MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION

BIODISTRIBUTION OF OSTEOTROPIC 177LU-EDTMP – A POTENTIAL RADIOPHARMACEUTICAL FOR RADIONUCLIDE THERAPY OF BONE METASTASES

V. K. Tishchenko,1,* V. M. Petriev,1,2 A. V. Matveev,3 A. V. Fedorova,1 and K. A. Kuzenkova1

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 56, No. 7, pp. 3 – 8, July, 2022.

Original article submitted March 9, 2022.

Phosphonates labeled with beta-emitting radionuclides are widely used in nuclear medicine for palliative therapy of bone metastases. This work was aimed at studying the biodistribution of a new osteotropic antitumor agent based on *N,N,N'*,*N'*-ethylenediaminetetrakis(methylenephosphonic acid) labeled with ¹⁷⁷Lu (177Lu-EDTMP) in intact animals. The biodistribution *in vivo* in intact Wistar rats of free Lu in the form of 177 LuCl₃ was also investigated to assess the stability of 177 Lu-EDTMP. It was found that 177 Lu-EDTMP accumulated mainly in the skeleton (22.67 – 54.89% of the injected dose) with minimal uptake in other organs and tissues. The amount of 177 LuCl₃ in bone did not significantly differ from 177 Lu-EDTMP uptake but the concentration of ¹⁷⁷LuCl₃ in soft organs was significantly higher ($p < 0.05$) as compared to that of ¹⁷⁷Lu-EDTMP. The results indicated that further studies of 177 Lu-EDTMP in clinical application for therapy of skeletal metastases had good prospects.

Keywords: *N*,*N*,*N* ,*N* -ethylenediaminetetrakis(methylenephosphonic acid); EDTMP; lutetium-177; nuclear medicine; osteotropic radiopharmaceuticals; biodistribution.

Bone metastases that can cause extreme pain, fractures, neurological complications, and hypercalcemia are a serious complication of many oncological diseases. Relief of pain from metastasis to the skeleton is one of the most important challenges of clinical medicine. Available methods for palliative therapy of bone pain include the use of analgesics (including narcotics), bisphosphonates, chemotherapy, and external beam therapy [1]. However, radionuclide therapy (RNT) with osteotropic radiopharmaceuticals (RPs) is most interesting because they are tolerated well and highly efficacious with simultaneous systemic action at all metastatic sites [2, 3].

Osteotropic RPs can be divided into two groups, i.e., calcimimetics and phosphonates. Calcimimetics include ³²P, 89Sr, and 223Ra, which are calcium analogs so that their *in vivo* distribution can be extremely unpredictable [3]. Phosphonates are enzyme-resistant analogs of natural pyrophosphate, possess high affinity for hydroxyapatite of bone tissue, and are widely used to design osteotropic RPs, e.g., ¹⁵³Sm lexidronam (¹⁵³Sm-EDTMP, Quadramet[®]), Samarium 153 Sm oxabiphor, etc. [4, 5].

The main problem with development of effective medicines for palliative therapy of bone pain due to metastasis of a primary tumor to the skeleton is the need to ensure delivery of an adequate dose of ionizing radiation to sites of bone metastases with minimal radiation-induced damage to bone

¹ A. F. Tsyb Medical Radiological Research Center, Branch of the National Medical Radiology Center, Ministry of Health of the Russian Federation,

² Koroleva St., Obninsk, Kaluga Oblast, 249036 Russia.
² National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, Moscow, 115409 Russia.

Physics Institute), 31 Kashirskoe Shosse, Moscow, 115409 Russia. ³ F. M. Dostoevsky Omsk State University, 55 Prosp. Mira, Omsk, 644077 Russia.
e-mail: vikshir82@mail.ru

Fig. 1. Radiochemical yield of ¹⁷⁷Lu-EDTMP.

marrow. Therefore, the choice of radionuclide with the optimal nuclear-physical properties is extremely important.

Lutetium-177 $(^{177}$ Lu) has great potential for therapeutic applications, as has been demonstrated in many works dedicated to targeted RNT of metastatic castrate-resistant prostate cancer and neuroendocrine tumors $[6 - 9]$. The possibility of using 177Lu in practically all compound classes used for RNT is currently being studied [10]. It was proposed that 177 Lu could become a key therapeutic radionuclide for targeted RNT [11]. Owing to the optimal decay characteristics of ¹⁷⁷Lu [*T*_{1/2} = 6.65 d; E_{max} = 498 keV (78.6%), 384 keV (9.1%) , and 176 keV (12.2%) ; $E_y = 113 \text{ keV}$ (6.6%) , 208 keV (11%) ; and moderate penetration of soft tissues of ~ 0.6 mm] and the ability to produce it in mediumand high-flux research reactors, the number of which in the world is rather large, 177 Lu can be considered a promising radionuclide for palliative therapy of bone metastases [10, 12].

N,*N*,*N* ,*N* -Ethylenediaminetetrakis(methylenephosphonic acid) (EDTMP) is one of the most frequently used ligands because it can form stable complexes with various radiometals $(^{153}Sm, ^{177}Lu, ^{166}Ho, ^{68}Ga,$ etc.) $[13 - 15]$. This work was aimed at studying the *in vivo* biodistribution of the novel osteotropic compound 177Lu-EDTMP in intact laboratory animals.

EXPERIMENTAL CHEMICAL PART

Preparation and quality control of 177Lu-EDTMP. Radioactive 177 LuCl₃ was obtained from State Scientific Center, Research Institute or Atomic Reactors (SSC RIAR, Dimitrovgrad, Russia). Other reagents [NaOH, HCl, NaOAc, NH₄OAc, N, N, N', N' -ethylenediaminetetrakis(methylenephosphonic acid)] were purchased (Sigma-Aldrich, Germany).

The labeled RP was prepared by placing EDTMP (25 mg) into a 10-mL vial, adding NaOH solution (1 mL, 0.1 M), and stirring until the solid was completely dissolved. Then, the vial with the EDTMP solution was treated with sodium-acetate buffer (1.5 mL, 0.4 M, pH 4.6), stirred for

5 min, and treated with 177 LuCl₃ (37 MBq, 1.0 mCi) in HCl (0.2 mL, 0.1 M). The reaction mixture was held at 95°C for 30 min, cooled to room temperature, treated with deionized $H₂O(1.0$ mL), and filtered through a 0.22-um syringe filter.

 177 Lu bound to EDTMP and free 177 Lu (not bound to EDTMP) were quantitatively determined by paper chromatography on Whatman-1 paper (Sigma-Aldrich, USA). The mobile phase was NH_4 OAc solution (0.1 M). ¹⁷⁷Lu-EDTMP migrated to the solvent front $(R_f = 0.85 - 0.95)$ while free ¹⁷⁷Lu remained at the origin $(R_f = 0)$ upon elution by the mobile phase. Hydrolyzed unbound 177 Lu and bound 177 Lu were quantitatively determined by radiometric counting of the bands on the chromatography paper. The radiometry used a Wizard 2480 automated gamma-counter (PerkinElmer/ Wallac, Finland).

The obtained RP was intended for intravenous injections. Radiochemical impurities in the 177 Lu-EDTMP RP were \leq 3.0%. The pH was 4.5.

EXPERIMENTAL BIOLOGICAL PART

Pharmacokinetic studies used ¹⁷⁷Lu-EDTMP and ¹⁷⁷LuCl₃. Solutions of ¹⁷⁷Lu-EDTMP and ¹⁷⁷LuCl₃ were prepared immediately before biological tests.

The pharmacokinetics of 177 Lu-EDTMP were studied in intact female Wistar rats $(160 \pm 40$ g). A total of 20 animals were used. They were injected intravenously (i.v.) (into a tail vein) with 177 Lu-EDTMP (0.1 mL, 0.37 MBq, 4.81 mg/kg of 177 Lu-EDTMP or 0.77 mg/rat).

The distribution of free Lu as 177 LuCl₂ in intact rats (20) females) was also studied to evaluate the *in vivo* stability of 177 Lu-EDTMP. They were injected i.v. with 177 LuCl₃ (0.1 mL, 0.37 MBq, 0.37 MBq/rat). The animals were isolated after injection of the radioactive compounds in a room specially designed for working with RPs. All manipulations with experimental animals were conducted in compliance with a handbook [16].

Animals were euthanized 5 min and 1, 3, 24, and 48 h after injection (four animals at each time point) by decapitation. Internal organs and tissues were collected. The obtained samples were placed into plastic tubes, weighed on a Sartorius electronic balance (Germany), and assayed for radioactivity. Samples (0.1 mL) of 177 Lu-EDTMP and 177 LuCl₃ were placed into separate tubes at the time of injection for use as standards of the injected dose.

The content of 177 Lu-EDTMP or 177 LuCl₃ per gram of organ or tissue was radiometrically assayed in percent of the injected amount $(\frac{9}{9})$ at each time point. The total content of 177 Lu-EDTMP and 177 LuCl₂ in the skeleton was calculated considering that the rat skeleton mass was 10% of the body mass [17]. The coefficients of differential accumulation (CDA) were also calculated as the ratio of the 177 Lu-EDTMP or 177 LuCl₂ concentration in bone to that in other organs and tissues.

 $*177$ Lu-EDTMP

** 177 LuCl₃.

The radiometric results were statistically processed using Microsoft Excel 2010 with calculation of the arithmetic means (*M*) and standard errors of the mean (*m*). Concentrations of 177 Lu-EDTMP and 177 LuCl₂ in groups were compared using the Student *t*-criterion. Differences were considered statistically significant for *p* < 0.05.

RESULTS AND DISCUSSION

Figure 1 shows results for binding of 177 Lu to EDTMP. The binding of ¹⁷⁷Lu to the ligand was observed to be 98% after heating of the reaction mixture was finished. This value practically did not change for 72 h. These data were indicative of a highly stabile RP. Radiochemical impurities in the RP solution were $\leq 3.0\%$ after 72 h.

The analytical results for the biodistribution found that the 177Lu-EDTMP concentration was highest in bone over

Fig. 2. Total content of 177 Lu-EDTMP and 177 LuCl₃ in skeleton of intact Wistar rats after intravenous injection (% of injected dose); statistically significant differences between groups ($p < 0.05$).

TABLE 2. Coefficients of Differential Accumulation of ¹⁷⁷Lu-EDTMP and ¹⁷⁷LuCl₃ in Femur of Intact Wistar Rats After Intravenous Injection

Organ or tissue	Time after injection				
	5 min	1 _h	3 _h	24 h	48 h
Femur/blood	5.97 ± 1.52	104.78 ± 14.84	373.07 ± 72.17	4870.15 ± 189.35	2964.34 ± 89.38
	0.41 ± 0.06	1.62 ± 0.09	5.68 ± 0.30	426.62 ± 100.14	313.25 ± 107.97
	p < 0.02	p < 0.001	p < 0.01	p < 0.001	p < 0.001
Femur/thyroid	12.52 ± 4.17	47.17 ± 4.33	46.99 ± 4.28	77.83 ± 2.82	73.26 ± 9.80
	1.39 ± 0.22	15.40 ± 2.57	35.49 ± 11.68	45.09 ± 4.02	68.42 ± 7.88
	p < 0.05	p < 0.001	p > 0.25	p < 0.001	p > 0.5
Femur/lungs	9.26 ± 2.09	112.56 ± 16.29	275.34 ± 36.43	503.52 ± 31.10	964.24 ± 353.47
	0.70 ± 0.04	2.86 ± 0.38	8.18 ± 1.01	42.84 ± 4.28	43.86 ± 8.98
	p < 0.01	p < 0.001	p < 0.001	p < 0.001	p < 0.05
Femur/liver	23.84 ± 7.30	177.44 ± 40.50	202.80 ± 33.50	238.17 ± 24.92	207.72 ± 51.31
	1.47 ± 0.19	3.66 ± 0.52	4.19 ± 0.12	12.41 ± 1.49	11.94 ± 1.58
	p < 0.05	p < 0.01	p < 0.002	p < 0.001	p < 0.01
Femur/kidneys	1.85 ± 0.40	18.01 ± 2.82	21.26 ± 2.57	23.43 ± 1.81	27.38 ± 0.83
	1.35 ± 0.06	3.07 ± 0.39	3.61 ± 0.35	7.76 ± 0.58	7.50 ± 1.07
	p > 0.25	p < 0.002	p < 0.001	p < 0.001	p < 0.001
Femur/heart	26.43 ± 5.42	71.58 ± 13.59	88.44 ± 10.64	220.61 ± 28.95	271.40 ± 60.33
	1.11 ± 0.12	4.48 ± 0.94	12.73 ± 1.55	66.93 ± 16.51	69.36 ± 17.45
	p < 0.01	p < 0.01	p < 0.001	p < 0.01	p < 0.02
Femur/spleen	32.54 ± 8.89	251.23 ± 10.74	240.38 ± 45.88	267.25 ± 22.19	268.55 ± 9.67
	1.90 ± 0.29	3.28 ± 0.02	6.20 ± 0.46	13.01 ± 0.58	11.21 ± 1.89
	p < 0.02	p < 0.001	p < 0.01	p < 0.001	p < 0.001
Femur/stomach	10.11 ± 1.57	96.71 ± 15.26	140.59 ± 34.50	270.34 ± 72.28	346.82 ± 55.59
	2.81 ± 0.21	4.85 ± 0.75	7.36 ± 1.50	18.80 ± 2.04	16.56 ± 2.75
	p < 0.01	p < 0.001	p < 0.01	p < 0.02	p < 0.002
Femur/intestines	10.83 ± 2.15	98.16 ± 14.29	138.05 ± 11.59	288.65 ± 40.12	334.00 ± 100.49
	2.17 ± 0.44	4.83 ± 0.52	11.64 ± 2.16	46.71 ± 7.33	56.78 ± 15.94
	p < 0.01	p < 0.001	p < 0.001	p < 0.002	p < 0.05
Femur/muscle	32.32 ± 7.59	428.90 ± 73.63	1061.57 ± 303.62	3735.43 ± 101.64	2957.11 ± 112.06
	3.48 ± 0.12	4.80 ± 0.43	22.45 ± 3.80	165.20 ± 30.89	99.49 ± 21.08
	p < 0.01	p < 0.002	p < 0.02	p < 0.001	p < 0.001

the whole study time (Table 1). For example, 177 Lu-EDTMP accumulated in knee joint from 1.683 ± 0.151 %/g to 4.793 ± 0.223 %/g. The ¹⁷⁷Lu-EDTMP concentration in femur varied from 1.590 ± 0.342 %/g to 3.758 ± 0.323 %/g. The RP accumulated in other bones to $\sim 1.5 - 2$ times less than in femur. The maximum concentrations of ¹⁷⁷Lu-EDTMP in cranium, rib, and spine reached 1.561 ± 0.286 %/g, 1.800 ± 0.477 %/g, and 1.599 ± 0.345 $\frac{\%}{g}$, respectively (Table 1). It is noteworthy that the maximum concentration of ¹⁷⁷Lu-EDTMP in all studied bones occurred 24 h after i.v. injection of the RP (Table 1).

The distribution of 177 LuCl₃ in bones was practically the same as that of 177 Lu-EDTMP. The concentration of ¹⁷⁷Lu-EDTMP in bones except for spine was statistically significantly greater than 177 LuCl₃ only at the initial times after injection (5 min and 1 h) (Table 1).

 177 Lu-EDTMP was the first osteotropic RP with 177 Lu to be studied [18]. The radioactive label was introduced by heating 177 LuCl₂ with EDTMP in a boiling-water bath for 30 min. 177Lu-EDTMP accumulated primarily in the skeleton (maximum content in femur of intact rats reached 7.5%/g in 24 h) [18].

Accumulation of high levels of 177 Lu-EDTMP in bone was also reported in other studies $[13, 14, 19 - 21]$. 177 Lu-EDTMP was prepared at room temperature in $>98\%$ radiochemical yield in one study [14]. Rapid accumulation in the skeleton, rapid elimination from blood, and minimal accumulation in internal organs were demonstrated during biodistribution studies of 177 Lu-EDTMP in Wistar rats. The RP concentration in femur was $1.74 \pm 0.30\% / g$ in 3 h and reached a maximum $(2.05 \pm 0.48\%/g)$ 24 h after injection [14]. It is worth noting that the time to reach the peak concentration of 177 Lu-EDTMP in bone (24 h) was analogous in the present work.

The biodistributions of 177 Lu-EDTMP and 177 LuCl, in wild-type rats were comparatively analyzed [20]. ¹⁷⁷Lu-EDTMP rapidly accumulated in bone $\left(\frac{2\%}{g}\right)$ 4 h after injection), remaining practically unchanged for the next 24 h. Then, the concentration of 177 Lu-EDTMP in bone gradually increased (to $7\frac{6}{2}$ 7 d after injection). In turn, 177 LuCl₃ also accumulated in bone, practically not differing from 177 Lu-EDTMP. However, high concentrations of 177 LuCl₃ were observed in liver (up to 3%/g), spleen, intestines, and muscle (up to $1\frac{\sqrt{g}}{20}$].

The total content of 177 Lu-EDTMP in skeleton already 5 min after injection was $22.67 \pm 3.74\%$ of the injected dose (Fig. 2). The content of 177 Lu-EDTMP in skeleton doubled after 1 h to $47.13 \pm 3.11\%$ of the injected dose and remained at that level $(46.15 \pm 2.37\%$ of the injected dose) up to 3 h. The maximum content of the RP in skeleton occurred 24 h after injection and was $54.89 \pm 4.88\%$ of the injected dose. The total content of ¹⁷⁷Lu-EDTMP in skeleton 48 h after injection decreased to $26.48 \pm 0.89\%$ of the injected dose. The total content of 177 LuCl₂ in skeleton was statistically significantly less than that of 177 Lu-EDTMP only 5 min and 1 h after injection while its distribution was practically the same as 177 Lu-EDTMP upon further accumulation (Fig. 2). The maximum content of ¹⁷⁷LuCl₃ in skeleton reached 63.80 \pm 2.87% of the injected dose 24 h after i.v. injection.

Similar contents of ¹⁷⁷Lu-EDTMP in skeleton were found before [22]. The studies used intact Wistar rats. The accumulation of 177Lu-EDTMP in skeleton after 30 min was already $40.48 \pm 7.48\%$. The total RP content in skeleton after 3 h increased to 43.50 ± 4.25 %. The maximum amount of the injected dose $(46.25 \pm 3.48\%)$ was noted after 24 h [22].

The biodistribution of 177 Lu-EDTMP prepared from a kit of reagents identical to those used to prepare ¹⁵³Sm-EDTMP (Quadramet®) was studied [21]. Each vial contained a lyophilized mixture of EDTMP (35 mg), NaOH (14.1 mg), and $CaCO₃$ (5.8 mg). The studies used Wistar rats. Significant accumulation of 177 Lu-EDTMP by bone (56.68 – 66.35% of the injected dose) was observed during 7 d after injection [21]. Moreover, accumulation of 177 Lu-EDTMP was found to be greater than that of ¹⁵³Sm-EDTMP, 90 Y-EDTMP, and 166 Ho-EDTMP [13].

The concentration of 177 Lu-EDTMP in internal organs and tissues was statistically significantly less than that of 1^{177} LuCl₃. The maximum content of 1^{177} Lu-EDTMP in blood was $0.283 \pm 0.043\%$ g 5 min after injection, decreasing toward the end of the study to $0.001 \pm 0.001\%$ /g. The ¹⁷⁷LuCl₃ blood concentration was $5.5 - 59$ times greater than that of ¹⁷⁷Lu-EDTMP and varied from $0.011 \pm 0.003\%$ to $1.882 \pm 0.340\% / g$ (Table 1).

Kidneys had the highest concentration of ¹⁷⁷Lu-EDTMP of all organs. This was due to renal excretion of labeled phosphonates, which has been reported in many works $[15, 23, 24]$. The 177 Lu-EDTMP content in kidneys during 48 h decreased from $0.906 \pm 0.148\% / g$ to $0.109 \pm 0.026\% / g$ (Table 1). Conversely, the 177 LuCl₃ concentration in kidneys increased to the maximum of $0.751 \pm 0.063\%$ g 3 h after injection, after which it decreased (Table 1).

Thyroid concentrations of ¹⁷⁷Lu-EDTMP were also characterized by lower values than 177 LuCl₃. However, statistically significant differences were noted only at individual time points (5 min and 24 h) (Table 1).

The 177 LuCl₃ content in other internal organs was significantly greater than that of ¹⁷⁷Lu-EDTMP. This agreed with results from studies comparing the biodistributions of 177 Lu-EDTMP and 177 LuCl₃ [13, 20].

An analysis of the femur/internal-organs CDA data found that the 177Lu-EDTMP concentration in femur was much greater than in other organs and tissues over the whole study time. This was consistent with the high numerical values of the CDA (Table 2). The maximum CDA values were recorded toward the end of the study $(24 – 48 h after injec$ tion of 177 Lu-EDTMP).

The femur/internal-organs values for 177 LuCl₂ were also greater than unity at practically all time points except for the femur/blood and femur/lungs ratios at 5 min after injection

(Table 2). However, the femur/internal-organs CDA values for 177 LuCl₂ were statistically significantly less than the corresponding CDA values for ¹⁷⁷Lu-EDTMP.

Thus, ¹⁷⁷Lu-EDTMP demonstrated high affinity for bone tissue with minimal accumulation in internal organs. This was confirmed by the high femur/internal-organs CDA values at all time points. The 177 LuCl₃ content in bone tissue was practically the same as that of 177 Lu-EDTMP although the 177 LuCl₂ concentration in internal organs was significantly greater than that of 177 Lu-EDTMP.

REFERENCES

- 1. D. A. Hillegonds, S. Franklin, D. K. Shelton, et al., *J. Natl. Med. Assoc.*, **99**(7), 785 – 794 (2007).
- 2. I. Murray and Y. Du, *Clin. Oncol.*, **33**(2), 98 105 (2021).
- 3. R. Lange, R. ter Heine, R. F. F. Knapp, et al., *Bone*, **91**, $159 - 179(2016)$.
- 4. P. Anderson and R. Nunez, *Expert. Rev. Anticancer Ther.*, **7**(11), 1517 – 1527 (2007).
- 5. V. V. Krylov, B. Ya. Drozdovskii, I. A. Smirnova, et al., *Med. Radiol. Radiats. Bezop.*, **51**(4), 63 – 70 (2006).
- 6. L. Emmett, K. Willowson, J. Violet, et al., *J. Med. Radiation Sci.*, **64**(1), 52 – 60 (2017).
- 7. J. Ferdinandus, J. Violet, S. Sandhu, and M. S. Hofman, *Curr. Opin. Urol.*, **28**(2), 197 – 204 (2018).
- 8. M. H. Maqsood, A. T. U. Din, and A. H. Khan, *Cureus*, **11**(1), e3986 (2019).
- 9. K. Kim and S. J. Kim, *Nucl. Med. Mol. Imaging*, **52**(3), $208 - 215(2018)$.
- 10. R. A. Kuznetsov, K. S. Bobrovskaya, and V. V. Svetukhin, *Radiokhimiya*, **61**(4), 273 – 285 (2019).
- 11. A. M. R. Pillai and F. F. R. Knapp, Jr., *Curr. Radiopharm.*, **8**(2), $78 - 85$ (2015).
- 12. A. Dash, M. R. A. Pillai, and F. F. Knapp, Jr., *Nucl. Med. Mol. Imaging*, **49**, 85 – 107 (2015).
- 13. M. Sohaib, M. Ahmad, M. Jehangir, et al., *J. Nucl. Med.*, **48**, Suppl. 2, 135 (2007).
- 14. S. Chakraborty, T. Das, S. Banerjee, et al., *Cancer Biother. Radiopharm.*, **23**(2), 202 – 213 (2008).
- 15. V. K. Tishchenko, V. M. Petriev, A. A. Mikhailovskaya, et al., *Radiats. Risk*, **28**(4), 108 – 117 (2019).
- 16. *Handbook for Working with Laboratory Animals for Staff of NMITs Radiology, Ministry of Health of Russia, Conducting Preclinical Testing* [in Russian], Moscow (2020).
- 17. R. A. Besyadovskii, K. V. Ivanov, and A. K. Kozyura, *Reference Handbook for Radiobiologists* [in Russian], Atomizdat, Moscow (1978), pp. 90 – 91.
- 18. A. Ando, I. Ando, N. Tonami, et al., *Nucl. Med. Commun.*, **19**, 587 – 591 (1998).
- 19. D. Mathe, L. Balogh, A. Polyak, et al., *Nucl. Med. Biol.*, **37**, $215 - 226 (2010)$.
- 20. A. Bahrami-Samani, A. Anvari, A. R. Jalilian, et al., *Iran. J. Pharm. Res.*, **11**(1), 137 – 144 (2012).
- 21. T. Das, H. D. Sarma, A. Shinto, et al., *Cancer Biother. Radiopharm.*, **29**(10), 412 – 421 (2014).
- 22. S. Chakraborty, T. Das, H. D. Sarma, et al., *Appl. Radiat. Isot.*, **66**(9), 1196 – 1205 (2008).
- 23. W. Y. Lin, C. P. Lin, S. J. Yeh, et al., *Eur. J. Nucl. Med.*, **24**(6), 590 – 595 (1997).
- 24. V. M. Petriev, V. K. Tishchenko, K. V. Koptyaeva, et al., *Khim.-farm. Zh.*, **49**(5), 3 – 7 (2015); *Pharm. Chem. J*., **49**(5), $287 - 291$ (2015).