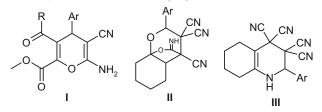
ANTIPROLIFERATIVE ACTIVITY OF CYANO-SUBSTITUTED PYRANS AND 1,2,5,6,7,8-HEXAHYDROQUINOLINE-3,3,4,4-TETRACARBONITRILES

M. A. Mar'yasov,¹ V. P. Sheverdov,¹ V. V. Davydova,¹ and O. E. Nasakin¹

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 50, No. 12, pp. 26-27, December, 2016.


Original article submitted July 19, 2016.

The antiproliferative activity of methyl-6-amino-3-acyl-4-aryl-5-cyano-4*H*-pyran-2-carboxylates, 9-aryl-12-imino-10,11-dioxatricyclo[$5.3.2.0^{1,6}$]dodecane-7,8,8-tricarbonitriles, and 1,2,5,6,7,8-hexahydroquinoline-3,3,4,4-tetracarbonitriles was investigated.

Keywords: methyl-6-amino-3-acyl-4-aryl-5-cyano-4*H*-pyran-2-carboxylates, 9-aryl-12-imino-10,11-dioxa-tricyclo[5.3.2.0^{1, 6}]dodecane-7,8,8-tricarbonitriles, and 1,2,5,6,7,8-hexahydroquinoline-3,3,4,4-tetracarbonitriles, tetracyanoethylene, arylidenemalononitriles, antiproliferative activity.

Polycyano-substituted carbo- and heterocycles that we synthesized earlier possessed antitumor properties [1]. High antitumor activity for compounds with hydroxyl, methoxyl, methoxycarbonyl, and cyano groups would be predicted from the literature [2-6].

Methyl-6-amino-3-acyl-4-aryl-5-cyano-4*H*-pyran-2-carb oxylates (**I**) were prepared by reacting 2-arylidenemalononitriles with methyl-2,4-dioxobutanoates [7]. 9-Aryl-12imino-10,11-dioxatricyclo[$5.3.2.0^{1, 6}$]dodecane-7,8,8-tricarb onitriles (**II**) were synthesized from cyclohexanone tetracyanoethylene adduct and aldehydes by the usual method [8]. Reactions of cyclohexanone tetracyanoethylene adducts with 1,3,5-tri-substituted 2,4-diazapenta-1,4-dienes by the literature method [9] gave 1,2,5,6,7,8-hexahydroquinoline-3,3,4,4-tetracarbonitriles (**III**).

I: Ar = $3,4,5-(MeO)_3C_6H_2$ (a, b, c), $4-MeOOCC_6H_4$ (d), $2-F-6-ClC_6H_3$ (e); R = Me (a), 2-Fu (b), $3,4-(MeO)_2C_6H_3$ (c), $4-BrC_6H_4$ (d), $3,4-(MeO)_2C_6H_3$ (e). II: Ar = $3,4,5-(MeO)_3C_6H_2$ (a), $3-MeO-4-HOC_6H_3$ (b), $4-MeOOCC_6H_4$ (c),

¹ I. N. Ul'yanov Chuvash State University, Cheboksary, Chuvash Republic, 428010, Russia; e-mail: sheverdovvp@yandex.ru $4-(CH_3)_2NC_6H_4$ (d). III: Ar = $4-MeOC_6H_4$ (a), 2-Thienyl (b).

Antiproliferative activity of cyano-substituted I-III was studied at the National Cancer Institute (USA) using an *in vitro* model that allowed the experimental conditions to be standardized for repetitive series according to the NCI-60 One-Dose Screen protocol [10]. The studies used 60 tumor cell lines [11] from human lung, colon, brain, ovary, kidney, prostate, breast, leukemia, and melanoma. Results were processed statistically using the Student *t*-criterion. An effect was considered statistically significant for p < 0.05. It was found that **IIIa** [2-(4-methoxyphenyl)-1,2,5,6,7,8-hexahydroquinoline-3,3,4,4-tetracarbonitrile] had the most promising antiproliferative activity for further research (Table 1). **IIIa** at a concentration of 10^{-5} M showed significant inhibition of tumor cell growth.

The test results showed that substituted tetracarbonitrile **IIIa** was most active against leukemia cell lines because it suppressed considerably growth of all test cultures [CCRF-CEM, HL-60(TB), K-562, MOLT-4, RPMI-8226, SR]. The average inhibition of these cell lines was 74.91%; maximum, 98.88% (SR).

Thus, substituted tetracarbonitrile **IIIa** at a concentration of 10^{-5} M was much more active than known antitumor preparations such as busulfan and cisplatin.

The high alkylating capability of cyano groups with respect to various nucleophiles [12, 13] suggested that the

Antiproliferative Activity of Cyano-Substituted Pyrans

Compound	% Inhibition of cell lines								
	leukemia	lung cancer	colon cancer	brain cancer	melanoma	ovary cancer	kidney cancer	prostate cancer	breast cancer
Ia	-	14.19 ± 1.12	-	14.98 ± 1.29	11.36 ± 1.02	-	-	-	_
Ib	-	-	-	19.33 ± 2.01	-	-	12.15 ± 1.36	-	_
Ic	-	14.51 ± 1.31	—	-	—	-	11.23 ± 1.07	—	-
Id	-	16.34 ± 1.75	—	-	12.06 ± 1.17	-	15.11 ± 1.34	—	-
Ie	-	14.28 ± 1.57	—	11.00 ± 1.05	—	-	14.44 ± 1.49	—	-
IIa	37.09 ± 3.21	13.24 ± 1.17	—	18.65 ± 1.36	15.50 ± 1.28	-	14.84 ± 1.16	—	16.87 ± 2.17
IIb	25.02 ± 2.85	12.80 ± 1.09	-	11.37 ± 1.04	-	—	18.27 ± 2.09	-	18.21 ± 2.07
IIc	13.45 ± 1.42	13.91 ± 1.48	—	-	12.44 ± 1.24	-	_	—	15.41 ± 1.59
IId	13.12 ± 1.39	11.89 ± 1.14	-	—	17.73 ± 1.91	—	—	-	10.93 ± 1.01
IIIa	74.91 ± 3.80	43.98 ± 3.05	53.86 ± 3.51	11.48 ± 1.08	26.47 ± 1.12	57.04 ± 3.05	29.10 ± 2.24	—	43.22 ± 2.35
IIIb	53.75 ± 3.48	29.17 ± 2.54	31.07 ± 2.68	—	13.31 ± 1.45	40.54 ± 2.69	31.57 ± 2.52	-	23.51 ± 2.06
Busulfan, so- lution for i.v. injection, Otsuka Pharm	-	_	-	-	18.80 ± 1.98	_	_	_	_
Cisplatin, powder for solution prep- aration, Corden Pharma Latina S.p. A.		32.1 ± 2.15	_	13.90 ± 1.31	14.2 ± 1.10	26.90 ± 1.87	18.10 ± 1.72	19.90 ± 2.05	10.90 ± 1.03

TABLE 1. Antiproliferative Activity of Compounds (10^{-5} M) (from One-Dose Screen Program)

antiproliferative activity of the compounds could be due to cyanoalkylation of nucleophilic sites on tumor-cell DNA molecules. Furthermore, the steric positioning of the cyano groups in the ethyl-1,1,2,2-tetracarbonitrile moiety is favorable for rapid coordination to nucleophilic sites, which accelerates the cyanoalkylation.

The results confirmed our hypothesis that the ethyl-1,1,2,2-tetracarbonitrile moiety in the cyclic compounds was a pharmacophore.

ACKNOWLEDGMENTS

The work was sponsored by RSF Grant No. 15-13-10029.

REFERENCES

 V. P. Sheverdov, A. Yu. Andreev, O. E. Nasakin, and V. L. Gein, *Khim.-farm. Zh.*, **48**(6), 25 – 28 (2014); *Pharm. Chem. J.*, **48**(6), 379 – 382 (2014).

- G. G. Dubinina, M. O. Platonov, S. N. Golovach, et al., *Eur. J.* Org. Chem., 41(6), 727 – 737 (2006).
- 3. B. Song, J. Fluorine Chem., 126, 87 92 (2005).
- S. A. F. Rostom, G. S. Hassan, and H. I. El-Subbagh, Arch. Pharm. Chem. Life Sci., 342, 584 – 590 (2009).
- 5. U. W. Hawas, Am. J. Appl. Sci., 8(10), 945-952 (2011).
- J.-N. Chen, X.-F. Wang, T. Li, et al., *Eur. J. Med. Chem.*, 107, 12 25 (2016).
- V. P. Sheverdov, A. Yu. Andreev, O. V. Ershov, et al., *Khim. Geterotsikl. Soedin.*, No. 7, 1073 1082 (2012).
- Ya. S. Kayukov, P. M. Lukin, O. E. Nasakin, et al., *Khim. Geterotsikl. Soedin.*, No. 4, 497 499 (1997).
- 9. Ya. S. Kayukov, O. E. Nasakin, Ya. G. Urman, et al., *Khim. Geterotsikl. Soedin.*, No. 10, 1395 1410 (1996).
- A. Monks, D. Scudiero, et al., J. Natl. Cancer Inst., 83(11), 757 – 766 (1991).
- https: // dtp.cancer.gov / discovery_development / nci-60 / cell_list.htm
- 12. Ya. S. Kayukov, Russ. J. Org. Chem., 47(3), 392 401 (2011).
- 13. Ya. S. Kayukov, Russ. J. Org. Chem., 48(4), 491-493 (2012).