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ABSTRACT
Purpose Bioreducible crosslinked polyplexes were prepared via
disulfide bond formation after siRNA condensation with
polyethylenimine-modified by deoxycholic acid (PEI-DA) to stabilize
polyplex structure in an extracellular environment and to promote
transfection efficiency in human smooth muscle cells (hSMCs).
Methods The PEI-DA/siRNA polyplexes were further modified
by crosslinking the primary amines of PEI with thiol-cleavable cross-
linkers. The effect of disulfide crosslinked PEI-DA/siRNA (Cr PEI-
DA/siRNA) polyplexes on target gene silencing was investigated by
transfecting hSMCs with matrix metalloproteinase-2 (MMP-2)
siRNA under serum conditions. The MMP-2 levels in the condi-
tioned medium were examined using gelatin zymography.
Results The Cr PEI-DA/siRNA polyplexes showed increased sta-
bility against heparin exchange reactions, while their disulfide linkages
were successfully cleaved under reducing conditions. The polyplex
crosslinking reaction led to a slight decrease inMMP-2 gene silencing
activity in hSMCs due to the insufficient redox potential. However,
the gene silencing efficiency of the Cr PEI-DA/siRNA polypexes was
gradually improved in response to increasing intracellular reduction
potential. The increased serum stability of the Cr PEI-DA/siRNA
polyplexes resulted in significant enhancement of the intracellular
delivery efficiency especially under serum conditions.
Conclusion The Cr PEI-DA/siRNA polyplex formulation may
be a promising siRNA delivery system for the treatment of
incurable genetic disorders.

KEY WORDS bioreducible crosslinked polyplexes . human
vascular smooth muscle cells . matrix metalloproteinase-2 .
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INTRODUCTION

Exogenous siRNA-mediated post-transcriptional gene si-
lencing has recently attracted considerable attention for its
general use in functional genomics research and its potential
to be developed for use in novel therapeutic drug treatments
(1,2). Despite highly potent and sequence-specific gene si-
lencing activity, siRNA-based therapeutics still have several
limitations, such as off-target effects, immune stimulation,
inherent instability, and low intracellular delivery (3,4). In
particular, the clinical success of siRNA-mediated gene reg-
ulation is severely hampered by the lack of an efficient in vivo
delivery system.

During the last few decades, various approaches have
been employed for the development of efficient and safe
siRNA delivery systems, utilizing both viral and non-viral
vectors (5,6). In the field of non-viral gene delivery, a wide
variety of cationic polymers, peptides, and lipids have been
extensively studied due to their strong capacity to condense
DNA and RNA, leading to the formation of self-assembled
nanostructures (2). The greatest advantage to using polymers
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in drug and gene delivery systems is the fact that they
can be specifically tailored for different applications. For
instance, high molecular weight branched PEI (bPEI,
25 kDa), which has become one of the gold standards
for non-viral gene delivery, has been used extensively
alone as well as with diverse modifications, due to the
high degree of consistency and reproducibility (7,8). In
general, the polyelectrolyte complexes (polyplexes) with a
positive surface charge result in a significant improvement in
gene transfer efficiency in vitro. Owing to the positively
charged surface, however, the cationic polyplexes readily
form large aggregates after intravenous administration
through the interparticular aggregation and nonspecific
absorption of charged serum proteins, thus leading to
their rapid clearance by the reticuloendothelial systems
(9,10). To improve polyplex stability under in vivo conditions,
the particle surface charge is decreased or neutralized
using different methods such as polyethylene glycol
(PEG) modification (11). However, a simple coating layer
on the particle surface does not ensure complete stability
of the polyplexes under biological conditions because of
the many charged small molecules that steadily penetrate
through the polymer layer and destabilize the condensed
core.

Since structurally rigid siRNA molecules may form
loosely condensed polyplexes with conventional cationic
materials, the easily dissociated polyplexes can facilitate
the extracellular release of siRNA after systemic applications
(12). Therefore, in addition to shielding the surface charge
on the polyplexes, optimally designed siRNA formulations are
highly requested to prevent polyplex dissociation, such as
covalently stabilized nanostructures via physical and chemical
manipulations. In order to achieve particle stabilization, the
crosslinking of pre-formed polyplexes with different cationic
polymers such as PEI and poly(L-lysine) (PLL) has recently
been investigated (13,14). For example, the crosslinking
after the formation of PEI/DNA polyplexes was shown
to significantly enhance serum stability in comparison to
using pre-crosslinked polymers (14).

In this study, the pre-formed PEI-DA/siRNA polyplexes
were further stabilized by crosslinking with biodegradable
disulfide bonds to improve the efficacy of target-specific
gene silencing (Fig. 1). Herein, low molecular weight
branched PEI (1.8 kDa) was used as a cationic polymer
backbone for siRNA condensation via electrostatic inter-
actions. Although high molecular weight bPEI (25 kDa)
has a relatively high DNA condensation capacity and
transfection efficiency owing to the strong polycationic
nature, its significant potential for toxic effects seriously
limits its use in the clinical setting (15). In contrast, the
main advantage of low molecular weight PEI is its extremely
low cytotoxicity, though its use in clinical practice has been
limited due to its poor transfection efficiency. In our previous

studies, low molecular weight PEI1.8 modified with facially
amphipathic deoxycholic acid (DA) resulted in successful
transfection of both plasmid DNA and siRNA in different
cell lines (16,17). The PEI-DA conjugates could dramatically
improve gene transfection efficiency via a membrane translo-
cation of polyplexes in an endocytosis- and energy-
independent manner (16). To prepare stable polyplexes, the
PEI-DA/siRNA formulation was further modified by
crosslinking primary amines with biodegradable disulfide
crosslinkers. The bioreducible crosslinked PEI-DA/
siRNA polyplexes (hereafter denoted as Cr PEI-DA/
siRNA polyplexes) were expected to enhance extracellular
stability and to reduce siRNA loss by undergoing poly-
electrolyte exchange reactions, thus allowing for efficient
target gene silencing. Herein, a siRNA targeted against
MMP-2 that regulates the processes of cell migration and
invasion was used to evaluate the feasibility of the Cr
PEI-DA/siRNA polyplexes as potential delivery vehicles
for siRNA therapeutics. The target gene silencing activity
of the Cr PEI-DA/MMP-2 siRNA polyplexes was evaluated
in hSMCs.

MATERIALS AND METHODS

Materials

Low molecular weight branched polyethyleneimine
(PEI, MW 1,800), deoxycholic acid (DA), dicyclohexyl-
carbodiimide (DCC), N-hydroxysuccinimide (NHS),
heparin sodium salt, dithiothreitol (DTT), 3-(4,5-dimethyl-
2-thiazolyl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT),
and gelatin were purchased from Sigma-Aldrich (St. Louis,
MO). Dithiobis succinimidyl propionate (DSP) and disuccini-
midyl suberate (DSS) were obtained from Pierce/Thermo
scientific (Rockford, IL). All siRNA products designed with
symmetric 3′dTdT-overhangs were chemically synthesized
and supplied by Bioneer (Daejeon, South Korea). The target
sequences used for human MMP-2 siRNA and universal
scrambled siRNA (AccuTargetTM, used as a negative control)
were ‘CGGACAAAGAGTTGGCAGT’ (sense, 5′-CGGA
CAAAGAGUUGGCAGU-3′; antisense, 5′-ACUGCCAA
CUCUUUGUCCG-3′) and ‘CCTACGCCACCAATTTCG
T’ (sense, 5′-CCUACGCCACCAAUUUCGU-3′; antisense,
5′-ACGAAAUUGGUGGCGUAGG-3′), respectively. For
flow cytometry analysis, the sense strand of MMP-2 siRNA
was labeled with cyanine (Cy-5) dyes at the 5′-terminal end.
All cell culture products including fetal bovine serum (FBS) and
Dulbecco’s phosphate buffered saline (PBS) were supplied
by Invitrogen (Gibco BRL, Carlsbad, CA), except for the
SmGM-2 media (Lonzy, Walkersville, MD). All other
chemicals and reagents were of analytical grade and used
as received unless otherwise mentioned.
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Formation of Cr PEI-DA/siRNA Polyplexes

Synthesis of PEI-DA Conjugates

The PEI-DA conjugates were synthesized as described in
previous studies (16). Briefly, 1.0 g of DA (2.5 mmol) dis-
solved in tetrahydrofuran was activated with 1.6 g of DCC
(7.6 mmol) and 0.9 g of NHS (7.6 mmol) (DA/DCC/NHS
stoichiometric feed molar ratio01:3:3). After 4 h incubation
at room temperature, the activated DA was harvested by
precipitation with ice-cold n-hexane and dried in a vacuum
oven. The primary amine groups of PEI1.8 (0.8 g, 0.4 mmol)
were coupled with the NHS-activated DA (0.5 g, 1.3 mmol)
(PEI/DA stoichiometric feed ratio01:3) in methylene chlo-
ride via an overnight reaction at room temperature. The
resulting product was dried using a rotary evaporator and
then dissolved in 0.1 M hydrochloric acid. The PEI-DA
conjugates were precipitated with an ice-cold acetone-
ether mixture (1:3 vol) and dried in a vacuum oven. The
resultant product was dissolved in deionized water and
lyophilized. The degree of PEI-DA substitution was assessed
through 1H-NMR analysis using D2O as the solvent. The
stoichiometric molar ratio of PEI to DA for the conjugate was
approximately 1:2.8 as determined by 1H-NMR spectrome-
try. The synthesized PEI-DA conjugate has a weight average
molecular weight of ca. 2,922.

Preparation and Characterization of Cr PEI-DA/siRNA
Polyplexes

The PEI-DA/siRNA polyplexes were preferentially formed
at different polymer to siRNA weight ratios ranging from
1:1 to 5:1. A fixed amount of siRNA (0.5 μg) was complexed
with the desired amount of PEI-DA conjugates in 100 μL
PBS via 30 min incubation at room temperature. The
amine groups of the PEI-DA/siRNA polyplexes were
crosslinked via reducible (DSP) and non-reducible (DSS)
crosslinking reagents. The crosslinkers in DMSO were
added at a molar ratio (crosslinker/PEI amines) of
0.05:1 to the preformed PEI-DA/siRNA polyplexes.
The PEI-DA/siRNA polyplexes were crosslinked for
30 min at room temperature. All polymer/siRNA polyplexes
were formulated and further diluted basically in a PBS
aqueous solution. The particle size and surface charge
were evaluated by using a dynamic light scattering (DLS)
instrument (Zeta-Plus, Brookhaven, New York). In a gel
electrophoresis mobility shift assay, the polyplexes formed
at the desired weight ratios of polymer to siRNA were
loaded onto a 2 % agarose gel containing GelRed (Biotium
Inc., Hayward, CA). Electrophoresis was performed with
100 V current for 30 min in 1 × TEA buffer solution
(10.0 mM Tris/HCl, 1 % (v/v) acetic acid, 1.0 mM EDTA).
The retardation of siRNA bands was visualized with an
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Fig. 1 Schematic representation of the synthesis of the PEI-DA conjugate and strategy for bioreducible crosslinking of the PEI-DA/siRNA polyplexes. The
insert depicts bioresponsible degradation of the Cr PEI-DA/siRNA polyplexes in reductive intracellular environments after cellular uptake.
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image analyzer equipped with a ChemiDoc gel documenta-
tion system (Syngene, Cambridge, UK). To characterize the
stability of the Cr PEI-DA/siRNA polyplexes under
physiological conditions containing highly charged molecules,
a polyanion competition assay was carried out by pre-
incubating the polyplexes with different heparin concen-
trations (0, 0.02, 0.03, 0.05, and 0.1 mg/mL) for 30 min
at room temperature. The resulting polyplex solution was
electrophoresed on a 2 % gel. To examine the cleavage
of disulfide linkages in the Cr PEI-DA/siRNA polyplexes
in a simulated intracellular environment, the polyplexes
crosslinked via reducible and non-reducible linkages were
incubated in medium with or without 5 mM DTT for
30 min at room temperature. The polyplex stability was
then evaluated using a heparin polyanion competition
assay.

Cell Culture and In Vitro Transfection

Human coronary artery smooth muscle cells (hSMCs,
Lonza, Walkersville, MD) were routinely maintained in
SmGM-2 medium supplemented with 0.1 % insulin,
0.2 % hFGF, 0.1 % GA-1000, 0.1 % hEGF, and 5 %
FBS in a humidified atmosphere with 5 % CO2 at 37 °C.
Cells were plated in a 6-well culture plate at a density of
2.0×105 cells per well in 1.0 mL of culture medium and
incubated for 24 h before transfection. For in vitro transfec-
tion, the cell culture medium was replaced with transfection
medium containing the prepared polyplexes (50.0 nM
siRNA) with or without 50 % FBS. After 4 h transfection,
the medium was exchanged with fresh serum medium and
continuously incubated for 24 h at 37 °C. The conditioned
hSMC medium was collected for gelatin zymography
analysis. All in vitro trnasfection experiments were per-
formed with non-toxic levels of polymer/siRNA polyplexes
and had greater than 90% cell viability. To exclude off-target
effects of siRNA, universal scrambled siRNA (AccuTargetTM)
was used as a negative siRNA control. To confirm the
influence of intracellular reducing potential on the disso-
ciation of the Cr PEI-DA/siRNA polyplexes, cells were
pre-incubated with varying amounts of 2-oxothiazolidine-
4-carboxylate (OTC, from 0 to 10 nM) in order to
regulate the cellular level of glutathione as described in
the previous studies (18,19). In order to examine the
effect of serum proteins on transfection efficiency, the
polymer/siRNA polyplexes were pre-incubated in 50 %
FBS containing medium for 24 h before exposure to
transfection.

Flow Cytometry Analysis

The cellular uptake of the Cr PEI-DA/siRNA polyplexes
was examined by fluorescence activated cell sorting (FACS)

analysis with Cy-5 dye-labeled siRNA products. Cells
were seeded in a 60-mm culture dish at an initial density
of 4.0×105 cells per well. After 24 h incubation, the Cy-
5-labled siRNA polyplex formulations (50.0 nM siRNA)
were added into the serum-free transfection medium and
incubated for 4 h at 37 °C. The cells were washed three
times with cold PBS and harvested by trypsin digestion.
The cells were immediately analyzed on a flow cytometer
(FACS Caliber, Becton-Dickinson, Mountain View, CA)
using FL-3 channels (Ex. 488 nm/Em. 670 nm). Data
were processed using Windows Multiple Document Interface
(WinMDI) software.

Gelatin Zymography Assay

The cells were transfected as described in the above section.
The hSMC conditioned medium was harvested 24 h
post-transfection and analyzed by gelatin zymography.
Fifty microliters of the conditioned medium were electro-
phoresed on a 10.0 % sodium dodecyl sulfate (SDS)-
polyacrylamide gel containing 0.1 % gelatin at a constant
voltage of 120 V for 1 h. The gel was rinsed with 2.5 %
Triton X-100 and incubated in developing buffer
(50.0 mM Tris (pH 7.2), 0.2 mM NaCl, and 5.0 mM
CaCl2) overnight at 37 °C. Depending on the time
period for gel development, there could be subtle dif-
ferences in the intensity of gelatin lysis bands between
each batch experiment. The gel was then stained with
0.25 % Coomassie brilliant blue solution, followed by
destaining in methanol/acetic acid/water (50/10/40).
The gelatinolytic bands were visualized under UV light,
and gelatinase activity was determined by a densitometric
analysis of scanned bands using an image analysis program
(NIH Image J).

Cellular Toxicity Assay

The relative cytotoxicity of the polyplexes was estimated
by MTT assay. Cells were plated in a 6-well plate at a
density of 2.0×105 cells per well 24 h prior to transfec-
tion. The culture medium was exchanged with a fresh
serum-free transfection medium containing the poly-
plexes at a polymer to siRNA weight ratio of 4 (50.0
nM siRNA). After 4 h transfection, the cells were con-
tinuously incubated in a fresh serum-containing medium
for 24 h at 37 °C. Five hundred microliters of MMT
solution (5.0 mg/mL) were added to each well followed
by incubation for 4 h at 37 °C. The produced purple
formazan crystals were dissolved in 300 μL dimethyl
sulfoxide, and then the samples were read at 530 nm in
a microplate reader (Bio-Rad Laboratories, Carlsbad,
CA ). The cell viability was determined relative to the
untreated control cells.
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Statistical Analysis

All of the data are presented as the mean ± standard deviation
(SD) of three independent measurements. Student’s t-test was
used for statistical analysis. A p-value less than 0.05 was
considered statistically significant.

RESULTS AND DISCUSION

Formation and Characterization of Cr PEI-DA/siRNA
Polyplexes

In order to covalently crosslink the pre-formed PEI-DA/
siRNA polyplexes via bioreducible disulfide linkages, the
primary amine groups of the polyplexes were reacted with
the bifunctional crosslinker, dithiobis succinimidyl propio-
nate (DSP) (Fig. 1). The PEI-DA/siRNA polyplexes were
successfully crosslinked with only slight difference in particle
size. Based on the results of DLS analysis, the Cr PEI-DA/
siRNA polyplexes were formed with a mean diameter of
248.4±24.3 nm (polydispersity index, 0.104), which is
slightly smaller than the particle size of the pre-formed
PEI-DA/siRNA polyplexes with 330.8±79.6 nm diameter
(polydispersity index, 0.384). However, there was not much
difference in surface charge between crosslinked and non-
corsslinked PEI-DA/siRNA polyplexes (around 30 mV). In-
terestingly, while the loosely condensed PEI1.8/siRNA poly-
plexes were not detected by DLS even at high particle
concentrations, they were found to have a mean diameter
of 405.0±98.1 nm (polydispersity index, 0.468) when
reacted with disulfide crosslinkers. This result demonstrates
that the formation of nanosized siRNA polyplexes with low
molecular weight PEI-DA conjugates is presumably caused
by the facial amphiphilicity of conjugated DA, which is the
main driving force in the formation of the hydrophobic core
of the PEI-DA/siRNA polyplexes (16,20).

The formation and stability of the Cr PEI-DA/siRNA
polyplexes were confirmed using the gel retardation assay
(Fig. 2). Unlike long-chained polycations, the short PEI1.8
alone exhibited low siRNA condensation efficiency due to
the rigid and inflexible structures of both polyions (PEI1.8
and siRNA) (21). As shown in Fig. 2a, the PEI1.8/siRNA
polyplexes were packaged loosely in the overall range of
polymer to siRNA weight ratios, allowing for partial siRNA
release from the polyplexes during electrophoresis. Thus,
the PEI1.8/siRNA polyplexes at a polymer to siRNA weight
ratio of 4 showed simple siRNA release via polyelectrolyte
exchange reactions with polyanions such as heparin which is
typically found in the blood (Fig. 2b). Although the DA
modification could somewhat enhance the siRNA conden-
sation ability of low molecular weight PEI1.8, the PEI-DA/
siRNA polyplexes also readily released siRNA through

exchange reactions with heparin, clearly indicating facile
degradation and dissociation of the polyplexes under phys-
iological conditions. In the case of the Cr PEI-DA/siRNA
polyplexes, however, the siRNA molecules were tightly
packaged in the polyplexes at a very low polymer to siRNA
weight ratio. In addition, regardless of heparin concentra-
tion, there were no retarded bands corresponding to siRNA
molecules released from the Cr PEI-DA/siRNA polyplexes.
This is most likely due to the fact that the siRNA molecules
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were physically incorporated into the Cr PEI-DA/siRNA
polyplexes via crosslinking. These results demonstrate that
the complexation efficiency and particle stability of the Cr
PEI-DA/siRNA polyplexes were appreciably improved as a
result of covalent crosslinking of the polyplexes.

The Cr PEI-DA/siRNA polyplexes is favorable for pro-
tecting siRNA from polyion exchange and enzymatic deg-
radation during the extracellular delivery stage. The
crosslinked covalent bonds, however, should degrade after
cellular uptake to release intact siRNA into the cytoplasm,
where it participates in RNA interference knockdown (22).
Due to the marked difference in redox potential between the
oxidizing extracellular and reducing intracellular environ-
ments, the redox potential could be one of the strongest
endogenous triggers for the cleavage of crosslinked struc-
tures containing disulfide linkages (23). Thereby, DSP

having disulfide bridges, which are stable outside the cells
but are rapidly cleaved in the reducing environment of the
cytoplasm (24), served as a particle stabilizer to crosslink the
pre-formed PEI-DA/siRNA polyplexes. Disuccinimidyl
suberate (DSS), the non-cleavable analog of the homofunctional
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amine reactive DSP crosslinker, was used as a control cross-
linking reagent. To investigate whether bioreducible cross-
linking leads to siRNA release from the Cr PEI-DA/siRNA
polyplexes under reducing conditions, the polyplexes cross-
linked by DSP and DSS were each incubated with 5 mM
DTT for 30min and subsequently subjected to polyelectrolyte
exchange reactions in the presence of increasing heparin con-
centrations (Fig. 3). Both DSP and DSS-induced crosslinking
successfully protected the PEI-DA/siRNA polyplexes against
polyion exchange reactions, resulting in essentially complete
inhibition of siRNA release. This result indicates that the
covalent crosslinking of the polyplexes could provide excellent
particle stability in the extracellular environment. As
expected, the disulfide crosslinking by DSP was reductively
degraded leading to polymer-siRNA dissociation via polyion
exchange reactions. The non-reducible crosslinking by DSS,
however, kept the polyplexes stable even under reducing
conditions. Thus, the comparison of bioreducible and non-
reducible crosslinking revealed that the Cr PEI-DA/sRNA
polyplexes could stably incorporate siRNA molecules, but
efficiently release them from the polyplexes after exposure to
the reductive intracellular environment.

Cellular Uptake of Cr PEI-DA/siRNA Polyplexes
in hSMCs

To assess the influence of the bioreducible crossliking of the
Cr PEI-DA/siRNA polyplexes on transfection efficiency,

the cellular uptake of different siRNA formulations by
hSMCs was investigated with flow cytometry using Cy-5-
labeled siRNA molecules (Fig. 4). The unmodified PEI1.8/
siRNA polyplexes showed a very low level of cellular uptake,
which is similar to results obtained in the untreated control
and naked siRNA groups. In contrast, both siRNA polyplex
formulations based on PEI-DA exhibited significantly en-
hanced cellular uptake efficiency compared to the PEI1.8/
siRNA polyplexes. Specifically, the extent of cellular uptake
of the PEI1.8/siRNA, PEI-DA/siRNA, and Cr PEI-DA/
siRNA polyplexes was 11.2±3.3, 69.4±7.0, and 70.5±
3.2 % in an arbitrarily selected gate region (M2), respectively.
The cellular uptake enhancement through the DA modifica-
tion is most likely due to the energy-independent internaliza-
tion process regulated primarily by a non-endocytotic
pathway. It has been previously reported that various facial
amphipathic bile acid moieties including DA in the polyplexes
greatly enhanced the gene transfection efficiency in various
cell lines (16,25).

MMP-2 Gene Silencing of Cr PEI-DA/siRNA
Polyplexes in hSMCs

Matrix metalloproteinase-2 (MMP-2) belongs to the family
of zinc-dependent extracellular endopeptidases regulating
important physiological events during the development,
differentiation, and progression of various diseases including
tumor metastasis, rheumatoid arthritis, and restenosis
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(26). In particular, MMP-2 plays a critical role in SMC
invasion in the development of neointimal hyperplasia
(27). Therefore, MMP-2 can be a suitable candidate for
siRNA-based therapy for the treatment of artery disease,
which is more favorable for local siRNA delivery directly

into the arterial walls. To evaluate the therapeutic appli-
cation of the Cr PEI-DA/siRNA polyplex delivery system,
herein, as siRNA therapeutics, a siRNA targeted against
MMP-2 was transfected into hSMCs with different polyplex
formulations (Fig. 5). The MMP-2 gene silencing activity was
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analyzed by gelatin zymography. While the PEI1.8/MMP-2
siRNA polyplexes showed no gene silencing activity, both
PEI-DA/MMP-2 siRNA and Cr PEI-DA/MMP-2 siRNA
polyplexes exhibited over 50 % reduction in the gelatinolytic
enzyme activity of MMP-2 in the conditioned medium. It is
likely due to the unique membrane transport property of the
facially amphipathic bile acid moiety (16,25). As expected,
only marginally cytotoxic effects were observed with the
PEI1.8/siRNA polyplexes. Specifically, neither the DA
modification nor the disulfide crosslinking processes caused
additional cytotoxicity, suggesting that the Cr PEI-DA/
siRNA polyplexes could also offer the advantage of low
intrinsic cytotoxicity mediated by low molecular weight
PEI1.8. Unlike the cellular uptake study, however, the Cr
PEI-DA/MMP-2 siRNA polyplexes somewhat reduced
MMP-2 silencing activity in hSMCs compared to their
non-crosslinking counterparts. It is probably due to the
lack of reducing potential in the intracellular environment of
hSMCs leading to incomplete cytoplasmic degradation of
crosslinking disulfide bonds in the Cr PEI-DA/MMP-2
siRNA polyplexes.

In general, the intracellular environment tends to provide
a more reducing condition than the extracellular environment
leading to a high redox potential gradient across the cell
membranes (23). However, there is relatively little variation
in the redox potential between cell types. To assess whether an
increased intracellular redox state of hSMCs would enhance
MMP-2 gene silencing activity of the Cr PEI-DA/MMP-2
siRNA polyplexes, the cells were exposed for 24 h to different
concentrations of L-2-oxothiazolidine-4-carboxylic acid
(OTC) before transfection. OTC is a known cysteine
pro-drug that increases the reduced glutathione (GSH)
level (Fig. 6) (28,29). As shown in Fig. 6a, the Cr PEI-DA/
MMP-2 siRNA polyplexes gradually improved the MMP-2
gene silencing efficiency by up to 73 % in response to
increasing intracellular reduction potential in hSMCs. In
contrast, the PEI-DA/MMP-2 siRNA polyplexes had no
influence on gene silencing regardless of the amount of
OTC added (data not shown). The enhanced MMP-2
gene silencing activity of the Cr PEI-DA/MMP-2 siRNA
polyplexes was likely due to the increased reductive deg-
radation of disulfide linkages in the polyplexes, which
was responsible for the cytoplasmic release of siRNA.
Interestingly, the Cr PEI-DA/siRNA polyplexes did not
have any effect on the extent of cellular uptake when the
OTC concentration increased, as shown in Fig. 6b. It is
conceivable that, despite efficient cellular uptake of the
Cr PEI-DA/siRNA polyplexes, their inability to completely
release siRNA in response to cytoplasmic degradation limits
the target gene silencing efficiency. These results reveal that
the bioreducible property imparted to the polyplexes via
reducible disulfide linkages could be influenced by the
reducing state of the relevant cell lines after cellular

uptake. In order to exclude off-target effects of siRNA,
hSMCs were transfected with the Cr PEI-DA/siRNA
polyplexes containing both MMP-2 and universal scrambled
siRNA molecules (Fig. 7). Compared to the MMP-2 siRNA
achieving 68 % gene silencing, the negative siRNA exhibited
no silencing effect in hSMCs, suggesting the Cr PEI-DA/
MMP-2 siRNA polyplexes could efficiently suppress MMP-2
gene expression in a highly sequence-specific manner.

Serum Stability of Cr PEI-DA/siRNA Polyplexes

It is generally accepted that, compared to DNA, siRNA is
much more unstable in the blood, with a very short effective
lifetime of 30 min to around 1 h due to the hydroxyl group
on the C-2 atom of the ribose in RNA (30). Hence, protec-
tion of active siRNA products from attack by serum
nucleases is necessary for an efficient siRNA delivery system.
To evaluate the stability of the Cr PEI-DA/siRNA poly-
plexes in the presence of serum proteins, the PEI1.8/siRNA,
PEI-DA/siRNA, and Cr PEI-DA/siRNA polyplexes were
incubated in 50 % FBS (Fig. 8a). In the PEI1.8/siRNA
polyplex formulation, siRNA exhibited almost complete
breakdown shortly after 2 h incubation in serum conditions.
It is presumably due to the loosely condensed polyplex
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structure of stiff siRNA with the short cationic polymer
PEI1.8 leading to siRNA dissociation from the polyplexes.
In contrast, both PEI-DA-based polyplexes could effectively
protect siRNA molecules from serum enzymatic degrada-
tion up to 24 h, suggesting that the DA modification could
stabilize siRNA polyplexes. However, the siRNA products
in the PEI-DA/siRNA polyplexes started to degrade after
24 h of serum incubation and were then maintained at
similar low levels after 48 h, while the Cr PEI-DA/siRNA
polyplex formulation could last over 96 h without significant
serum degradation of siRNA. The prolonged nuclease
resistance observed in the Cr PEI-DA/siRNA polyplexes
is likely attributed to the crosslinked polyplex structure
that functions as a physical barrier preventing siRNA
dissociation from the polyplexes. Figure 8b shows com-
parative transfection efficiencies of the non-crosslinked
and bioreducible crosslinked MMP-2 siRNA polyplexes

in the presence and absence of serum proteins. The non-
crosslinked polyplexes (64 %) showed a higher MMP-2
gene silencing efficiency than the Cr PEI-DA/siRNA
polyplexes (40 %) in the absence of serum. The non-
crosslinked polyplexes, however, became completely in-
capacitated under serum conditions. In comparison, the
Cr PEI-DA/siRNA polyplexes could preserve their gene
silencing activity in the presence of 50 % serum proteins
with only 20 % reduction in siRNA silencing against
MMP-2 expression. The preserved MMP-2 gene silencing
efficiency of the Cr PEI-DA/siRNA polyplexes is mainly
attributable to the bioresponsively cleavable crosslinking
bonds, which may retain the active form of the siRNA
molecule inside the polyplex structure while in the blood
circulation. Previous studies also demonstrated that cross-
linking network could enhance the mechanical stability of
polyplexes by minimizing polyplex dissociation (14,31).
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CONCLUSIONS

In this study, we have demonstrated a new approach for
siRNA delivery using bioreducible crosslinked polyelectrolyte
complexes formulated using facially amphipathic bile acid-
modified PEI conjugates. These low molecular weight PEI1.8
derivatives were based on a previously described polymer,
PEI-DA, which has been shown to efficiently transport siRNA
into different cell lines including cancer cells under serum-free
transfection conditions. Using low molecular weight PEI1.8 as
the polymer backbone could be an additional advantage in
the PEI-DA/siRNA polyplex delivery system, since it has no
influence on cell viability. Unfortunately, in the presence
of serum proteins, the non-crosslinked PEI-DA/siRNA
polyplexes showed no effect on MMP-2 gene silencing
in hSMCs owing to their low serum stability, leading to
the dissociation of the polyplexes and enzymatic degra-
dation of siRNA molecules. The introduction of disulfide
crosslinks to the PEI-DA/siRNA polyplexes stabilized the
polyplex structures in the extracellular environment.
Then, after cellular uptake, the disulfide linkages were
degraded gradually as the intracellular reduction poten-
tial increases. This is recognized as a crucial regulatory
step in cytoplasmic siRNA localization and target gene
silencing. As predicted, the Cr PEI-DA/siRNA poly-
plexes were efficiently taken up by hSMCs, resulting in
effective silencing of MMP-2 gene expression under
serum-supplemented conditions. It is probably due to
the reduced enzymatic accessibility of the siRNA con-
fined within the polyplexes physically stabilized by re-
ducible disulfide shell crosslinking. The current
bioreducible crosslinked siRNA polyplex formulation
could be used to safely and effectively deliver therapeu-
tic siRNA molecules for the treatment of various genetic
disorders.
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