBEs are used, while correlation between V

and Cl is correctly detected with sampled parameters. Because
of the η -shrinkage on ka, only strong correlations (positiveor
negative) between ka and V or ka and Cl can be detected with
this method.

Application to the Warfarin PK Data

We will now use the pharmacokinetics of warfarin (22) to
illustrate the proposed method. Thirty two healthy volunteers
received a 1.5 mg/kg single oral dose of warfarin, an antico-
agulant used in the prevention of thrombosis. Supplemental
Figure S1 shows the warfarin plasmatic concentration for
these patients measured at different times.

Table II Rates of falsely rejected null hypotheses for statistical tests with significance level α=0.05 using either the EBEs or the sampled individual PK
parameters

Null hypothesis Rates of falsely rejected null hypotheses

EBEs Sampled parameters

α=0.05 α=0.10 α=0.05 α=0.10

log kað Þ∼N log ð1ð Þ ; 0:32Þ 1 1 0.030 0.090

log Vð Þ∼N log ð10ð Þ ; 0:22Þ 0.158 0.288 0.056 0.120

log Clð Þ ∼N log ð1ð Þ ; 0:22Þ 0.068 0.142 0.060 0.102

βka=0 0.034 0.092 0.044 0.088

βV=0 0.038 0.060 0.052 0.118

βCL=0 0.034 0.068 0.036 0.092

rka,V=0 0.870 0.912 0.042 0.096

rka,Cl=0 0.344 0.440 0.046 0.092

rV,Cl=0 0.140 0.234 0.042 0.094
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We will consider a one compartment PK model, assuming
a first-order absorption process after a lag-time and a linear
elimination:

C t;ψð Þ ¼ D ka

V ka−Cl
e−Cl=V t−Tlagð Þ−e−ka t−Tlagð Þ

� �
if t≥Tlag

0; otherwise:

�

Here, ψ= (Tlag, ka, V, Cl).
We assume log-normal distributions for these 4 PK param-

eters and a diagonal variance-covariance matrix Ω for the
random effects. The residual error model for the observations
is a combined error model of the form yij=C(yij, ii) + (a +
bC(yij, ψi))εij.

We used Monolix 2016R1 for fitting this model to the
warfarin PK data. The empirical distribution of the EBEs of

the random effects is displayed Supplemental Figure S2 (top
row) and shows a strong shrinkage for the absorption param-
eters Tlag and ka. Indeed, more than half of the patients have
no measurements during the first 24 hours. Then, we merely
use the population parameters to predict Tlag and ka for these
patients. This large shrinkage does not mean that the model is
misspecified, but that the data does not allow us to correctly
estimate these individual parameters. As a consequence, EBEs
cannot be used for diagnosing the model.

On the other hand, individual PK parameters sampled
from the conditional distributions can be used with confi-
dence. The distribution of the random effects displayed
Supplemental Figure S2 (bottom row) shows that there is no
reason for rejecting the hypothesis of log-normal distributions.

Fig. 5 Power of the statistical tests. Top row: testing the probability distributions of the parameters.Middle row: testing a linear correlation between log-weight and
log-parameters. Bottom row: testing linear correlation between parameters. Blue and yellow curves show power when using EBEs and sampled parameters
respectively.
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A relationship between weight and volume is clearly visible
Supplemental Figure S3 as well as a possible relationship be-
tween weight and clearance. Lastly, Supplemental Figure S4
identifies a correlation between ηV and ηCl. The hypothesis of
independent random effects should also be rejected.

In summary, based on these diagnostic plots and statis-
tical tests, the model used for fitting the warfarin PK data
should be rejected. A new model to be tested should in-
tegrate a correlation between ηV and ηCl, a relationship
between weight and volume, and possibly between weight
and clearance.

CONCLUSIONS

In this manuscript, we propose a new method for deriving
individual parameters used in a diagnostic perspectives.
Instead of using the classical approach of maximizing
each conditional distribution, we show that randomly
sampling these distribution leads to reliable results and
can complement the EBE-based approach widely used.
In particular, we show that each proposed test is unbi-
ased, the type I error rate is the desired significance level
of the test and the probability to detect a misspecification
in the model increases with the magnitude of this
misspecification. This method can therefore be used effi-
ciently, possibly in combination with other diagnostic
tools, to drive model building in population PKPD
analyses.

Our numerical experiments confirmed that EBEs for
assessing the distribution of the individual parameters and/
or the correlation structure of the random effects may intro-
duce strong biases when η -shrinkage is important. However,
interestingly, in our example, we show that the effect of a
continuous covariate on a PK parameter is correctly detected
using either the EBEs or the sampled parameters. The numer-
ical tests also revealed that the sampling of conditional distri-
bution can also suffer and results in lack of power in presence
of η -shrinkage (see Fig. 5).

Thus, even if using EBEs can be helpful for the search of
misspecifications, it appears not to be a reliable methods for
validation of the final model and sampled parameters should
always be used for this aim.

Herein, we only addressed the problem of diagnosing the
model for the individual parameters, but the same approach
could be developed for other diagnostic plots and for testing
other components of the model including residual error mod-
el, structural model, and handling of BLQ data.
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