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ABSTRACT
Purpose Drug transfer into milk is of concern due to the unnec-
essary exposure of infants to drugs. Proposed prediction methods
for such transfer assume only passive drug diffusion across the
mammary epithelium. This study reorganized data from the liter-
ature to assess the contribution of carrier-mediated transport to
drug transfer into milk, and to improve the predictability thereof.
Methods Milk-to-plasma drug concentration ratios (M/Ps)
in humans were exhaustively collected from the literature
and converted into observed unbound concentration ratios
(M/Punbound,obs). The ratios were also predicted based on passive
diffusion across the mammary epithelium (M/Punbound,pred). An
in vitro transport assay was performed for selected drugs in breast
cancer resistance protein (BCRP)-expressing cell monolayers.
Results M/Punbound,obs and M/Punbound,pred values were com-
pared for 166 drugs. M/Punbound,obs values were 1.5 times or
more higher than M/Punbound,pred values for as many as 13 out
of 16 known BCRP substrates, reconfirming BCRP as the pre-
dominant transporter contributing to secretory transfer of drugs
into milk. Predictability of M/P values for selected BCRP substrates
and non-substrates was improved by considering in vitro-evaluat-
ed BCRP-mediated transport relative to passive diffusion alone.
Conclusions The current analysis improved the predictability of
drug transfer into milk, particularly for BCRP substrates, based on
an exhaustive data overhaul followed by focused in vitro transport
experimentation.
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ABBREVIATIONS
ABCG2 ATP-binding cassette transporter G2
BCRP Breast cancer resistance protein
CNT Concentrative nucleoside transporter
fm,protein Fraction of drug free from binding to milk

protein
fm,total Unbound drug fraction in milk
fp Unbound drug fraction in plasma
GFP Green fluorescent protein
HBSS Hank’s balanced salt solution
LC-MS/MS Liquid chromatography-tandem mass

spectroscopy
logD7.2 Octanol/water partition coefficient at

pH 7.2
M/P Milk-to-plasma concentration ratio
M/P(AUC) M/P area-under-the-curve ratio
M/Punbound Unbound M/P
M/Punbound,obs Observed unbound M/P
M/Punbound,pred Predicted unbound M/P
MDCK Madin-Darby canine kidney
MEM Minimum Essential Medium
OCT Organic cation transporter
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Papp Partition coefficient between milk lipids and
water

PEPT Peptide transporter
Robs/pred Ratio of M/Punbound,obs to M/Punbound,pred
SEM Standard error of the mean
SLC Solute carrier
UPLC Ultra-performance liquid chromatography

INTRODUCTION

The benefits of breastfeeding are widely accepted based on
the results of extensive epidemiological research (1–3).
Approximately 90% of women take some form of medication
during their first week postpartum (4,5), and, therefore, a gen-
eral concern is the avoidance of drug transfer into milk and
toxicity in breast-fed infants. However, only a few clinical
studies have actually investigated drug transfer into milk, ne-
cessitating the use of prediction methods to address this issue
(6–8).

Rasmussen (9) first reported that the pH difference be-
tween milk and plasma governs drug transfer into milk, and
assumed that only the unbound, unionized form of a molecule
traverses the membranes of the mammary epithelium in a
passive diffusion-mediatedmanner. Based on the pH partition
theory, equilibrium dialysis methods were next proposed by
Notarianni et al. (10), who determined steady-state drug con-
centrations in human plasma and reconstituted artificial baby
milk across a dialysis membrane. However, these methods
were limited by the difficulty in maintaining a pH gradient
across the dialysis membrane, considering a milk pH of 7.0
and a plasma pH of 7.4.

Alternative diffusional methods of drug transfer were
next proposed to deal with this shortcoming (6,11), where
the unbound drug concentration ratio did not require ex-
perimental determination. Instead, this ratio could be cal-
culated based on the Henderson-Hasselbalch equation by
using the drug pKa, a milk pH of 6.8–7.2, and a plasma
pH of 7.4. Unbound drug fractions in milk and plasma
were then separately determined in vitro or calculated
based on an empirical formula (6,11). Lastly, these values
were integrated to predict the milk-to-plasma concentra-
tion ratio (M/P). This prediction is generally sound, but
there are some exceptions. For example, acyclovir, cimet-
idine, and nitrofurantoin are all secreted at higher than
predicted rates in human subjects (12–14), suggesting that
carrier-mediated transport might be involved in the case
of these exceptional drugs.

In silico prediction approaches have also been pursued to
anticipate drug transfer into milk. Meskin and Lien (15) were
the first to take such an approach by focusing on physicochem-
ical parameters. The investigators collected M/P data for 35

drugs in total (20 acidic drugs and 15 basic drugs) from the
literature and then constructed best-fit equations centered
around the physicochemical parameters of molecular weight,
lipophilicity, the pKa of the drug of interest, and so on.
Agatonovic-Kustrin et al. (16) extended this method with the
aid of an artificial neural network, collectingM/P data for 123
drugs in total and evaluating as many as 71 drug/molecular
structure descriptors. Similar quantitative structure/property,
relationship/activity methodologies were likewise explored by
others (17,18). However, these approaches still did not consid-
er the involvement of carrier-mediated transport in drug
transfer into milk.

Experimental animals, including the rat and mouse,
have long been used to analyze the mechanism of drug
transfer into milk. Importantly, the animal models re-
vealed a similar tendency as the approaches outlined
above, i.e., the existence of outlier drugs that are secreted
into milk at a rate greater than that expected from passive
diffusion alone (19–21). Jonker and colleagues (22) clari-
fied the molecular identity of the putative transporter for
these outlier drugs as breast cancer resistance protein
(BCRP)/ATP-binding cassette transporter G2 (ABCG2).
Jonker et al. found that Bcrp was induced on the apical
membrane of normal mammary epithelial cells during
lactation, while the transfer of selected Bcrp substrates
(i.e., acyclovir, cimetidine, and nitrofurantoin) into milk
was attenuated in Bcrp knockout mice (22–24).

In addition to BCRP, our research group has recently dem-
onstrated that the organic cation transporter (OCT)/solute
carrier (SLC) family 22A is involved in the transfer of
OCT/SLC substrate drugs into milk (25). Moreover,
mRNA expression of other transporters (e.g., peptide trans-
porter (PEPT)/SLC15A, concentrative nucleoside transport-
er (CNT)/SLC28A, and phospholipid transporter ABCA7
are induced in the mammary gland during lactation
(20,26–30). If the contribution of these transporters was con-
sidered, a more general and dependable prediction method
could certainly be established.

Accordingly, the purpose of the current study was to
address this issue through a comprehensive and objec-
tive assessment of transporter participation in drug
transfer into milk, and to apply the obtained informa-
tion to the improvement of conventional prediction
methods. To this end, M/P data were exhaustively col-
lected from the literature, converted into unbound milk-
to-plasma concentration ratio (M/Punbound) data, and
compared with data calculated by the pH partition the-
ory. Next, an analysis of observed and predicted
M/Punbound values (M/Punbound,obs and M/Punbound/pred)
confirmed that BCRP primarily contributes to the secre-
tory transfer of drugs into milk. Finally, we set out to
improve the predictability of the M/P data with the aid
of an in vitro BCRP transport assay.
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MATERIALS AND METHODS

Collection of M/P Data and Calculation of Related
Parameters

M/P data obtained from clinical observations were adopted
from our previous report (31) or from the Hale textbook (32).
If the M/P area-under-the-curve ratios (M/P(AUC)) were
calculated in our previous report (31), they were preferentially
employed in the current investigation. The arithmetical mean
value was used if more than two values were reported. The
ratio of the unbound drug concentration in the milk to that in
the plasma (M/Punbound,obs) was calculated by Eq. 1.

M=Punbound;obs ¼ M=P� f m;total= f p ð1Þ

where the fp (unbound fraction of drug in plasma) values were
obtained from the DrugBank database (http://www.
drugbank.ca/) or the package insert for each drug. The
fm,total (unbound fraction of drug in milk) values were
obtained from our in vitro spike recovery tests, as described
previously (31,33). Briefly, milk was spiked with drug to
create a “blank” human milk sample containing an already
known drug concentration. After incubation, the drugs were
distributed and bound to milk proteins or lipids, or stayed
behind as unbound drug fractions in the milk. Each drug
concentration (i.e., protein-bound, lipid-bound, or unbound)
was quantified by using an ultrafiltration device. In the case of
a drug with an unexamined experimental fm,total value, Eq. 2
was selected for the calculation of the fm,total (6), as follows.

f m;total ¼ 1= 0:955= f m;protein

� �
þ 0:045� Papp

� �
ð2Þ

The values of fm,protein (fraction of drug free from
binding to milk protein) and Papp (partition coefficient
between milk lipids and water) were also approximated
by using Eqs. 3 and 4 (34), respectively. The logD7.2

(octanol/water partition coefficient at pH 7.2) value
was calculated by using the MarvinSketch program
(ChemAxon, Budapest, Hungary).

f m;protein ¼ f p
0:448= 6:94� 10−4

� �0:448 þ f p
0:448

� �
ð3Þ

logPapp ¼ −0:88þ 1:29� logD7:2 ð4Þ

The ratio of predicted unbound drug concentration in milk
to that in plasma (M/Punbound,pred) was calculated by Eqs. 5
and 6 for acidic and basic drugs, respectively, based on the pH
partition theory (8). For neutral drugs, a ratio of 1.0 was

assigned for the M/Punbound,pred. Parameters such as pKa,
logD7.2, and charge at pH 7.0 were calculated by using the
MarvinSketch program. Milk pH was assumed to be 6.8–7.2.

M=Punbound;pred ¼ 1þ 10 milkpH‐pKað Þ

1þ 10 7:4−pKað Þ ð5Þ

M=Punbound;pred ¼ 1þ 10 pKa‐milkpHð Þ

1þ 10 pKa‐7:4ð Þ ð6Þ

The M/Punbound,pred at pH 6.8 and the M/Punbound,pred at
pH 7.2 were calculated, and the arithmetic mean of these
values was obtained as the M/Punbound,pred. Finally, the ratio
of M/Punbound,obs to M/Punbound,pred was defined as Robs/pred

(Eq. 7).

Robs=pred ¼ M=Punbound;obs
� �

= M=Punbound;pred
� � ð7Þ

Drugs

Acyclovir, bupropion hydrochloride, carbamazepine, metro-
nidazole, nifedipine, ofloxacin and ranitidine hydrochloride
were obtained from Wako Pure Chemicals (Osaka, Japan).
Clindamycin hydrochloride, doxycycline hydrochloride,
levofloxacin, meprobamate, nitrofurantoin, nortriptyline hy-
drochloride, pefloxacin mesylate dehydrate, and (±)-verapa-
mil hydrochloride were obtained from Sigma-Aldrich
(St. Louis, MO, USA). Cefoperazone sodium and cipro-
floxacin hydrochloride were purchased from Santa Cruz
Biotechnology Inc. (Dallas, TX, USA). Cimetidine and tetra-
cycline hydrochloride were from Nacalai Tesque (Kyoto,
Japan). Fluconazole was from LKT Laboratories, Inc.
(St. Paul, MO, USA). Moclobemide was from Toronto
Research Chemicals (Brisbane, Canada). Levetiracetam
was from Tokyo Chemical Industry Co. (Tokyo, Japan).
All other reagents were of analytical grade, unless oth-
erwise noted.

Transcellular In Vitro Transport Study

Transcellular transport experiments with human BCRP-
expressing cells were performed as described previously, with
minor modifications (35). Briefly, Madin-Darby canine kidney
(MDCK) II cells were seeded into a 24-well transwell plate
(3.0-μm pore size; Becton, Dickinson and Company,
Franklin Lakes, NJ, USA) at a density of 2×105 cells/well,
and then grown for 3 days in Minimum Essential Medium
(MEM: Nacalai Tesque, Inc, Kyoto, Japan) containing 10%
fetal bovine serum (Biowest, Nuaillé, France), 1%MEM non-
essential amino acids (Life Technologies, Carlsbad, CA,
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USA), and penicillin-streptomycin solution (100 μg/ml) in an
atmosphere of 5% CO2/95% air at 37°C. The cells were
infected with the recombinant adenovirus expression vector
harboring green fluorescent protein (GFP) or human BCRP
at a multiplicity of infection of 50. The details for the construc-
tion of these recombinant adenoviruses were described in a
previous report (36).

After 48 h of culture, GFP-expressing (MDCK II-GFP)
cells and BCRP-expressing (MDCK II-BCRP) cells were used
for the transport study. The cells were preincubated with
Hank’s balanced salt solution (HBSS) at 37°C for 30 min,
and transport experiments were then initiated by replacing
the MEM-based medium on one side of the cell monolayer
with HBSS buffer containing the individual test drugs (each at
a concentration of 10 μM). At 1, 2, and 3 h after the initiation
of the transport assay, 50-μl aliquots were taken from the
opposite side of the cell monolayer and replaced with the same
volume of HBSS. For the nitrofurantoin transport experi-
ment, the sampling time was modified to 2, 3, and 4 h instead
of 1, 2, and 3 h, because of the limit of detection for the
transported drug.

Transcellular transport clearances were calculated in each
well from the slopes of the time profiles of apical-to-basal or
basal-to-apical drug transport between 1 and 3 h (or between
2 and 4 h for nitrofurantoin). Flux ratios were obtained by
dividing the clearance values in the basal-to-apical direction
by those in the apical-to-basal direction. Finally, BCRP/GFP
flux ratios were obtained by dividing the flux ratios obtained
inMDCK II-BCRP cells by those obtained inMDCK II-GFP
cells.

Quantification of Drug Concentrations

Drug concentrations were measured as follows. Each drug
sample (50 μl) was mixed with acetonitrile (500 μl) containing
500 nM carbamazepine as an internal standard, vortexed,
and deproteinized by centrifugation for 10 min at 20,000×g.
An aliquot (450 μl) of each supernatant was condensed and
dried by using a centrifugal concentrator (SpeedVac, Thermo
Fisher Scientific, Bridgewater, NJ, USA). The desiccated sam-
ple was then dissolved in 40% acetonitrile (200 μl), vortexed,
and centrifuged for 5 min at 20,000×g, and an aliquot of the
sample (160 μl) was applied to the sampling plates for liquid
chromatography-tandem mass spectroscopy (LC-MS/MS)
analysis.

Next, LC-MS/MS analysis was performed by using an
ultra-performance liquid chromatography (UPLC) system
and a Quattro Premier XE mass spectrometer (Waters,
Milford, MA, USA) with a 1.7-μm particle Acquity
UPLC™ bridged ethyl hybrid C18 analytical column (2.1×
100 mm, Waters). Samples were kept at 4°C in the sample
injector, and aliquots of 7.5 μl were injected. The oven tem-
perature was maintained at 40°C, and the flow rate was

maintained at 0.3 ml/min. Acetonitrile or methanol was se-
lected as the organic solvent in the mobile phase. The mobile
phase consisted of formic acid/acetonitrile (0.1:99.9, v/v) or
formic acid/methanol/20 mM ammonium acetate
(0.1:97.9:2.0, v/v/v) (see Supplementary Table I for a summa-
ry of detailed LC-MS/MS/UPLC analytical conditions).

Statistical Analysis

Quantifiable data are presented as the mean±the standard
error of the mean (SEM). GraphPad Prism 5 software
(GraphPad Software, Inc., La Jolla, CA, USA) was selected
to perform all statistical analyses.

RESULTS

Observed and Predicted M/P Values Obtained
from the Literature

M/P data for 51 drugs were adopted from our previous study,
in which the M/P(AUC) values of the corresponding drugs
were calculated (31). These data were preferentially employed
for the current analysis, anticipating a more accurate evalua-
tion relative to that obtained from a single sampling point
alone. We extended our survey to include data reported in
the most prevalent textbook in the field of breastfeeding and
medications, Medications and Mother’s Milk, 13th edition
(32). This textbook documents the M/P values of 227 drugs.
Collectively, we obtained the M/P values for a total of 230
drugs.

Calculation of the M/Punbound,obs values required knowl-
edge of the unbound fractions of the drugs in the plasma (fp)
and the milk (fm,total). Unfortunately, fp values were not report-
ed for 14 out of 230 drugs, and so these drugs were excluded
from further analysis. Among the remaining 216 drugs, 50

Table I BCRP Substrates are Secreted into Milk More Extensively than
Predicted by the pH Partition Theory

Robs/pred Number
of drugs

Number of BCRP
substrates

% of BCRP
substrates

4.5 ≦ Robs/pred 12 2 16.7

1.5 ≦ Robs/pred<4.5 40 11 27.5

0.5 ≦ Robs/pred<1.5 63 1 1.6

0.17 ≦ Robs/pred<0.5 29 2 6.9

Robs/pred<0.17 22 0 0

Total 166 drugs are classified to 5 groups based on Robs/pred values. Number
and percentage of BCRP substrates in each class are shown aside. Original
data are shown in Supplementary Table II. Note that BCRP substrates are
concentrated in the groups with Robs/pred values higher than 1.5

Ito et al.2530



more were also excluded from further analysis, because the fm,

total/fp values were lower than 0.37 or higher than 11. These
exclusion criteria were based on our previous analysis (33), in
which we determined fm,total values for 44 drugs in vitro and
calculated the fm,total/fp values from these data as being in the
range of 0.37 to 11. After excluding these 64 drugs, we finally
obtained reliable M/Punbound,obs values for 166 drugs. These
166 drugs were subjected to a comparative analysis of
M/Punbound,obs and M/Punbound,pred values (Supplementary
Table II). The ratios of these two values (Robs/pred) are shown
in the far right-hand column of Supplementary Table II.

Most of the BCRP Substrates are Secreted into Milk
More Extensively Than Predicted by the pH Partition
Theory

Total 166 drugs were classified to 5 groups based on Robs/pred

values (Table I). Theoretically, if the value is around 1, asym-
metrical transport across the mammary epithelial cells is neg-
ligible. On the other hand, if the values are lower or higher
than 1, asymmetrical transport is not negligible. To avoid false
positive estimates, the lower and higher Robs/pred threshold
were set as 0.5 and 1.5, respectively for the middle group. As
much as 63 out of 166 drugs were classified to the middle
group with 0.5≦Robs/pred<1.5, while 51 and 52 drugs were
classified to the lower groups with Robs/pred<0.5 and the
higher groups with 1.5≦Robs/pred, respectively (Table I).
Next, we particularly focused on BCRP because it is the only
transporter at present known to involve in drug transfer into
milk. Among the 166 drugs examined, 16 were known BCRP
substrates as highlighted by gray in Supplementary Table II;
nitrofurantoin (37), zidovudine (38,39), bupropion (40),
hydroxychloroquine (41), cimetidine (42), ciplofloxacin
(43,44), pefloxacin (35), ofloxacin (43,44), cefoperazone (45),
acyclovir (46), hydrochlorothiazide (47), lamivudine (48),
zonisamide (49), levetiracetam (49), cefazolin (45), and chlo-
rothiazide (50). It is notable that BCRP substrates are much
more concentrated in the groups with Robs/pred values higher
than 1.5 (Table I).

In Vitro Transport Assay of Test Drugs

We arbitrarily selected 12 drugs from Supplementary Table II
(8 drugs known as BCRP substrates and 4 drugs not known as
BCRP substrates) and performed an in vitro transcellular trans-
port assay by using BCRP- and GFP-expressing MDCK II
cells (Fig. 1). BCRP-mediated transport activity was assessed
by calculating the BCRP/GFP flux ratio (Table II). Values
were in the range of 6.26 to 0.95, with the highest value ob-
served for nitrofurantoin (6.26±3.85), a typical BCRP sub-
strate, and the lowest value observed for metronidazole
(0.95±0.16), a negative control drug. Moreover, we tried to
find crypt-BCRP substrates from the drugs with Robs/pred

values higher than 1.5 but not known as BCRP substrates.
We selected nifedipine, doxycycline, nortriptyline, tetracy-
cline, meprobamate, levofloxacin, ranitidine, and
clindamycin, then performed an in vitro transcellular transport
assay. Finally, we found levofloxacin as a novel BCRP sub-
strate (Fig. 1) with BCRP/GFP flux ratio of 1.63±0.28
(Table II). BCRP-mediated transports were not observed for
the other 7 drugs tested (Supplementary Fig. 1). After
adding levofloxacin, total 13 drugs (9 BCRP substrates
and 4 BCRP non-substrates) were subjected to the fol-
lowing analyses.

Correlation of Robs/pred Values and the BCRP/GFP Flux
Ratio

Given the quantitative contribution of BCRP to the
transfer of substrate drugs into milk, BCRP/GFP flux ratios
would positively correlate with the Robs/pred values. Figure 2a
shows that this was indeed the case for the 13 drugs tested ( y=
1.918x - 0.8973, r2=0.93005).

Improvement of the M/P Prediction by Considering
BCRP-Mediated Transport

It is useful if we could correctly predict M/P values for secre-
tory type drugs. Among the 13 drugs shown in Table II, 5
(ciprofloxacin, bupropion, ofloxacin, fluconazole, metronida-
zole) were arbitrary selected as construction set, while
the other 8 were used as validation set. At first, a linear
regression equation was obtained using the construction
set (Fig. 2b) ( y=1.6243x - 0.4951 and r2=0.65399, where
y=Robs/pred and x=BCRP/GFP flux ratio). By using this
equation, R’obs/pred values were calculated for the validation
set drugs (nitrofurantoin, acyclovir, pefloxacin, cimetidine,
levofloxacin, cefoperazone, verapamil, moclobemide)
(Table II). To assess whether the predictability of drug M/P
values was improved, we calculated the predicted M/P
(M/Ppred) values based on the following two methods
(Table II).

Conventional method : M = Ppred pH−partitionð Þ

¼ M=Punbound;pred
� �

= f m;total= f p
� �

New method : M=Ppred corrected by BCRPð Þ

¼ R’obs=pred � M=Punbound;pred
� �

= f m;total= f p
� �

M/Punbound,pred and fm,total/fp values were adapted from Sup-
plementary Table II. Figure 3 demonstrated that the correla-
tion was improved when the new method was used (r2=
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0.88982 for the new method vs. r2=0.091 for the conventional
method). To verify validity of our newmethod, we set another
6 extreme conditions from set 2 to set 7 shown in Supplemen-
tary Table III. Although the degree of improvements were
varied depending on the combination, predictabilities were
more or less improved by correcting the BCRP-mediated
transport in all the conditions tested (Supplementary
Table III and Supplementary Fig. 2).

DISCUSSION

Carrier-mediated transport has long been accepted as poten-
tially responsible for the transfer of drugs into milk with higher
or lower than predicted in vivoM/P ratios. However, no meth-
od has been established for the indisputable Identification of
such transporter-facilitated drugs and the prediction of their
M/P values. The ability to predict M/P values is particularly
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Fig. 1 Transcellular transport
across MDCK II cell monolayers
expressing BCRP. Transcellular
transport of drugs (10 μM) across
MDCK II cell monolayers
expressing BCRP (MDCK II-BCRP,
squares) or GFP (MDCK II-GFP,
circles) was determined at the
designated time in the basal-to-
apical direction (closed symbols) and
the apical-to-basal direction (open
symbols). Each data point represents
the mean±the SEM.
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important for those drugs with higher than expected M/P
values (i.e., drugs that are secreted into milk via active trans-
port), because drug transfer into milk increases the risk of
unnecessary drug exposure to the infant.

The current investigation paid particular attention to
M/Punbound values, given that the M/P ratio provides an in-
dex of asymmetrical transport across the mammary epitheli-
um. Our major achievements are as follows: 1) We have
reconfirmed that BCRP is the predominant drug transporter
involved in the secretory transfer of substrate drugs into hu-
man milk; and 2) the predictability of drug M/P values was
improved herein by considering the BCRP-mediated trans-
port activity determined by our in vitro transport assay.

Known BCRP substrates were frequently found in the
highly secreted drug group (i.e., Robs/pred ≧ 1.5); however,
three drugs were located in a group with lower secretion

values (Robs/pred<1.5). Those include levetiracetam
(Robs/pred=1.12), cefazoline (Robs/pred=0.25), and chloro-
thiazide (Robs/pred=0.17) (Table I and Supplementary
Table II). There are two possibilities explaining these excep-
tional drugs whose Robs/pred are lower than other BCRP-sub-
strates. Firstly, it is possible that the transport activity of hu-
man BCRP for these drugs might be too small to affect the
M/Punbound ratios in vivo (45,50). Indeed, BCRP-mediated
transport was not clearly observed in our in vitro assay system
for levetiracetam (data not shown). Secondary, inappropriate
sampling time point of milk and plasma in vivomight underes-
timate M/Punbound. M/P value of chlorothiazide was deter-
mined at only 1, 2, and 3 h after oral drug administration (51).
However, hydrochlorothiazide, another BCRP substrate with
a very similar structure to chlorothiazide, does not appear in
the milk until 5 h after oral administration (52), whereas the
concentration in the milk is almost double that in the serum at
8 to 24 h after administration. As a result, the calculated
M/P(AUC) value of hydrochlorothiazide was sometimes as
high as 0.99 (Supplementary Table II). Hence, underestima-
tion of the in vivo M/P value might pertain to chlorothiazide.

Thirty-nine out of 52 drugs that exhibited Robs/pred values
of ≧1.5 are at first not known as BCRP substrates (Table I).
We thought there were at least three possibilities explaining
why these 39 drugs were secreted into milk than estimated
from passive diffusion; i) unbound fraction in milk (fm,total)
was over-estimated, ii) they were crypt-BCRP substrates, iii)
transporter(s) other than BCRP was involved. As to the possi-
bility i), we think it most plausible for drugs whose fm,total

values were not determined by in vitro experiment.
Alternatively, fm,total values were calculated empirically using
logD7.2 and fp. This calculation does not always give correct
value. For example, if there was a specific binding protein in
the milk, fm,total value would be over-estimated. As many as 6
in the top 12 drugs (Robs/pred≧4.5), fm,total/fp ratios were
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higher than 6.0; dyphylline (6.03), nifedipine (9.33), doxycy-
cline (9.48), nortriptyline (8.16), valproic acid (6.41), hydral-
azine (7.06) (Supplementary Table II). Notably, these are not
known as BCRP-substrate. For these 6 drugs, we should be
more careful when discussing about the contribution of
transporter-mediated secretion into milk. As to the possibility
ii), we have done in vitro BCRP-transport assay for 8 drugs
(nifedipine, doxycycline, nortriptyline, tetracycline, mepro-
bamate, levofloxacin, ranitidine, clindamycin) whose Robs/pred

values were higher than 1.5 but not known as BCRP sub-
strates. We successfully found that levofloxacin was a novel
BCRP substrate. Such crypt-BCRP substrates could partially
explain the case. Based on above considerations, we think
that possibility iii) may be at least applicable for
mesalamine, foscarnet, phencyclidine and acebutolol
(R

obs/pred
≧4.5), though we don’t have any idea about the con-

crete candidate transporters.
It is possible that reabsorption process is involved for the 51

drugs whose Robs/pred values were less than 0.5 (Table I). For
example, PEPT2 is induced during lactation in rat and hu-
man and localized in the rat epithelial cells of ducts and glands
(29). Given that PEPT2 is a proton-coupled high affinity di-
and tri-peptide uptake transporter and that milk pH is slightly
acidic, PEPT2 may involve in reabsorption of substrates from
the milk. In line with the hypothesis, Robs/pred values of
PEPT2 substrates are extremely low; captopril (0.11), cepha-
lexin (0.09), and cefadroxil (0.04) (supplementary Table II).
While it is interesting hypothesis, we don’t have any further
evidence at present.

Here, we modified the conventional prediction method to
facilitate the prediction of outlier drugs that were more exten-
sively secreted into milk than expected by taking advantage of
a human BCRP-expressing cell system to determine R’obs/pred
values in vitro. The R’obs/pred values were then integrated with
experimentally determined fp and fm,total values, and the
M/Punbound,pred values were readily calculated by applying
the Henderson-Hasselbalch equation in silico. From an ethical
standpoint, our modified methodology is beneficial because it
does not require clinical studies employing lactating women or
investigations utilizing whole-animal models. Especially re-
garding the use of experimental animals, the trend is now
replacement, refinement, or reduction in the risk assessment
of chemicals (53).

BCRP accepts various types of compounds as substrates,
including sulfated hormone metabolites, flavonoids, vitamin
B2, and drug compounds (54). Indeed, as much as 27.3% of
the drug dose can be recovered in the milk of lactating rats up
until 32 h after the oral administration of sorafenib (package
insert of NEXAVAR® (sorafenib)), a recently developed ty-
rosine kinase inhibitor. This degree of sorafenib secretion into
milk would inevitably exert pharmacological actions on the
offspring. A similar phenomenon would be expected if human
mothers received sorafenib during lactation, because the drug

is a good substrate of human BCRP as well as rat Bcrp (55).
Although breastfeeding is contraindicated in nursing mothers
when taking tyrosine kinase inhibitors, it is important to con-
sider the contribution of BCRP when any drug of interest is to
be administered to a breastfeeding mother. The new method
described here provides a way to estimate the extent of drug
transfer into milk for such peculiar cases.

In conclusion, this study successfully improved the predic-
tion of drug transfer into milk, particularly for BCRP sub-
strates, on the basis of an exhaustive analysis of literature data
followed by focused in vitro transport experimentation.
Although other unidentified transporters might be involved
in secretory drug transfer into milk together with BCRP, we
anticipate that our BCRP-grounded method will prove ex-
tremely useful in advancing newly developed medications that
are efficacious for nursing mothers and safe for infants during
lactation.
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