**ORIGINAL PAPER** 



# Plasma Nitrogen Fixation: $NO_x$ Synthesis in $MnO_x/Al_2O_3$ Packed-Bed Dielectric Barrier Discharge

Tian-Qi Zhang<sup>1,2</sup> · Xiao-Song Li<sup>1,2</sup> · Jing-Lin Liu<sup>2</sup> · Xiao-Qiong Wen<sup>1</sup> · Ai-Min Zhu<sup>1,2</sup>

Received: 5 May 2023 / Accepted: 8 June 2023 / Published online: 26 June 2023 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

## Abstract

The plasma nitrogen fixation for NO<sub>x</sub> synthesis from N<sub>2</sub> and O<sub>2</sub> in MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> packedbed dielectric barrier discharge (DBD) and an enhanced effect of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst are reported. At N<sub>2</sub> content of 50% and *SEI* of ~16 kJ/mol (flow rate of 800 SCCM and discharge power of ~9.5 W), NO<sub>x</sub> production rates are 0.28 SCCM for Al<sub>2</sub>O<sub>3</sub> and 0.42 SCCM for MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>, and improved by ~60% due to the enhanced effect of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>. The enhanced effect becomes more significant at lower specific energy input (SEI) or higher N<sub>2</sub> content (lower O<sub>2</sub> content). The MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>-packed DBD features much more and lower-intensity micro-discharges, larger total capacitance, greater peak-to-peak charge, and higher vibrational temperature of N<sub>2</sub> than the Al<sub>2</sub>O<sub>3</sub>-packed DBD. The surface role of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst in the enhanced effect was disclosed by two-step surface reaction processes and in-situ temperature programed desorption for the adsorbed species of the first step.

**Keywords** Dielectric barrier discharge  $\cdot$  Plasma catalysis  $\cdot$  Nitrogen fixation  $\cdot$  NO<sub>x</sub> synthesis

# Introduction

The use of plasma for nitrogen fixation has attracted great attention in reduction of  $N_2$  to ammonia with hydrogen or oxidation of  $N_2$  to nitrogen oxides (NO<sub>x</sub>, NO+NO<sub>2</sub>) with oxygen [1–10]. The oxidative nitrogen fixation is superior to reductive nitrogen fixation in the cost of feed gas, because air can be directly used for NO<sub>x</sub> synthesis. The NO<sub>x</sub> production rate is limited by  $N_2$  and  $O_2$  dissociation due to high bond energy of  $N_2$  (9.8 eV) and  $O_2$  (5.2 eV). Due to the relatively low electron energy in atmospheric-pressure plasma [11], most of the molecules are in electronically and vibrationally excited states ( $O_2^*, N_2^*$ ),

Xiao-Qiong Wen wenxq@dlut.edu.cn

Ai-Min Zhu amzhu@dlut.edu.cn

<sup>&</sup>lt;sup>1</sup> Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China

<sup>&</sup>lt;sup>2</sup> Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024, China

rather than dissociation to N and O atoms, despite they are considered as the important species from a plausible plasma radical-involving mechanism [12].

The early attempt to promote the reaction of excited molecules was made by the combination of plasma with catalysts using inductively coupled plasma (ICP) at low pressure. For example, Rapakoulias et al. [13] found the enhanced effect of WO<sub>3</sub> and MoO<sub>3</sub> catalysts on NO synthesis and suggested that vibrationally excited nitrogen molecule underwent dissociative adsorption on the catalyst surface and then reacted with oxygen. Gicquel et al. [14] proposed that N atoms or excited N<sub>2</sub> molecules reacted with WO<sub>3</sub> and MoO<sub>3</sub> catalysts to form MoO<sub>3</sub>–N (adsorbed) or MoO<sub>3</sub>–N<sup>\*</sup><sub>2</sub> (adsorbed) and then NO was released. However, the excited N<sub>2</sub> molecules collided with the oxide surface would prefer energy relaxation instead of dissociation due to the very low sticking probability on oxides.

Recently, dielectric barrier discharge (DBD) plasma has been used to study the plasma catalytic synthesis of NO<sub>x</sub>. Patil et al. [15] investigated the effect of various metal oxides (WO<sub>3</sub>, PbO, CuO, Co<sub>3</sub>O<sub>4</sub>, NiO, MoO<sub>3</sub> and V<sub>2</sub>O<sub>5</sub>) supported on Al<sub>2</sub>O<sub>3</sub> on NO<sub>x</sub> synthesis in a DBD reactor. The WO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst increased the NO<sub>x</sub> concentration by about 10% compared to Al<sub>2</sub>O<sub>3</sub> and the authors thought that the vibrationally excited nitrogen molecules have a reaction with the mobile oxygen species on the catalyst surface. Ma et al. [16] investigated the effect of Al<sub>2</sub>O<sub>3</sub> and BaTiO<sub>3</sub> packing on NO<sub>x</sub> synthesis in a DBD reactor. They proposed that the enhanced production of NO<sub>x</sub> was attributed to the increased electron energy due to the presence of packing materials instead of surface-reaction contribution. In our previous work [17], it was found that higher temperatures (> 623 K) were beneficial for the formation of NO<sub>x</sub> on Cu-ZSM-5 catalyst in a DBD reactor. The reaction of nitrogen species with the activated O<sub>2</sub> or adsorbed atomic oxygen on Cu active sites at higher temperatures may improve the NO formation. Taken together, the studies on plasma nitrogen fixation for NO<sub>x</sub> synthesis have rather little reported, and the contribution of surface reaction is still hitherto unknown.

The aim of this work is to study, for the first time,  $NO_x$  synthesis from  $N_2$  and  $O_2$  in  $MnO_x/Al_2O_3$ -packed DBD plasma, because  $MnO_x$  with strong reducibility, multiple oxidation states and oxygen vacancies [18], has a potential to activate the oxygen species. In this work, based upon the comparison with the empty and  $Al_2O_3$ -packed DBD, an enhanced effect on  $NO_x$  production in  $MnO_x/Al_2O_3$ -packed DBD is found. The enhanced effect becomes more significant at lower specific energy input (*SEI*) or higher  $N_2$  content (lower  $O_2$  content). To gain an insight on the enhanced effect of  $MnO_x/Al_2O_3$  catalyst, its electrical discharge characteristics, optical emission spectra and surface role of  $MnO_x/Al_2O_3$  catalyst were further investigated.

#### Experimental Methods

Figure 1 is the schematic diagram of the experimental setup. The DBD reactor is coaxial and consists of a quartz tube (10 mm outer diameter and 8 mm inner diameter), a high voltage electrode (3-mm-diameter stainless steel rod) and a ground electrode (30 mm-height stainless steel mesh). The high voltage electrode was powered by an AC power supply with frequency of 13.3 kHz (CTP-2000 K, Nanjing Suman). The digital oscilloscope (Tektronix MDO3014) recorded signals from a high voltage probe (Tektronix P6015A) and a passive probe connected with a 51  $\Omega$  sampling resistor or a 0.22  $\mu$ F sampling capacitor, then voltage-current waveforms or charge–voltage Lissajous figures were obtained. The input power ( $P_{in}$ ) was directly measured by a wattmeter from the power supply, and the discharge



Fig. 1 Schematic diagram of the experimental setup. AC alternating current, H.V. high voltage, FTIR Fourier transform infrared spectroscopy, MS mass spectrometer

power was calculated from the Lissajous figure. One of three types of circuits, including a sampling resistor, sampling capacitor and short circuit, was chosen to connect the switch without stopping discharge. The specific energy input (*SEI*) is defined as,

$$SEI = \frac{P_{dis}}{F_{in}}$$

where  $P_{dis}$  and  $F_{in}$  are the discharge power and the gas inlet flow rate, respectively.

Optical emission spectroscopy (OES) was used for the plasma diagnostic. The fiberoptic probe is perpendicular to the DBD reactor, and the distance between the reactor wall and fiber is 45 mm. The light emitted from the DBD plasma was measured by a highresolution spectrometer (Andor Shamrock SR-750, 1200 grooves/mm grating, 50 µm width slit) along with an intensified charge-coupled device (ICCD) detector (Andor iStar DH334). The spectrum was recorded with exposure time of 0.5 s and 20 accumulations. The second positive system of N<sub>2</sub> ( $C^3\Pi_u \rightarrow B^3\Pi_g$ ) was used to evaluate the rotational ( $T_r$ ) and vibrational ( $T_v$ ) temperatures by the method reported previously [19]. Fig. S1 gives an example of experimental and fitted spectra for evaluating the rotational and vibrational temperatures.

 $N_2$  and  $O_2$  gases (purity 99.999%), whose flow rates were adjusted by mass flow controllers, were fed separately or mixed into the reactor. The outlet gas from the reactor flowed into the gas cell of the Fourier transform infrared (FT-IR) spectrometer (IGS gas analyzer, Thermo Fisher, USA). The concentrations of NO, NO<sub>2</sub>, N<sub>2</sub>O and O<sub>3</sub> were monitored online by the FT-IR spectrometer, equipped with an MCT detector, in a scanning range of 600–4000 cm<sup>-1</sup> and at a resolution of 0.5 cm<sup>-1</sup>. N<sub>2</sub> was used to purge the gas cell and gas pipelines for removing air and water before measurement. The time for data collection is more than 20 min, which is enough to reach a steady concentration of the products even under a minimal flow rate (400 SCCM).

It is needed to note, there exist N<sub>2</sub>O and NO<sub>2</sub> impurities in NO standard gas due to NO decomposition at high pressures of gas cylinder. Hence, the calibration curve of NO was obtained by using N<sub>2</sub>-balanced NO<sub>2</sub> standard gas, which went through a molybdenum converter to obtain accurate concentrations of NO for NO calibration. The concentrations of NO and N<sub>2</sub>O were quantified in the range of 1880–1960 cm<sup>-1</sup> and 2140–2280 cm<sup>-1</sup>, respectively. To quantify NO<sub>2</sub>, 1880–1960 cm<sup>-1</sup> (below 1000 ppm) and 2820–2950 cm<sup>-1</sup> (between 1000 and 10,000 ppm) were employed. The concentration calibration curves of NO and NO<sub>2</sub> are shown in Fig. S2. Figure 2 shows a typical FTIR spectra. Because NO is easily oxidized to NO<sub>2</sub> in O<sub>2</sub>-containing gas, the concentration of NO<sub>x</sub> is defined as the sum of NO and NO<sub>2</sub> and it was adopted to evaluate the reaction performance.

The MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts were prepared by incipient wetness impregnation of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> pellets (diameter ~1 mm) in manganese nitrate solution for 12 h at room temperature. The impregnated samples were dried at 120 °C for 4 h and then calcined at 450 °C in static air for 4 h. The nominal content in Mn of the MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst is 9 wt%. The X-ray diffraction (XRD) patterns were obtained by using D8 Advance X-ray Diffractometer (Bruker, Germany, Cu K $\alpha$ , 0.154056 nm). The XRD profile of the as-prepared MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> is shown in Fig. S3, showing that the MnO<sub>x</sub> with weak crystallinity of  $\beta$ -MnO<sub>2</sub>. The morphology of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts was observed by a field emission scanning electron microscopy (FE-SEM, JSM-7900F, JEOL LTD, Japan). The SEM images with energy dispersive spectroscopy (EDS) analysis of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>, as shown in Fig. S4, indicate an even dispersion of MnO<sub>x</sub> on the Al<sub>2</sub>O<sub>3</sub> support. Before plasma reaction, the catalysts packed into the DBD reactor were in-situ purified with 100 SCCM N<sub>2</sub> at 400 °C for 0.5 h using a tubular furnace, then cooled down to room temperature for starting the plasma catalytic reaction.

To gain an insight into the  $MnO_x/Al_2O_3$  catalyst enhanced  $NO_x$  synthesis, the plasma catalytic reaction was separated into two steps. At the first step, the catalyst was treated by one of N<sub>2</sub> and O<sub>2</sub> plasmas for 20 min with a flow rate of 100 SCCM at  $P_{in}=20$  W; at the second step, the catalyst was treated by the other one at the same flow rate and  $P_{in}$  as the



**Fig. 2** The FTIR spectra of the products in the empty,  $Al_2O_3$ -packed and  $MnO_x/Al_2O_3$ -packed DBD reactor at discharge time of 20 min. Conditions:  $F_{in} = 400$  SCCM, 50%  $N_2 + 50\% O_2$ ,  $P_{in} = 20$  W ( $P_{dis}$  of empty,  $Al_2O_3$ -packed and  $MnO_x/Al_2O_3$ -packed DBD are 9.6, 9.4 and 9.9 W, respectively)

first step. For the  $MnO_x/Al_2O_3$  catalyst, the gaseous and surface products of the second step  $(N_2 \text{ plasma})$  after  $O_2$  adsorption or  $O_2$  plasma for the first step were compared. Moreover, the adsorbed species of the first step were analyzed by in-situ temperature programed desorption (TPD). After the first step, the in-situ TPD was carried out from room temperature to 400 °C at a ramp rate of 10 °C/min, and kept at 400 °C for 30 min in Ar gas of 100 SCCM. A mass spectrometer (MS, Hiden HPR20, UK) with a heated (at 393 K) quartz inert capillary inlet was used to monitor online the products during the two-step surface reaction processes and the in-situ TPD.

## **Results and Discussion**

#### Enhanced Effect of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> Catalyst on NO<sub>x</sub> Synthesis

Figure 3 shows the NO<sub>x</sub> concentrations produced in the empty,  $Al_2O_3$ -packed, or  $MnO_x/Al_2O_3$ -packed DBD reactor at flow rate of 600 SCCM and 50% nitrogen content. The NO<sub>x</sub> concentrations of the empty and  $Al_2O_3$ -packed DBD are very close at discharge power of about 9.5 W (Case A in Fig. 3) being 506 and 513 ppm, respectively. Nonetheless, the NO<sub>x</sub> concentration increases significantly to 755 ppm in  $MnO_x/Al_2O_3$ -packed DBD, which is much higher than those of the empty and  $Al_2O_3$ -packed DBD. Likewise, at discharge power of about 17 W (Case B in Fig. 3), NO<sub>x</sub> concentration of the  $MnO_x/Al_2O_3$ -packed DBD is the highest, reaching 1300 ppm. This demonstrates that  $MnO_x/Al_2O_3$  catalyst has an enhanced effect on NO<sub>x</sub> production.

By varying discharge power or flow rate, the effect of *SEI* on NO<sub>x</sub> concentration and production rate in the Al<sub>2</sub>O<sub>3</sub>-packed and MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>-packed DBD at 50% nitrogen content is presented in Fig. 4. At a fixed flow rate, the residence time is kept at constant and thus the effect of *SEI* by changing discharge power is a single-factor examination. The *SEI* means the average energy absorbed by each molecule for activation and reaction in plasma. The increase of *SEI* leads to a rise in electron density, so higher *SEI* is benefit to the formation of more active species of nitrogen and oxygen to promote the production of NO<sub>x</sub>. As a result, NO<sub>x</sub> concentration and production rate increase rapidly with *SEI* by changing discharge power (Fig. 4a), which accords with the literature reported in plasma catalytic ammonia synthesis [20]. The *SEI* can

**Fig. 3** The NO<sub>x</sub> concentration produced in the DBD reactor. Conditions:  $F_{in} = 600$  SCCM,  $50\% N_2 + 50\% O_2$ . Case A:  $P_{dis}$ of empty, Al<sub>2</sub>O<sub>3</sub>-packed and MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>-packed DBD at  $P_{in} = 20$  W are 9.6, 9.5 and 9.7 W, respectively; Case B:  $P_{dis}$  of empty, Al<sub>2</sub>O<sub>3</sub>-packed and MnO<sub>x</sub>/ Al<sub>2</sub>O<sub>3</sub>-packed DBD at  $P_{in} = 30$ W are 16.8, 16.9 and 17.3 W, respectively



🖄 Springer



**Fig. 4** NO<sub>x</sub> concentration and production rate versus *SEI* by changing, **a** discharge power and **b** flow rate. Conditions: 50% N<sub>2</sub>+50% O<sub>2</sub>. **a**  $F_{in}$ =400 SCCM,  $P_{dis}$  of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> (Al<sub>2</sub>O<sub>3</sub>) are 5.2 (5.2), 9.6 (9.4) and 17.3 (17.1) W at  $P_{in}$  of 15, 20 and 30 W, respectively; **b**  $P_{in}$ =20 W,  $P_{dis}$  of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> (Al<sub>2</sub>O<sub>3</sub>) are 9.9 (9.4), 9.7 (9.5) and 9.5 (9.1) W for  $F_{in}$  of 400, 600 and 800 SCCM, respectively

also be varied by adjusting flow rate when the power is fixed, however, the residence time is changed accordingly. Interestingly, as shown in Fig. 4b (by changing flow rate), the NO<sub>x</sub> production rate rises very slow with *SEI* for Al<sub>2</sub>O<sub>3</sub>-packed, and even turns to decrease slightly after a small increase for MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>-packed. Figure 4b is a result of combined effect of *SEI* and residence time. The long residence time brings about further oxidation of NO<sub>x</sub>-N<sub>2</sub>O<sub>5</sub> [21], or NO decomposition into N<sub>2</sub> and O<sub>2</sub> [22, 23], which weakens or overwhelms the positive effect of *SEI* on NO<sub>x</sub> production.

Moreover, Fig. 4 shows that NO<sub>x</sub> concentration and production rate of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> are higher than that of Al<sub>2</sub>O<sub>3</sub> at the same *SEI*, supporting again the enhanced effect of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst. Especially at lower *SEI*, MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst provides greater enhanced effect on NO<sub>x</sub> production rate. For example, at *SEI* of ~ 16 kJ/mol (Fig. 4b), NO<sub>x</sub> production rates are 0.26 SCCM for Al<sub>2</sub>O<sub>3</sub> and 0.42 SCCM for MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>. The MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst improves the NO<sub>x</sub> production rate by ~ 60% compared to Al<sub>2</sub>O<sub>3</sub>, which is much higher than the reported enhancement (at most 10%) of active metal oxides (e.g., WO<sub>3</sub>) supported on Al<sub>2</sub>O<sub>3</sub> [15].

Figure 5 shows the effect of  $N_2$  content on  $NO_x$  production in the packed-bed DBD reactor. The discharge powers are very close at the same input power, as shown in Fig. S5. With the increase of  $N_2$  content from 40 to 90%,  $NO_x$  concentrations present volcano-shaped variation, and the peak concentrations of  $NO_x$  fall in the  $N_2$  content range from 50 to 70%. Within the investigated range of  $N_2$  content,  $MnO_x/Al_2O_3$  catalyst exhibits much higher  $NO_x$  concentration than  $Al_2O_3$ .

According to NO<sub>x</sub> concentration and total flow rate in Fig. 5a, the ratio of NO<sub>x</sub> production rate of  $MnO_x/Al_2O_3$  to  $Al_2O_3$  versus N<sub>2</sub> content is shown in Fig. 5b. As N<sub>2</sub> content increases from 40 to 90%, NO<sub>x</sub> production rate ratio of  $MnO_x/Al_2O_3$  to  $Al_2O_3$  climbs linearly from 1.3 to 1.6. It can be concluded that  $MnO_x/Al_2O_3$  catalyst displays greater enhancement on NO<sub>x</sub> production at higher N<sub>2</sub> content (lower O<sub>2</sub> content).

To gain an insight on the enhanced effect of  $MnO_x/Al_2O_3$  catalyst, its electrical discharge characteristics, OES and surface role of the catalyst were further investigated.



Fig. 5 Effect of N<sub>2</sub> content on a NO<sub>x</sub> concentration and b NO<sub>x</sub> production rate ratio of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> to Al<sub>2</sub>O<sub>3</sub>. Conditions:  $P_{in} = 20$  W,  $F_{in} = 600$  SCCM,  $P_{dis}$  is shown in Fig. S5

#### Electrical Discharge Characteristics and OES Diagnostic

Figure 6 shows the waveforms of current–voltage for the empty,  $Al_2O_3$ -packed, or  $MnO_3/$ Al<sub>2</sub>O<sub>3</sub>-packed DBD reactors. The corresponding charge-voltage Lissajous figures for the three cases are displayed in Fig. 7, obtaining their discharge powers of about 17 W. The current pulses variation with time in Fig. 6 and the discharge appearance in Fig. S6 indicate that the discharge is in the typical filamentary mode with a large amount of microdischarges [24]. In the case of the  $MnO_x/Al_2O_3$ -packed DBD, the filamentary discharge becomes weak micro-discharge along with surface discharge. The current waveforms between empty DBD and Al<sub>2</sub>O<sub>3</sub>-packed DBD are very similar, there existing tens of current pulses in a quarter cycle of applied voltage, and the Lissajous figures are similar to parallelogram (Fig. 7). In contrast, the MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>-packed DBD exhibits more current pulses with lower intensity (Fig. S7) and the Lissajous figure becomes a distorted parallelogram. The Lissajous figures show the relationship between the transferred charge in the circuit and the voltage applied to the DBD plasma. From the slope of the upper and lower edges of the parallelogram, the total capacitance of the DBD can be estimated. The MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>-packed DBD has larger total capacitance than the empty and Al<sub>2</sub>O<sub>3</sub>-packed DBD, which is caused by that MnO<sub>x</sub> is a kind of semiconductor material. The peak-topeak voltages are almost equal in the three cases in Fig. 7, but the peak-to-peak charge in the case of  $MnO_{x}/Al_{2}O_{3}$  is greater than the other two cases. A similar phenomenon was observed in the BaTiO<sub>3</sub>-packed DBD [16]. Compared with the empty and  $Al_2O_3$ -packed DBD, the  $MnO_x/Al_2O_3$ -packed DBD shows special discharge characteristics and features much more and lower-intensity micro-discharges, leading to an increase in collision probability of electrons and reactant molecules. This is advantageous to the generation of more active species and promotes the subsequent reaction for NO<sub>x</sub> formation.

At the same conditions as Fig. 5, the variations in rotational temperature ( $T_r$ ) and vibrational ( $T_v$ ) temperatures of N<sub>2</sub> molecule from fitting the OES results with N<sub>2</sub> content are shown in Fig. 8. In the packed-bed DBD, the vibrational temperatures of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> are higher than those of Al<sub>2</sub>O<sub>3</sub>, with an average increase of about 230 K. The MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>packed DBD features much more and lower-intensity micro-discharges, larger total capacitance and greater peak-to-peak charge than the Al<sub>2</sub>O<sub>3</sub>-packed DBD, leading to a somewhat



**Fig. 6** Waveforms of applied voltage and discharge current in **a** empty, **b** Al<sub>2</sub>O<sub>3</sub>-packed and **c** MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>-packed DBD. Conditions:  $F_{in} = 600$  SCCM, 50% N<sub>2</sub>+50% O<sub>2</sub>,  $P_{in} = 30$  W





increase in electron density. This is favorable to forming more vibrationally-excited nitrogen molecules with high vibration quantum number, thus bring about a rise in the vibrational temperature of  $MnO_x/Al_2O_3$ . The differences in rotational temperature between  $MnO_x/Al_2O_3$  and  $Al_2O_3$  are not significant, and they are equivalent if considering fitting deviation.

For the packed-bed DBD, the rotational temperature is independent of  $N_2$  content. By contrast, the vibrational temperature decreases with  $N_2$  content probably due to the decrease of average energy per  $N_2$  molecule from vibrational excitation. The lower  $T_v$  at higher  $N_2$  content suggests that the populations of the high-lying vibrational levels of  $N_2$  decline with the number of  $N_2$  molecules.

### Insight into Surface Role of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> Catalyst in the NO<sub>x</sub> Production

To gain an insight into surface role of  $MnO_x/Al_2O_3$  catalyst in the NO<sub>x</sub> production, the twostep surface reaction processes and in-situ TPD for the adsorbed species of the first step were implemented. For MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>, after the first step of O<sub>2</sub> adsorption or O<sub>2</sub> plasma, the MS signal during the second step of N<sub>2</sub> plasma is shown in Fig. 9a, b, respectively.  $MnO_x/Al_2O_3$  catalyst in N<sub>2</sub> plasma after O<sub>2</sub> adsorption is unable to produce NO (Fig. 9a). However, after  $O_2$  plasma, NO can be produced significantly in  $N_2$  plasma and plenty of  $O_2$  is released from the oxygen species adsorbed on  $MnO_x/Al_2O_3$  surface (Fig. 9b). This indicates that the oxygen species involved in production of NO and O<sub>2</sub> in Fig. 9b derive from  $O_2$  plasma, rather than from  $O_2$  adsorption. As expected, on the  $Al_2O_3$  surface, there is no production of NO and  $O_2$  even after  $O_2$  plasma (Fig. 9c). It can be concluded that O<sub>2</sub> plasma results in the production of oxygen species on MnO<sub>x</sub> surface, providing the required oxygen source for the formation of NO in N<sub>2</sub> plasma. The conclusion is confirmed again by in-situ TPD for the adsorbed species of the first step. The MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst after  $O_2$  plasma presents obviously a desorption peak of  $O_2$  at 652 K, compared with that after  $O_2$  adsorption (Fig. 10a). In contrast, there is no desorption peak of  $N_2$  on the  $MnO_x/$  $Al_2O_3$  catalyst, whether after  $N_2$  plasma or after  $N_2$  adsorption (Fig. 10b).

When  $MnO_x/Al_2O_3$  catalyst is exposed to  $O_2$  plasma, the oxygen vacancies on  $MnO_x$  surface may serve as the active sites of the excited-state oxygen molecules ( $O_2^*$ ) produced



**Fig. 9** MS signals of m/z=30 (NO) and m/z=32 (O<sub>2</sub>) from N<sub>2</sub> plasma: **a**  $MnO_x/Al_2O_3$  after O<sub>2</sub> adsorption, **b**  $MnO_x/Al_2O_3$  after O<sub>2</sub> plasma, and **c**  $Al_2O_3$  after O<sub>2</sub> plasma. Conditions: O<sub>2</sub> adsorption ( $F_{in}=100$  SCCM, 20 min); O<sub>2</sub> plasma ( $F_{in}=100$  SCCM,  $P_{in}=20$  W, 20 min); N<sub>2</sub> plasma ( $F_{in}=100$  SCCM,  $P_{in}=20$  W, 45 min)



**Fig. 10** MS signals of TPD at **a** m/z=32 after O<sub>2</sub> plasma or adsorption, and **b** m/z=28 after N<sub>2</sub> plasma or adsorption on MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst. Conditions (before TPD): O<sub>2</sub> or N<sub>2</sub> plasma ( $F_{in}=100$  SCCM,  $P_{in}=20$  W, 20 min); O<sub>2</sub> or N<sub>2</sub> adsorption ( $F_{in}=100$  SCCM, 20 min)

from plasma, which may be electronically (e.g., metastable-state  $O_2({}^1\Delta_g)$ ) and vibrationally excited. The  $O_2^*$  species on  $MnO_x/Al_2O_3$  catalyst becomes adsorbed oxygen atoms ( $O_{ad}$ ) by dissociation adsorption.

If the  $MnO_x/Al_2O_3$  catalyst is only exposed to  $N_2$  gas after  $O_2$  plasma, there is no NO production, as shown in Fig. S8a, confirming that the adsorbed oxygen atoms ( $O_{ad}$ ) on  $MnO_x/Al_2O_3$  catalyst has no efficient energy to react with ground-state  $N_2$  molecule. This implies that the  $O_{ad}$  species on  $MnO_x/Al_2O_3$  catalyst can only react with the excited-state nitrogen molecules ( $N_2^*$ ) produced from plasma, including electronically (e.g.,

metastable-state  $N_2(A^3 \Sigma_u^+)$ ,  $N_2(B^3 \Pi_g)$ ,  $N_2(C^3 \Pi_u)$ ) and vibrationally ( $N_2$  (v)) excited nitrogen molecules.

Furthermore, if the  $MnO_x/Al_2O_3$  catalyst, after exposure to  $N_2$  plasma of the first step, is incapable of producing NO in  $O_2$  plasma of the second step, as shown in Fig. S8b. It is evidenced that the  $N_2^*$  species are unable to adsorb on  $MnO_x/Al_2O_3$  catalyst (Fig. 10b), due to the very low dissociative sticking probability [25]. It can be concluded that the  $O_2^*$  species in plasma may turn into the atomic oxygen species ( $O_{ad}$ ) adsorbed on  $MnO_x/Al_2O_3$  catalyst by means of dissociation adsorption, and then the  $O_{ad}$  species react with the  $N_2^*$  species coming from plasma to form NO, as illustrated in Fig. 11. The contribution of  $MnO_x/Al_2O_3$ catalyst to  $NO_x$  formation becomes greater under lower  $O_2$  content (higher  $N_2$  content), which is consistent with the dependence of enhancement of  $MnO_x/Al_2O_3$  on  $N_2$  content in Fig. 5b.

## Conclusions

Based upon the comparison with the empty and  $Al_2O_3$ -packed DBD, an enhanced effect on  $NO_x$  production in  $MnO_x/Al_2O_3$ -packed DBD is reported. At  $N_2$  content of 50% and *SEI* of ~16 kJ/mol (flow rate of 800 SCCM and discharge power of ~9.5 W),  $NO_x$  production rates are 0.28 SCCM for  $Al_2O_3$ -packed and 0.42 SCCM for  $MnO_x/Al_2O_3$ -packed.

When the flow rate is fixed, the NO<sub>x</sub> concentration and production rate increase rapidly with *SEI*. In contrast, when the flow rate is changed, the NO<sub>x</sub> production rate rises very slow with *SEI* for Al<sub>2</sub>O<sub>3</sub>-packed, and even turns to decrease slightly after a small increase for MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>-packed. NO<sub>x</sub> concentration presents volcano-shaped variation with N<sub>2</sub> content and the peak concentrations of NO<sub>x</sub> fall in N<sub>2</sub> contents of 50–70%. As N<sub>2</sub> content increases from 40 to 90%, NO<sub>x</sub> production rate ratio of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> to Al<sub>2</sub>O<sub>3</sub> grows



Fig. 11 Illustrating the surface contribution to MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>-enhanced NO<sub>x</sub> production

linearly from 1.3 to 1.6. In brief, the enhanced effect becomes more significant at lower *SEI* or higher  $N_2$  content (lower  $O_2$  content).

The MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>-packed DBD features much more and lower-intensity micro-discharges, larger total capacitance and greater peak-to-peak charge than the Al<sub>2</sub>O<sub>3</sub>-packed DBD, forming more vibrationally-excited nitrogen molecules with high vibration quantum number, thus bring about a rise in the vibrational temperature of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>. The surface role of MnO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst in the enhanced effect was disclosed by two-step surface reaction processes and in-situ TPD for the adsorbed species of the first step. The O<sub>2</sub><sup>\*</sup> species in plasma may turn into the O<sub>ad</sub> species react with the N<sub>2</sub><sup>\*</sup> species coming from plasma to form NO.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11090-023-10345-8.

Author Contributions TQZ: Investigation, Data curation, Validation, Writing—Original draft. XSL, JLL and XQW: Methodology, Formal analysis, Visualization, Writing—Reviewing and Editing. AMZ: Conceptualization, Supervision, Resources, Funding acquisition, Writing- Reviewing and Editing.

**Funding** This work is supported by the National Natural Science Foundation of China (22278052, 11975069) and the Liaoning Revitalization Talent Program (XLYC2008032).

Data Availability Data are available on request from the authors.

# Declarations

**Conflict of interests** The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval Not applicable.

# References

- 1. Patil BS, Wang Q, Hessel V, Lang J (2015) Plasma N<sub>2</sub>-fixation: 1900–2014. Catal Today 256:49–66
- Abdelaziz AA, Ishijima T, Osawa N, Seto T (2019) Quantitative Analysis of ozone and nitrogen oxides produced by a low power miniaturized surface dielectric barrier discharge: effect of oxygen content and humidity level. Plasma Chem Plasma Process 39:165–185
- Abdelaziz AA, Kim HH (2020) Temperature-dependent behavior of nitrogen fixation in nanopulsed dielectric barrier discharge operated at different humidity levels and oxygen contents. J Phys D Appl Phys 53:17
- 4. Han YF, Wen SY, Tang HW, Wang XH, Zhong CS (2018) Influences of frequency on nitrogen fixation of dielectric barrier discharge in air. Plasma Sci Technol 20:7
- Zhang S, Zong LJ, Zeng X, Zhou RW, Liu Y, Zhang C, Pan J, Cullen PJ, Ostrikov K, Shao T (2022) Sustainable nitrogen fixation with nanosecond pulsed spark discharges: insights into free-radical-chain reactions. Green Chem 24:1534–1544
- Van Alphen S, Eshtehardi HA, O'Modhrain C, Bogaerts J, Van Poyer H, Creel J, Delplancke MP, Snyders R, Bogaerts A (2022) Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor. Chem Eng J 443:12
- Jardali F, Van Alphen S, Creel J, Eshtehardi HA, Axelsson M, Ingels R, Snyders R, Bogaerts A (2021) NOx production in a rotating gliding arc plasma: potential avenue for sustainable nitrogen fixation. Green Chem 23:1748–1757
- Vervloessem E, Aghaei M, Jardali F, Hafezkhiabani N, Bogaerts A (2020) Plasma-based N<sub>2</sub> fixation into NOx: insights from modeling toward optimum yields and energy costs in a gliding arc plasmatron. ACS Sustain Chem Eng 8:9711–9720

- Gorbanev Y, Vervloessem E, Nikiforov A, Bogaerts A (2020) Nitrogen fixation with water vapor by nonequilibrium plasma: toward sustainable ammonia production. ACS Sustain Chem Eng 8:2996–3004
- Wang WZ, Patil B, Heijkers S, Hessel V, Bogaerts A (2017) Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling. Chemsuschem 10:2145–2157
- 11. Lu X, Bruggeman PJ, Reuter S, Naidis G, Bogaerts A, Laroussi M, Keidar M, Robert E, Pouvesle J-M, Liu D, Ostrikov K (2022) Grand challenges in low temperature plasmas. Front Phys 10:1040658
- Liu TW, Gorky F, Carreon ML, Gomez-Gualdron DA (2022) Energetics of reaction pathways enabled by N and H radicals during catalytic, plasma-assisted NH<sub>3</sub> synthesis. ACS Sustain Chem Eng 10:2034–2051
- Rapakoulias D, Cavadias S, Amouroux J (1980) Processus catalytiques dans un réacteur à plasma hors d'équilibre II. Fixation de l'azote dans le système N<sub>2</sub>–O<sub>2</sub>. Rev Phys Appl 15:1261–1265
- Gicquel A, Cavadias S, Amouroux J (1986) Heterogeneous catalysis in low-pressure plasmas. J Phys D Appl Phys 19:2013
- Patil BS, Cherkasov N, Lang J, Ibhadon AO, Hessel V, Wang Q (2016) Low temperature plasma-catalytic NO<sub>x</sub> synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides. Appl Catal B 194:123–133
- Ma Y, Wang Y, Harding J, Tu X (2021) Plasma-enhanced N2 fixation in a dielectric barrier discharge reactor: effect of packing materials. Plasma Sources Sci Technol 30:105002
- 17. Sun Q, Zhu AM, Yang XF, Niu JH, Xu Y (2003) Formation of  $NO_x$  from  $N_2$  and  $O_2$  in catalyst-pellet filled dielectric barrier discharges at atmospheric pressure. Chem Commun 9:1418–1419
- Dong Y, Sun J, Ma X, Wang W, Song Z, Zhao X, Mao Y, Li W (2022) Study on the synergy effect of MnO<sub>x</sub> and support on catalytic ozonation of toluene. Chemosphere 303:134991
- Zhao TL, Xu Y, Song YH, Li XS, Liu JL, Liu JB, Zhu AM (2013) Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra. J Phys D Appl Phys 46:345201
- Gershman S, Fetsch H, Gorky F, Carreon ML (2022) Identifying regimes during plasma catalytic ammonia synthesis. Plasma Chem Plasma Process 42:731–757
- Cheng H, Li Y, Zheng K, Liu D, Lu X (2021) Numerical analysis of nitrogen fixation by nanosecond pulse plasma. J Phys D Appl Phys 54:184003
- 22. Katabathini N, Maksod IHAE, Mokhtar M (2021) Cu, Fe and Mn oxides intercalated SiO<sub>2</sub> pillared magadiite and ilerite catalysts for NO decomposition. Appl Catal A 616:118100
- Goto N, Kudo S, Motoyama H, Ohyama S (2002) Direct decomposition technique for NO in O<sub>2</sub>–N<sub>2</sub> mixture using barrier discharge and Cu zeolite. Jpn J Appl Phys Part 2 41:L64–L66
- van't Veer K, van Alphen S, Remy A, Gorbanev Y, De Geyter N, Snyders R, Reniers F, Bogaerts A (2021) Spatially and temporally non-uniform plasmas: microdischarges from the perspective of molecules in a packed bed plasma reactor. J Phys D Appl Phys 54:174002
- Rouwenhorst KHR, Jardali F, Bogaerts A, Lefferts L (2021) From the Birkeland-Eyde process towards energy-efficient plasma-based NOx synthesis: a techno-economic analysis. Energy Environ Sci 14:2520–2534

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.