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Abstract The present work investigates experimentally the effect of H2O vapor on the

removal of NO at elevated temperatures. Breakdown voltage, discharge characteristics and

NO removal efficiency were studied under various conditions of water vapor content. The

experimental results indicate H2O can greatly enhance the NO removal efficiency from a

NO/O2/N2/C2H4/H2O system, but the breakdown voltage increases as the relative humidity

of the gas increases. Moreover, the effect of temperature on NO removal at a relative gas

humidity of 30 % was analyzed. With an increase in temperature, E/N increased, pro-

ducing more active species and energetic electrons; electron detachment also became

significant at high temperature and the rates of major reactions were promoted, intensifying

the conversion of NO.

Keywords Dielectric barrier discharge � NO removal � Water vapor � Temperature

Introduction

Non-thermal plasmas associated with electrical discharges, for example, in pulse corona

discharge [1, 2], radio frequency (rf) discharge [3], and dielectric barrier discharge (DBD)

[4–6], have been extensively studied for their removal of nitrogen oxides (NOx). NOx

emitted from diesel engines and thermal power plants has become an urgent problem. The

major method for removing NOx from lean exhaust gases is selective catalytic reduction

(SCR). The optimal temperature of the SCR method is around 300–350 �C, while the

temperature of diesel exhaust is typically 100–200 �C, and the typical temperature of gas

emitted from thermal power plants is around 100 �C. SCR systems require additional fuel

injection to generate the conditions required to reduce NOx. These constitute a few percent
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of the total operation cost. Exhaust emitted from diesel engines and thermal power plants

also contain different volume fractions of water vapor, depending on the driving

conditions.

The main role of the dielectric barrier discharge in NOx removal has been understood to

be the oxidation of NO to NO2. It was later found that the presence of hydrocarbons in the

gas promotes the oxidation reactions. Shin and Yoon [7] simulated the effects of ethylene

on NO removal in a non-thermal plasma, indicating that the ethylene additive strongly

enhanced the NO removal efficiency. Yin [8] showed that increasing the water vapor

content in an N2/NO/H2O system decreased the NO removal efficiency significantly. Zhu

[9] studied experimentally the conversion of NO in NO/N2, NO/O2/N2, NO/C2H4/N2 and

NO/C2H4/O2/N2 systems.

For applications to the treatment of NOx from diesel engines and thermal power plants

by DBD, it is necessary to determine the discharge characteristics and reaction mech-

anism in the NO/O2/N2/C2H4/H2O system. Up until now, there have been few specific

reports in the literature that considered the effect of water vapor and temperature on NO

removal using C2H4 as an additive. The objective of this study was to systematically

analyze the effect of water vapor. The experiments were carried out at different water

vapor contents and temperatures, investigating the breakdown voltage and NO removal

efficiency.

Experimental Section

Experimental Design

The schematic diagram of the experimental setup is shown in Fig. 1. Flow rates of all gases

were controlled by mass flow controllers (MFC). Gases were mixed completely and flowed

into the reactor. Exhaust gas was absorbed by alkali. The concentrations of NO and NO2

were measured by a gas analyzer (TESTO Pro.350). The consumed energy in the reactor

was obtained using a voltage–charge curve (V–Q Lissajous figure), which was obtained

using an oscilloscope (Rigol DS1202CA, 2-Gs/s maximum sampling rate, 200 MHz

bandwidth).
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Fig. 1 Schematic diagram of DBD plasma experiment
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The main components of the feed gas to simulate practical exhaust gas contained 500

ppmv (parts per million, volumetric) NO, 1,000 ppmv hydrocarbon C2H4, 6 % O2 and N2

as the balance gas. The total flow rate was 10 L/min.

HV in Fig. 1 is a high voltage transformer, which was connected to the power source.

The voltage from the power source could be increased by 1,000 times with the high voltage

transformer. The final output voltage to generate the plasmas in the DBD reactor was

within 0–30 kV, the frequency was 10 kHz, measure capacitance (Cm) equaled 0.14 lF

and the voltage was decreased 1,000 fold by a capacitive divider (that is,

C1:C2 = 1,000:1).

The DBD reactor was made of a dielectric layer tube with a thickness of 2 mm. The

inner diameter was 24 mm and the length was 530 mm. The material of the dielectric layer

tube was quartz. The dielectric layer tube was wrapped in copper mesh with a length of

450 mm. The material of the inner electrode was copper with a diameter of 12 mm.

When taking the effect of H2O into account, an extra device, an ultrasonic atomizer

(max C3 mL/min, 402 AI), was used to humidify the N2 and O2. The component of H2O

was adjusted by controlling the degree of atomization, and the humidity was measured by a

psychrometer (±3 % RH, testo 605-H1) located at the entrance to the reactor. When

studying the effects of temperature on NO removal by DBD, wet gases including N2, O2

and H2O, flowed into the tube type resistance furnace (SK2-2.5-13TS). And after the

relative humidity showing on the psychrometer remained stable, the gases were heated by

the resistance furnace, and the temperature was controlled by a temperature regulator

(KSYD-6.3-16Z). The experiments proceeded when the thermometer detected a stable

temperature of the input gases (Table 1).

Definition of Energy Density

The definition of energy density is given in Eq. 1. The discharge power was obtained from

the V–Q curve of the Lissajous figure (see Fig. 2), and the method adopted to measure the

discharge power is as follows [10].

Table 1 Major reactions and their rate coefficients

Reactions No. Rate coefficients(cm3�s-1) References

25 �C 90 �C 130 �C

eþ H2O! Hþ OHþ e R1 f (E/N) [15]

eþ H2O! H� þ OH R2 f (E/N) [15]

eþ N2 ! eþ Nþ N R3 f (E/N) [16]

C2H4 þ OH! C2H4OH R4 9.00 9 10-12 9.00 9 10-12 9.00 9 10-12 [18]

Hþ O2 ! HO2 R5 9.47 9 10-11 1.03 9 10-10 1.11 9 10-10 [20]

C2H4OHþ 2O2 þ 2NO!
2CH2Oþ 2NO2 þ 2OH

R6 – – – [28]

HO2 þ NO! NO2 þ OH R7 2.74 9 10-13 6.46 9 10-13 1.18 9 10-12 [28]

OHþ NO! HNO2 R8 2.99 9 10-11 5.31 9 10-11 7.91 9 10-11 [8]

HNO2 þ OH! NO2 þ H2O R9 4.96 9 10-12 6.29 9 10-12 7.64 9 10-12 [8]

H2Oþ N! HNþ OH R10 5.44 9 10-39 7.25 9 10-34 2.77 9 10-30 [8]

HNþ OH! NOþ H2 R11 8.00 9 10-11 8.00 9 10-11 8.00 9 10-11 [8]

The rate coefficients were obtained from NIST chemical kinetics database
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e ¼ P=Q ð1Þ
In Eq. 1, e is energy density, J/L; P is discharge power, W; and Q is gas flow, L/s.

Definition of Removal Efficiency

NO and NOx removal efficiencies are defined by Eqs. 2 and 3. The input and output

concentrations were obtained using the gas analyzer.

gNO ¼ cin;NO � cout;NO

� ��
cin;NO � 100 % ð2Þ

gNOx
¼ cin;NO � cout;NO � cout;NO2

� ��
cin;NO � 100 % ð3Þ

In Eqs. 2 and 3, gNO is NO removal efficiency, gNOx
is NOx (NO and NO2) removal

efficiency, cin,NO is the input concentration of NO, cout,NO is the output concentration of

NO, and cout;NO2
is the output concentration of NO2.

Results and Discussion

Effects of Water Vapor on Breakdown Voltage

To examine the effects of water vapor on NO removal by DBD in the NO/N2/O2/C2H4/

H2O system, we added water vapor into the experimental gas, adjusting the relative

humidity of the gases to 30, 60 and 90 %, respectively. Figure 3 shows the breakdown

voltage under conditions of different relative humidity; the breakdown voltage was 11.7,

13.3 and 15.5 kV as the relative humidity of the gas was increased from 30 to 60 to 90 %,

respectively. In the DBD reactor, a neutral molecule of gas in a region with a strong

electrical field is ionized by an exogenous environmental event (e.g. the result of a photon

interaction), to create a positive ion and a free electron. The electric field then accelerates

these charged particles and imparts each of them with kinetic energy. As a result of the

energization of the electrons (which have a much higher charge/mass ratio and so are

accelerated to a higher velocity), further electron/positive-ion pairs may be created by

collision with neutral atoms. These then undergo the same separating process creating an

Fig. 2 A V–Q Lissajous
figure(500 ppmv NO, 1,000
ppmv C2H4, 6 % O2, N2 as the
balance gas, the relative humidity
of gas is 30 %, temperature is
25 �C and discharge power is
101 W)
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electron avalanche [11]. When more water vapor is added in the gas stream, more negative

ions are expected to be produced by dissociative electron attachment to H2O molecules at

low temperatures. Negative ions show slow movement in an electric field and a weak

capacity for ionization, reducing the effective amounts of electrons joining the electron

avalanche [12]. The dependence of the discharge power on applied voltage and relative

humidity is shown in Fig. 4. Discharge power increased with increasing applied voltage,

and the corresponding relative humidity of the gas. When the relative humidity of the gas

was 30, 60 and 90 %, respectively, the discharge power was 53.6, 45.1 and 35.0 W with an

applied voltage of 13.8 kV. To sum up, high water vapor content hindered gas discharge in

the DBD reactor.

Effects of Water Vapor on NOx Removal

Figure 5 shows the effects of water vapor on NO and NOx removal from the NO/N2/O2/

C2H4/H2O system. When the energy density was 339 J/L, NO and NOx removal
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efficiencies were 44.4 and 30.3 %, respectively, without H2O, but increased to 56.6 and

50.1 %, respectively, with 30 % RH. This result implies that H2O can greatly increase

the rate of NO removal. In the presence of H2O, active electrons collide with N2 and

H2O:[13–17]

eþ H2O! Hþ OHþ e ðR1Þ

eþ H2O! H� þ OH ðR2Þ

eþ N2 ! eþ Nþ N ðR3Þ

and, compared to O atoms, the generated OH radicals react more easily with hydrocar-

bons:[18, 19].

C2H4 þ OH! C2H4OH ðR4Þ
The H generated via R1 can react with O2 to form the strongly oxidizing radical

HO2:[20–26].

Hþ O2 ! HO2 ðR5Þ
These radicals (C2H4OH and HO2) can enhance the oxidation of NO via several

reactions as follows:[27–29].

C2H4OHþ 2O2 þ 2NO! 2CH2Oþ 2NO2 þ 2OH ðR6Þ

HO2 þ NO! NO2 þ OH ðR7Þ
The increase in the oxidation of NO is obviously attributable to the formation of OH

radicals from water vapor, which induces the following reactions:[8, 30–32]

OHþ NO! HNO2 ðR8Þ

HNO2 þ OH! NO2 þ H2O ðR9Þ
Furthermore, we examined the influence of relative humidity on NO removal efficiency.

The results are summarized in Fig. 6. The NO removal efficiencies increased with

increasing energy density, showing very high removal efficiencies at high energy densities.
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Figure 6 also indicates that the higher the water content, the lower the conversion of NO.

When the energy density was 564 J/L, with a relative gas humidity of 30, 60 or 90 %, the

NO removal efficiency was 76.6, 70.0 and 63.6 %, respectively. That is because H2O is an

efficient quencher; it consumes some of the active species. H-, OH- and a few O- anions

are produced by dissociative electron attachment to H2O molecules, so that the amounts of

active species participating in the NO reduction reaction are reduced. Furthermore, as the

relative humidity of the gas increases, the reaction between H2O and N is intensified,

generating more HN, which can react with OH to form NO:[8].

H2Oþ N! HNþ OH ðR10Þ

HNþ OH! NOþ H2 ðR11Þ

Effects of Temperature on NO Removal

Figure 7 shows the experimental results for NO removal by DBD in the NO/O2/N2/C2H4/

H2O system with 30 % RH at 25, 90, and 130 �C, respectively. During the experiments, N2

and O2 flow into the ultrasonic atomizer and resistance furnace. The results show very high

NO removal efficiencies in the high energy density range; in the low energy density range,

high temperature raises the NO removal efficiency. The influence of temperature on NO

removal efficiency is negligible in the high energy density range. Temperature can affect

NOx removal by DBD in two major respects [33]: E/N (the electric field strength divided

by the total gas density) and reaction rate. The gas density N decreases as the temperature

is increased, causing E/N to increase, while the gas pressure and electric field E are kept

constant. BOLSIG [34, 35] was used to solve the BE for the electron energy distribution

function (EEDF); the result is shown in Fig. 8. With an increase in E/N, the proportion of

energetic electrons also increases considerably. In a DBD reactor, the electrons and ions

gain energy from the alternating electric field. If the electron energy is high enough,

ionization and excitation will be promoted in collisions between electrons and heavy

particles [36]. The non-elastic collisions of the energetic electrons with H2O and N2

molecules will induce H2O and N2 molecules to be dissociated, excited and ionized to
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produce active species, producing yet more active species (H, OH and N). At high tem-

perature, electron detachment becomes significant so that radicals of O, OH, and N may

play a more important role than their anionic counterparts [37]. At temperatures of 25, 90,

and 130 �C, the reaction rate of R4 is kept constant, but that of R5 is 9.47 9 10-11,

1.03 9 10-10 and 1.11 9 10-10 cm3/s, respectively, generating more strongly oxidizing

radicals, and therefore strengthening the reactions of strongly oxidizing radicals (C2H4OH

and HO2) with NO. For the NO conversion reactions, R7, R8 and R9, the reaction rates also

increase with the rising temperature, intensifying the NO removal reactions. The rates of

NO formation reactions via R10 and R11 are 5.44 9 10-39 and 8.00 9 10-11 cm3/s at

25 �C, while they change to 2.77 9 10-30 and 8.00 9 10-11 cm3/s at 130 �C. In other

words, the rate of R10 obviously increases while that of R11 is kept constant. However, the

rate of R10 is so small compared to those of R7–R9 that the effect of the increase may be

negligible. To summarize, in the NO/O2/N2/C2H4/H2O system, as the temperature

increases, the generation of active species and the rates of NO removal reactions are both

promoted. Both contribute considerably to NO removal efficiency.
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Conclusions

This study was mainly focused on investigating the effect of water vapor content on NO

removal at various temperatures. When the water vapor content is increased, a larger

breakdown voltage is required and the discharge power is decreased under the same

applied power. H2O can greatly enhance NO removal efficiency in the NO/O2/N2/C2H4/

H2O system, but high water content prevents NO conversion. H2O is an efficient quencher,

consuming some of the active species and increasing the rate of NO formation. As the

temperature rises, electron detachment become significant and E/N also increases con-

siderably, producing more active species, and the rates of the NO removal reaction

increase. Therefore, when the temperature increases, the generation of active species and

the reaction rates are promoted and both contribute considerably to the overall NO removal

efficiency.
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