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Abstract Modeling the behavior of air plasma spray (APS) process, one of the challenges

nowadays is to identify the parameter interdependencies, correlations and individual

effects on coating properties, characteristics and influences on the in-service properties.

APS modeling requires a global approach which considers the relationships between

coating characteristics/ in-service properties and process parameters. Such an approach

permits to reduce the development costs. This is why a robust methodology is needed to

study these interrelated effects. Artificial intelligence based on fuzzy logic and artificial

neural network concepts offers the possibility to develop a global approach to predict the

coating characteristics so as to reach the required operating parameters. The model con-

sidered coating properties (porosity) and established the relationships with power process

parameters (arc current intensity, total plasma gas flow rate, hydrogen content) on the basis

of artificial intelligence rules. Consequently, the role and the effects of each power process

parameter were discriminated. The specific case of the deposition of alumina–titania

(Al2O3–TiO2, 13% by weight) by APS was considered.

Keywords APS � Fuzzy logic � Artificial neural networks � Porosity �
Process parameters

Introduction

Air plasma spraying (APS) is a versatile technique to produce coatings of powder material

at high deposition rates 3 kg � h-1 [1]. Powder particles are injected into a plasma jet,

where they are melted and accelerated towards a substrate [2]. The coating microstructures
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87030 Limoges Cedex, France

123

Plasma Chem Plasma Process (2008) 28:249–262
DOI 10.1007/s11090-007-9116-9



and properties depend strongly on the characteristics of the plasma jet, which can be

controlled by the adjustment of the process parameters. The coating quality control gen-

erally considers the monitoring of the feedstock particle characteristics (i.e., velocity and

temperature) before their impact onto the substrate [3]. These influence significantly the

coating in-service properties [4] and microstructure features. Among these features,

porosity is a key parameter describing the anisotropy of the sprayed coatings and con-

trolling their properties. Porosity increase generally leads to decrease the breaking strength,

the elasticity module and the thermal conductivity [5]. Thus, the porosity formed during

the process is also an important microstructure feature that must be controlled. However,

many interactions between their operating parameters made these processes more com-

plicated. A full understanding of the relationships between the coating properties and the

process parameters is important for optimizing the technique and the product quality.

Artificial Intelligence (AI) offers new insights for the control, optimization and pre-

diction of the APS process. Such a methodology is an adequate tool for the study of the

complex processes with parameter interdependencies [6]. In addition, this technique

proved to be viable in the field of materials science [7] and especially in the case of thermal

spraying [8].

Artificial neural networks (ANN) and fuzzy logic (FL) were implemented in parallel to

solve the same problem aiming at predicting porosity as a function of the power process

parameter (arc current intensity, total plasma gas flow rate and hydrogen content). AI

computational models (ANN and FL) were developed in matlab language. Experimental

data were used to define AI model. Subsequently, this model was used to predict the

coating properties (porosity). Alumina–titania (Al2O3–TiO2, 13% by weight) coatings were

produced and the porosity was measured for various power process parameters.

Experimental

Metco 130 (Sulzer-Metco, Switzerland) fused and crushed grey alumina–titania (Al2O3–

TiO2, 13% by weight) powder was selected as the feedstock powder. A Sulzer F4 torch

(Sulzer-Metco, Switzerland) of 50 kW maximum operating power equipped with a 6 mm

internal diameter anode nozzle was selected to carry out the experiments. Argon was used

as a carrier gas. The carrier gas flow rate was systematically adjusted by spray deposit

control (SPCTS, university of Limoges, France). This system is a non-intrusive diagnostic

tool (CCD camera equipped with filters and a short, aperture duration, i.e., a few ms) for

each spray parameter set so as to obtain an ‘‘ideal’’ particle trajectory within the plasma

flow, that is to say a penetration of the particles into the hot core of the flow and a resulting

deviation angle of about 4�.

Several sets of power operating parameters were defined to spray the coatings. These

sets permitted a study of the effects of the arc current intensity, the total plasma gas flow

rate and the hydrogen content (i.e., hydrogen percentage in the plasma gas). Table 1

summarizes the other parameters.

The coatings were sprayed onto 25 mm diameter and 20 mm thick button-type AISI

304L (stainless steel) samples. Prior to spraying, the substrates were manually grit-blasted

using white corundum (a-Al2O3) of an average diameter ranging from 425 lm to 600 lm

(supplier data, Saint-Gobain, Avignon, France). After grit-blasting, roughness was mea-

sured by Altisurf 500 (ALTIMET, 74200 Thonon-Les-Bains). The substrate exhibited an

average roughness (Ra) of 3.6 lm, average value, and a peak-to-valley height (Rz) of

31 lm, average value.
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After a metallographic preparation performed on automatic Vanguard-BUEHLER

(Buehler, Ltd., 41 Waukegan Road, Lake Bluff, IL 60044, USA) system (sample cutting and

sample polishing), coatings were observed on their cross sections by JEOL JSM 5800LV

(JEOL, 78 290 Croissy sur seine) Scanning Electron Microscopy (SEM) in the secondary

electron (SE) mode, leading to a resolution of 0.2 lm. In SEM, electrons were emitted from a

cathode and were accelerated towards an anode. The electron beam, which had an energy of

15 keV was focused by two condenser lenses into a beam. The energy exchange between the

electron beam and the sample results in the emission of electrons and electromagnetic

radiation, which can be detected to produce an image. To improve contrast and to prevent the

accumulation of static electric fields around the specimen due to the electron irradiation

required during imaging, gold was coated on the sample surface. The sample was deposited

on a support which permitted rotational and translational movements necessary to guide the

sample towards the beam or the detectors. The sample supported the vacuum, the intense

electronic bombardment and it was sufficiently conductor to dissipate the charges.

Ten digital images randomly captured along the cross-section were treated per sample

using the software of image analysis ‘‘Image J’’ developed by the American health depart-

ment (NIH, Bethesda, NH, USA). Images were scanned with a filter. From these scanned

images, a correction of the automatic levels was carried out. In order to accentuate the

difference, the contrast treatment was necessary. The objective was to dissociate the elements

by identifying the pores and by defining their limits. This process was called thresholding or

binarization of the image (24 bit image transformation into binary image). After image

binarization all pores were in white color and the material was black. The threshold choice

was not imposed. A meticulous comparison permitted to eliminate the few remaining dif-

ferences between what appeared to be porosity and what was classified as porosity on the

binary image. To discriminate the porosities, it was just supposed that the pores presented a

continuous distribution. The total porosity was the sum of all voids, i.e. small pores, large

pores, delaminations and small vertical cracks. The morphology of the residual a phase

consisted of two types: a partially melted particle type prevailing as rounded or nearly

spherical shaped form and the other splat type, a disc shaped caused by the high impact and

rapid solidification of the fully molten plume. The relationship between the white pixels of the

image (pores) and the total number of pixels in the image corresponds to the porosity which

was expressed as a percentage. The experimental results are summarized in Table 2.

Artificial Intelligence Background

APS process modeling is a complex method which requires the analysis and control of

many parameters. Moreover, some parameters (intrinsic) on which depends the process

Table 1 Spray operating
parameters

Processing parameters Values

Current intensity 350–650 A

Total plasma gas mass flow rate 50–100 g � min-1

Hydrogen mass 0.25–1.75%

Feedstock injection distance 6 mm

Feedstock injector internal diameter 1.8 mm

Feedstock mass rate 22 g � min-1

Plasma gun scanning step 12 mm � pass-1

Spray distance 125 mm
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reproducibility, such as electrode wear and fluctuations are uncontrollable [9]. Numerous

analytical or statistical models aim at studying the process mechanisms. However, these

models suffer from the hypotheses simplification required to process more easily the

parameters/properties correlations and from the limited number of operating conditions

that can be processed. Another concept based on AI offers the possibility to discover the

complex and non-linearity correlations, without physical interpretation, by taking into

account the concepts of uncertainty, imprecision, imperfection. The limit of the concept is

to be redefined for each kind of process and it needs in the first time database to train (ANN

model) or to define the rules (FL model).

Fuzzy Logic Concept

A fuzzy logic (FL) concept was implemented in this study to predict the porosity by

varying the power operating parameters. The model was empirically based and provided a

simple way to reach a definite conclusion based upon imprecise input information (Fig. 1).

The main interest of this approach is to code the desired behaviors in the form of rules

expressed in a language close to the human language. FL model is typically divided into

three categories: fuzzification, inference engine and defuzzification [10].

Fuzzification and Membership Functions

The membership function (MF) associates a weighting with each of the inputs that are

processed, defines functional overlap between inputs, and ultimately determines an output

response.

Table 2 Experimental data
Arc current
intensity

Total plasma gas mass
flow rate

Hydrogen
mass

Porosity

I (A) Ar + H2 (g � min-1) H2/Ar (%) P (%)

350 72.3 1.25 8.0 ± 2.4

450 72.3 1.25 5.9 ± 1.1

530 72.3 1.25 4.9 ± 0.9

600 72.3 1.50 4.2 ± 1.5

650 72.3 1.25 3.7 ± 1.9

700 71.7 0.38 6.6 ± 1.5

530 50 1.25 4.3 ± 0.7

530 60 1.25 6.8 ± 3.5

530 80 1.25 6.9 ± 1.1

530 90 1.25 8.7 ± 2.5

530 100 1.25 9.0 ± 1.3

530 72.3 0.25 7.2 ± 1.1

530 72.3 0.50 5.5 ± 1.0

530 72.3 0.75 7.0 ± 1.2

530 72.3 1.00 4.8 ± 1.4

530 72.3 1.50 5.3 ± 1.8
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In fuzzification step, MF defined on the input variables were applied to their actual

values to determine the degree of truth for each rule premise. This process aimed at

translating the numerical values into linguistic descriptions. Figure 2 illustrates the input

and output variables in fuzzy partition. This was achieved by simply evaluating all the

input MF (power parameters) with respect to the current set of input values in order to

establish the degree of activation of each MF. The true value for the premise of each rule

was computed and applied to the conclusion part of each rule. This result in one fuzzy

subset to be assigned to each output variable for each rule. At the end of the fuzzification

process, a list of activations was obtained and can be carried forward to the next stage [11].

Rule Base

An algorithm was coded using fuzzy statements in the block containing the knowledge

base by taking into account the objectives and the system behavior. The idea was to make

use of expert knowledge and experience to build a rule base with linguistic rules [12]. The

rules were in the familiar if-then format, and formally the if-side is called the condition and

the then-side is called the conclusion (more often, perhaps, the pair is called antecedent—
consequent or premise—conclusion).

The rules used the input membership (power parameters) values as weighting factors to

determine their influence on the fuzzy output sets of the final output conclusion (porosity).

Once the functions were inferred, scaled, and combined, they were defuzzified (by cal-

culating the coordinate of the centroid surface response) into a crisp output (converted into

a real value). Each rule was activated as soon as the membership degree of its premise was

not null.

Mamdani’s method [13] which was based on Zadeh’s [14] was applied in this study. A

typical rule can be composed in a general point of view as follows:

IF Ið Þ is A AND H2 þ Arð Þ is B AND H2/Arð Þ is C THEN Porosity is D ð1Þ

where A, B, C are the fuzzy partition of the process parameters (null, very low, low,

medium, high, very high) and D corresponds to the porosity fuzzy partitions.

input
membership
functions   

rule list 

output
membership
functions   

fuzzification 

rule evaluation 

defuzzification 

fuzzy
inference
kernel   

fuzzy inputs 

fuzzy outputs 

knowledge
base  

system inputs

system outputs

Fig. 1 Fuzzy logic system
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Mathematically, this becomes:

lD Pð Þ ¼ min lA Ið Þ; lB H2 þ Arð Þ; lC H2=Arð Þð Þ ð2Þ

where l is the membership degree (truth value).

Inference Engine

In a fuzzy inference engine, the actions are encoded by means of fuzzy inference rules. The

appropriate fuzzy sets are defined in the fields of the involved variables, and fuzzy logic

operators and inference methods are formalized in computational terms. The basic function

of the inference engine is to compute the overall value of the fuzzy output based on the

individual contributions of each rule in the rule base. Each individual contribution rep-

resents the value of the fuzzy output as computed by a single rule. The truth value for the

premise of each rule is computed and applied to the conclusion part of each rule.

However, several rules can be activated simultaneously and recommend actions with

various degrees of validities. These actions can be contradictory in this case. It is appro-

priate to aggregate the rules. The Max–Min composition operation was used in this study.

The output membership function of each rule was indeed given by the Min (minimum)

operator and Max (maximum) operator [15].
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Defuzzification

Defuzzification is the procedure that produces a real value from the result of the inference,

which could be used as a fuzzy control input. The set of modified control output values is

converted into a single point value. Characteristically, a fuzzy system has a number of rules

that transform a number of variables into a fuzzy result, that is to say that the result is

described in terms of membership in fuzzy sets. The defuzzification method that was used

was performed by combining the results of the inference process and then computing the

fuzzy centroid of the area [16]. The coordinate of the centroid corresponds to the de-

fuzzified value that was calculated as follows:

fuzzy output =

R

U

y � lðyÞ � dy

R

U

l(y) � dy
ð3Þ

where U represents all output values which are considered.

Artificial Neural Network Model

ANN is a mathematical architecture of units called neurons (elementary processors). It

comprises an input vector of neurons (input layer) and an output vector of neurons (output

layer). A set of neurons, organized in so-called hidden layers, connects these two vectors

following different possible schemes [6]. Figure 3 represents an ANN structure in a

general point of view. Each neuron receives a variable number of inputs coming from

neurons belonging to a level located upstream (upstream neurons). The neuron xi is

characterized by, Fig. 4:

• the input being the sum of flow coming from the other neurons connected upstream;

• the activation function making the input nonlinear [6] and animating the neuron by

determining its activation. The principal role of this function is to encode the non-

linearity of the problem on the scale of the neurons. The sigmoid function was used;

• the output resulting from the transformation allowing to supply the neurons connected

downstream. Each neuron is equipped with a single output, which then ramifies to feed
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Fig. 3 Artificial neural network generic structure
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a variable number of neurons belonging to a level located downstream (downstream

neuron) [17].

The problem specificities and the process parameters were encoded in the connections

between neurons by features called weights [6]. These weights represent the fundamental

concept in discovering the parameter relationships. They translate the opportunity to

communicate the result of a ‘‘within unit manipulation’’ to another unit by a coefficient

fixing the contribution of a parameter influence on the final result. The training process

primarily involved the determination of the connection weights and the patterns of

connections.

Experimental data were used to train and validate the model. In this way, the data sets

were organized in training and test samples. The training category was used to tune neural

network weights and the test category to test the network configuration. The input layer

was constituted by three neurons which symbolized the tree process parameters (arc cur-

rent intensity, total plasma gas flow rate and hydrogen). The ANN output layer (system

response) was composed by one neuron, i.e., the porosity.

Training and Test Procedures

An important step in developing an ANN model was the determination of its weight matrix

through training. This part intended at minimizing the difference between the network

outputs and the target outputs [18]. Mathematically, a neuron is an algebraic operator

which summed the inputs. The hidden layer output was expressed by Eq. 4 and the signal

of the network ynet ðkÞ was approximated by Eq. 5.

Oi ¼ f
Xq

j¼1

wijxl

 !

ð4Þ

ynet kð Þ ¼ f
Xm

l¼1

wjlOi

 !

ð5Þ

where the activation function

f ¼ 1

1þ e�x
; ð6aÞ

{xi} were the n neurons inputs. The parameters {wi} were called weight, wij was a weight

for an input hidden layer, wjl was a weight for an input component xl.

∑
neuron
output

weights 

ff
w1

x1

xi
wi

wnxn
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inputs

Fig. 4 Neuron structure
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The training algorithms adopted in this study optimized the weights by attempting to

minimize the sum of the square differences between the desired values (experimental

values) and actual values (network predicted value) of the output neurons [19] (Eq. 6). The

prediction error associated with the output response was computed by:

E ¼ 1

2

XN

i¼1

y kð Þ � ynet kð Þð Þ2 ð6bÞ

where ynet(k) was the network value and y(k) the target value.

This error was then propagated back, layer by layer, from the output layer to the input

layer. The weights were adjusted to reduce the prediction errors through a back propa-

gation algorithm where the error was back distributed to the previous layers across the

network [20]. At the beginning of the training, the value of each weight was initially

unknown and the computation started with a random set of weights. The optimization of

the connection weights was indeed performed by minimizing the error according to:

wjk ¼ w0
jk � l � oEk

owjk
ð7Þ

where w0
jk was the initial connection weight and l the learning rate parameter.

Once the weights were modified, the next dataset was fed to the network and a new

estimation was performed. The error was calculated again and back distributed across the

network for the next modification. This iterative process was repeated until the prediction

error decreased to defined criteria [21].

After the training step, the model was tested using the test data to verify whether the

network generalized the results. If the network output for each test pattern was almost close

to the respective target, the network was considered to have acquired the underlying

dynamics from the training patterns [22].

Neural Network Optimization

For the modeling process, user-defined parameters including the iteration number, the

learning rate, momentum rate and the number of neurons in the hidden layer have to be

determined and optimized. The optimization steps consist in, Table 3:

• the parameter value was specified by a number representing a nerve pulse, or

excitation, normalized in the range (0–1). The boundary values corresponded in this

case to the minimal and maximal values that could be reached; i.e., the process

limitations [23]:

xnormalised ¼
x�min xð Þ

max xð Þ �min xð Þ ð8Þ

where xnormalized represented the formatted expression, and x was the real value;

• dividing the database into two categories: a training category required to tune weight

and a test category to test the validity of the predicted results without modifying weight

values;

• initializing weight structure;

• submitting to the structure a number of input/output examples from the database for

training and testing;

• weighting values correction with backpropagation method.
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Results

Several sets of power operating parameters were defined to produce the coatings. These sets

allowed the effect of the selected power process parameters on the coating properties to be

evaluated. In this way, the effect of the arc current intensity was varied from 350 A to 650 A

and by fixing respectively the mass percentage of hydrogen and the total plasma gas mass

flow rate at 1.25% (25% at volume percentage) and 72.3 g � min-1 (50 Nl � min-1 at

volume flow rate). The effect of the total plasma gas mass flow rate was studied between

50 g � min-1 and 100 g � min-1 (34–70 Nl � min-1 at volume flow rate) by keeping the

mass percentage of hydrogen and the arc current intensity constant at 1.25% (25% at volume

percentage) and 530 A, respectively. The effect of the mass percentage of hydrogen in the

plasma gas was studied between 0.25% and 1.75% (5–35% at volume percentage) whereas

the total plasma gas mass flow rate and the arc current intensity were kept constant at

72.3 g � min-1 (50 Nl � min-1 at volume flow rate) and 530 A, respectively.

The FL and ANN models were computed and the results are summarized in Figs. 5–7.

AI permitted to relate the processing parameters to the porosity.

Results were consistent with experimental data and the tolerance permits to generalize

the methodology to predict the coating structural and/or mechanical attributes from the

required operating parameters. Table 4 compares the ANN and FL predicted results.

Arc Current Intensity Effect

Porosity presents a linear relationship versus the arc current intensity. Nevertheless, from a

general point of view, the arc current intensity increases the plasma energies (both enthalpy

Table 3 Parameters of the ANN optimization process

Parameters Optimized values

Architecture Feed-forward multilayer perceptron

Learning rule Backpropagation algorithm

Number of neurons Inputs Current intensity (A) Total plasma gas mass
flow rate (g � min-1)

Hydrogen
mass (%)

Min 200 10 0

Max 800 150 5

Hidden layer: varied

Output Porosity (%)

Min 0.1

Max 15

Input function Dot product between neuron outputs

Input preprocessing Variables between 0 and 1

Transfer function Sigmoid

Networking error Training process

Test process

Training and testing

Maximum iterations 10,000

Tolerance 0.0001 (not reached)

Sequencing Training and test pass before weight update
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and momentum) [4], consequently the porosity decreases when the arc current increases,

Fig. 5. Electric energy increases the in-flight particle characteristics (mainly temperature),

thus, the coating density [24]. In the same way, a high current improves the flattening

process [4], this is why at the lowest current levels (lower than 500 A), the porosity values

are higher than 5%.

Total Plasma Gas Mass Flow Rate Effect

Indeed, the plasma gas flow rate increases the particle velocity and decreases their tem-

perature in the plasma jet [9]. Increasing this flow rate above a critical value leads to

decrease the largest particle melting state. Thus, only few particles will succeed in

penetrating the hot core region of the plasma jet. In the same way, increasing the total
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plasma gas flow rate leads to decrease the plasma/particle interaction duration, thus the

molecular ionization and dissociation in the plasma jet [25]. The particles are not well

heated before impact onto substrate [26], thus, the lamellae flattening ratio decreases. This

is the main reason why the porosity increases, Fig. 6.

Hydrogen Effect

The hydrogen modifies the plasma jet characteristics [27] i.e. the plasma enthalpy, thermal

conductivity and velocity increases while the plasma viscosity decreases [9]. For low

values, hydrogen still improves the thermal conductivity of the plasma jet and facilitates

the increased thermal exchange between the plasma jet and the powder particles. For high

hydrogen values, porosity does not vary significantly due to the fact that the enthalpy of the

plasma jet reaches a critical value inducing significant feedstock evaporation [28], Fig. 7.

The same tendencies of evolution were demonstrated by Friis et al. [9].

AI, able to approximate any function, presents the advantage to be a powerful statistical

procedure which permits to relate the parameter of a given problem to its desired result.

Moreover, AI needs less data compared to least square fit and it can be performed con-

tinually. For example when the experimental data have only few parameter numbers

(performing regression analysis using simple relationships) correlation factors are small

and these translate the difficulty to fit non-linear relationships. In the opposite, choosing

high polynomial degrees fit better the experimental results. However, they do not represent
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Table 4 Power process parame-
ters effect on deposit porosity

; decrease

: increase

I H2 + Ar H2/Ar
350 ? 650 A 50 ? 100 g � min-1 0.25 ? 1.75%

Exp ; 26.8% : 110.0% ; 26.2%

ANN ; 26.5% : 75.4% ; 25.5%

FL ; 25.0% : 56.7% ; 18.8%
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a meaningful function and require generally more experimental data to generalize the

correlations. Table 5 compares the ANN and FL models.

Conclusions

Artificial intelligence model permits to determine and hence to understand the inter-rela-

tionships between power process parameters and deposit properties in plasma spray

process. They were implemented in this study to predict the porosity.

The proposed model is a convenient and powerful tool for the practical optimization of

the coating characteristics and processing parameters in order to obtain the desired

combination.

From a general point of view, the ANN model is better than that of FL with regard to the

prediction and simulation concept. On the other hand FL represents a better asset in the

field of system control.

Acknowledgements The French National Agency for Innovation (ANVAR) and the CNRS MRCT
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