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Abstract In this paper, the calculated values of the viscosity and thermal conductivity of

nitrogen plasma are presented taking into account five (e, N, N+, N2 and N2
+) or eight

(e, N(4S), N(2P), N(2D), N(R), N+, N2 and N2
+) species. The calculations are based on the

supposition that the temperature dependent probability of occupation of the states is given

by the Boltzmann factor. The domain for which the calculations are performed, is for p = 1

and 10 atm in the temperature range from 5,000 K to 15,000 K. Classical collision integrals

are used in calculating the transport coefficients and we have introduced new averaged

collision integrals where the weight associated at each interacting species pair is the

probable collision frequency. The influence of the collision integral values and energy

transfer between two different species is studied. These results are compared which those

of published theoretical studies.

Keywords Transport coefficients � Transport properties � Viscosity �
Thermal conductivity � Nitrogen � Plasma

Introduction

Transport properties of thermal plasmas have been calculated by many authors due to their

importance in many technological applications [1, 2]. But recently, Capitelli et al. [3, 4]

have studied the dependence of transport coefficients (thermal conductivity, viscosity,

electrical conductivity), on the presence of electronically atomic excited states H(n), in

LTE H2 plasmas. They deduce that excited states with their ‘‘abnormal’’ cross sections

strongly influence the transport coefficient especially at high pressure. They also showed
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the effect of excited states on the transport of ionization energy in thermal plasmas in the

temperature range of 10,000–25,000 K, taking into account the dependence of diffusion

cross sections on principal quantum number [5]. Their results show a strong effect due to

excited states at high pressure while compensation effects reduce their role at atmospheric

pressure. These authors [6] also calculated resonant charge—exchange cross sections and

the relevant transport (diffusion) cross sections for excited states of nitrogen and oxygen

atoms.

The aim of our work is to study the influence of the excited states of atomic nitrogen on

the transport properties of two e/N mixtures in the temperature range of 5,000–15,000 K

and at two pressure values (p = 1 and 10 atm). The first mixture takes into account five

gaseous species : e, N, N+, N2 and N2
+, the second system eight species : e, N(4S), N(2P),

N(2D), N(R), N+, N2 and N2
+ where ‘‘R’’ represents the excited states of monoatomic

nitrogen different of (2P) and (2D). In the first part of the paper, the plasma composition

and the different potentials, permitting to describe all collisions are calculated. The second

part is devoted to calculation of transport properties in two cases, with and without

consideration of energy transfer between the excited states of N.

Calculation of the Plasma Composition

To determine the composition of the plasma, the classical method consists of minimizing

the Gibbs free energy under mass and charge conservation constraints. The minimization is

achieved by using Lagrange’s multipliers and the solution of the corresponding set of

equations is based on the steepest descent method according to White and Dantzig [7]. For

(e, N+, N2 and N2
+) species we have used the same thermodynamic data but the data used

for N is summarized in Table 1:

In Table 1 Qint is the internal partition function, DH0
f0 is the enthalpy of the chemical

species related to an absolute reference state (T = 0 K) and the energy attributed to a state

X is obtained as:

EX ¼
X

i

gx;i � Ex;i

where gx;i is the statistical weight (as an example for state 2D we have gD;1 ¼ 6 and

gD;2 ¼ 4) and Ex;i is energy (as an example for state 2D we have ED;1 ¼ 19224:46 cm�1

and ED;2 ¼ 19233:18 cm�1). For calculation of the partition function the summation is

limited due to the lowering of ionization energy DEi (Debye Hückel approach) which

depends on electronic density.

The Fig. 1 shows the evolution with temperature of the density of species at p = 1 atm

for a nitrogen plasma calculated for the two different retained species (five or eight).

Table 1 Data used for N

N N(4S) N(2D) N(2P) N(R)

Qint

P
i¼1

gi exp � Ei

kT

� �
4 10 6

P
i¼4

gi exp �Ei�E4

kT

� �

Ei (cm�1) 0 0 19,228 28,839 83,336

DH0
f0 (kJ.mol�1) 470.82 470.82 700.84 815.81 1467.74
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We have obtained the same values for the densities, at a given temperature, independent

of the number of species taken into account. Moreover we have

n(N) ¼ nðNð4SÞÞ þ nðNð2DÞÞ þ nðNð2PÞÞ þ n(N(R)). The relative discrepancy is always

less than 0.001% of the absolute values for all the densities. In Fig. 2 the same kind of

calculation is done with p = 10 atm.

At 15,000 K, the values of the ratio n(R)/n(N) � Q(R)/Q(N) are respectively 0.027 and

0.012 for p = 1 atm and 10 atm. In this case the contribution of the R states is greater than

(for the same temperature) for p = 1 atm. The result may be explained by the fact that:
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– Q(R) is more influenced than Q(N) by the limitation theory (lowering ionization

energy),

– The electronic density is higher for p = 10 atm (respectively ne ¼ 1:724� 1023 m�3

and 8:581� 1023 m�3 for p = 1 and 10 atm) leading to DEi (10 atm) [DEi (1 atm).

Collision Integrals

Collision integrals (noted �Q
‘;sð Þ

i;j ) are required to calculate transport coefficients and account

for the interaction between colliding species i and j: in our conditions of pressure only

binary collisions between all the species are considered. The indices (‘, s) are directly

related to the order of the approximation used for the transport coefficients: viscosity,

electrical conductivity, translational and reactional thermal conductivities are calculated at

the third approximation and internal thermal conductivity is obtained at the first approx-

imation [8–10]. A previous study [9] has shown that all combinations of numbers (‘, s)

have to be calculated for �Q
‘;sð Þ

i;j up to ‘max ¼ 3 and smax ¼ 5, provided ‘ � s.

The transport cross sections Q
ð‘Þ
i;j are determined from internuclear interaction potential,

quantum approach and directly by numerical integration of differential cross sections. All

these different methods are presented elsewhere: section 2 [11]. In Table 2 we give all the

binary interactions taken into account for the five species mixture.

In Table 2 the data is taken from one of our previous papers [9, 11, 12] where the

collision integrals are calculated, P and • refer to a polarizability potential (the dipolar

polarizability of N2 is 1.7301 Å3 [13] leading to VN2p ¼ 12:456 eV Å4, same notations as

[11]) and to unknown interactions respectively, which are to be determined in this study.

Now, the three following interactions are studied: N2–N2 and N–N2 and e–N2.

N2–N2 Interaction

Accurate collision integrals are available in Stallcop et al. [14] but our formalism needs

three more integrals (�Q 2;5ð Þ; �Q 3;4ð Þ and �Q 3;5ð Þ) and also for T > 10,000 K. Therefore we had

to determine a new set of collision integrals and for that we used the data given by Stallcop

et al. [14, 15] to create an effective potential. The obtained values are fitted by non-linear

regression to calculate the three Hulburt–Hirschfelder potential parameters [11]:

De ¼ 0:0117 eV and rm ¼ 3:995 Å

a ¼ 6:6842; b ¼ 2:0202 and c ¼ 0:5705:

Table 2 Interactions taken into account

e N N+ N2 N2
+

e (9) (11) (9) • (9)

N (11, 12) (11) • (11)

N+ (9) P (9)

N2 • P

N2
+ (9)
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where De and re are respectively the depth of the potential well and the position of the

minimum of the potential well.

Finally, our results are in very good agreement with those of Stallcop et al. [14] (the

relative discrepancy is less than 3% on all the temperature range for T � 300 K and

independent of the collision integrals). As an example, we obtain �Q 2;2ð Þ ¼ 43:10 and 22.45

10�20 m2, for T = 300 and 10,000 K, to be compare to 43.08 and 22.98 10�20 m2 [14].

N–N2 Interaction

For this interaction, we have the same problem that for the N2 – N2 collision [16].

Therefore we used the effective potential energy of Stallcop et al. [16] determined from the

h0 orientation which yields accurate transport data with a little computational effort (the

angle h0 satisfies P2ðcos h0Þ ¼ 0 where P2 is a zero-order Legendre polynomial of degree 2,

i.e., h0 ¼ 54:73561�). The Hulburt–Hirschfelder potential parameters are the following:

De ¼ 0:00776 eV and rm ¼ 3:742 Å:

a ¼ 7:0095; b ¼ 12:6825 and c ¼ 1:1696:

As for N2–N2 interaction our results are in very good agreement with those of Stallcop

et al. [16] (the relative discrepancy is less than 2% on all the temperature range for

T � 300 K independent of the collision integrals).

e–N2 Interaction

For e–N2 interaction we split up the energy range into three parts: e<1:5 eV, 1.5 eV

� e � 4 eV and e[4 eV

Energy below Resonance Region (e<1:5 eV)

Theoretical and experimental analysis of low-energy electron-N2 scattering has been done

by Sun et al. [17]

• We have used their experimental results, for three energy values: e ¼ 0:55, 1.0 and

1.5 eV, for the differential elastic cross-sections at scattering angles from 208 to 1308
completed for the small and large angles.

• For lower energies (e<0:55 eV) we have no experimental or theoretical data for

differential elastic cross-sections but we have only the values of the total elastic cross

sections QT eð Þ down to e ¼ 0:08 eV and 0.02 eV (respectively for experimental and

theoretical approaches). For our calculations we started from QT eð Þ and we retained:

– For 0:08<e<0:35 eV the experimental values

– For 0:02<e<0:08 eV the theoretical values and we assume that experimental are the

same (Sun et al. [17]: Table 9).

Then we calculated the transfer cross sections Q ‘ð Þ. For that, we started from general

formalism of the elastic scattering cross sections which may be written as [18]:
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Qk
j eð Þ ¼ 2p

Zp

0

rk e; hð ÞPj cos hð Þ sin hdh ð1Þ

where rkðe; hÞ is a differential cross section for electron scattering through an angle h for

process k. Therefore,Q0
0ðeÞ, the total elastic cross section, is written as:

QT eð Þ ¼ Q0
0 eð Þ ¼ 2p

Zp

0

r0 e; hð Þ sin hdh ðP0 ¼ 1Þ ð2Þ

By using the relation (1) and the expressions of Legendre polynomial we obtained the

following equations for the transfer cross sections:

Q 1ð Þ eð Þ ¼ Q0
0 eð Þ 1� R1

0 eð Þ
� �

with R1
0 eð Þ ¼ Q

0

1 eð Þ
Q

0

0 eð Þ
ð3Þ

Q 2ð Þ eð Þ ¼ 2
3

Q0
0 eð Þ 1� R2

0 eð Þ
� �

with R2
0 eð Þ ¼ Q

0

2 eð Þ
Q0

0 eð Þ
ð4Þ

Q 3ð Þ eð Þ ¼ Q0
0 eð Þ 1� 3

5
R1

0 eð Þ � 2
5

R3
0 eð Þ

� �
with R3

0 eð Þ ¼ Q
0

3 eð Þ
Q

0

0 eð Þ
ð5Þ

We know Q0
0 eð Þ but it is necessary to determine Ri

0 eð Þi 2 1; 3½ �, leading to

Q 1ð Þ eð Þ; . . . ;Q 3ð Þ eð Þ, by extrapolation.

To calculate Ri
0 eð Þ, i 2 1; 3½ �, we have used obtained results at 0.55 eV, 1.0 eV and

1.5 eV. For these energy values, we have Q0
0 eð Þ and Q ið Þ eð Þ; i 2 1; 3½ � that leads to:

R1
0 ¼ 1� Q 1ð Þ

Q0
0

; R2
0 ¼ 1� 3

2

Q 2ð Þ

Q0
0

and R3
0 ¼

5

2
ð1� 3

5
R1

0 �
Q 3ð Þ

Q0
0

Þ

and the values calculated from above are tabulated in Table 3:

For this extrapolation at low energy we used a simple polynomial (three coefficients)

form expressed as:

Ri
0 eð Þ ¼ aeþ be2 þ ce3

This choice is justified by the fact that Ri
0 0ð Þ ¼ 0 : when e is closed to zero i.e., the

series of quantum phase shifts is reduced to its first term and we have Q 1ð Þ ¼ Q 3ð Þ ¼ QT

and Q 2ð Þ ¼ 2
3

QT. This approach leads to realistic results for R2
0 and R3

0 but not for R1
0 further

we noticed that the contribution of R3
0 is low in the given energy range. Then according to

the works of Phelps [18], we have improved the analytic form for R1
0 :

Table 3 Values of the parameters R0
i (e ) of Legendre polynomial for the considered energies (e)

e (eV) R0
1 R0

2 R0
3

0.55 �0.1537 �0.0587 �0.0013

1.0 �0.0975 �0.1006 �0.0095

1.5 �0.0307 �0.1403 �0.0078
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R1
0 ¼

e aþ beð Þ
1þ ceþ de2

To determine the fourth coefficient we have imposed, by a graphical study, R1
0 ¼ 0 for

e ¼ 1:80 eV.

To conclude, using known QT eð Þ and Ri
0 for i 2 1; 3½ �, we have determined Q ‘ð Þ eð Þ for

‘ 2 1; 3½ � in the energy range 0.02–0.55 eV.

For Resonant Energies (1.5 eV � e � 4:0 eV)

In this energy range, resonant diffusions (for example, the pg resonance for e 	 2:4 eV)

appear that introduce oscillations in the vibrationally elastic (0 ? 0) and inelastic (0! v)

cross sections. First, we calculated the elastic cross sections (Q ið Þ eð Þ, i 2 1; 3½ �Þ for the four

following values of energy: e ¼ 1:92, 1.98, 2.46 and 2.605 eV [17]. And then we deter-

mined the resonant shape based on the works of Sun et al. [17] (experimental energy

dependence of differential cross sections at a scattering angle of 608) and Shyn et al. [19],

the values of QðiÞ were obtained in this energy range using proportionality’s rules.

Energy above the Resonant Region (e[4:0 eV)

• For 4 eV � e � 10 eV: we used the experimental results of Sun et al. [17] and applied

it further for low energies, small angles and large angles.

• For e ¼ 24:5 eV, we retained the experimental results of Mi et al. [20]

• For higher energy (up to 400 eV) we have used the results of Shyn et al. [19] that

allowed us to complement the previous data.

Conclusion. Collision integrals

So we have all collision integrals for the first (five species) system while for (eight species)

system had to do some assumptions.

– Firstly we consider that the following collisions X� Nð4S), X� Nð2DÞ, X� Nð2PÞ
and X� N(R) with X = e, N+, N2 and N2

+, are equivalent to X–N (see Table 2). For the

three collisions N(4S, 2D, 2P) – Nþð3 P), Eletskii et al. [6] showed that they are quite

similar. In addition to the ones mentioned they took into account high electronically

excited states of N(ns(2P,4P)) and the ground state of Nþð3 P) while completely

neglected the other states: 2S�, 2D� . . . for N and 1D, 1S, ... for N+.

– Secondly in Table 4 we give only the binary interactions between the different atomic

nitrogen species. The number gives the reference number of the first paper and as the

potential interactions of some collisions are unknown we also present the equivalent

collision integrals taken into account.

Table 4 Interactions taking into account

N(4S) N(2D) N(2P) N(R)

N(4S) (12) (12) (12) 4S–2D

N(2D) (12) (12) 4S–2D

N(2P) 2D–2D 4S–2D

N(R) 2D–2D
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For the interactions N(4S)–N(2P) and N(2D)–N(2P):

– For ‘ ¼ 2 the integral collisions are calculated starting from the known interaction

potentials,

– For ‘ ¼ 1, 3 we introduce the transfer integral collisions of the interactions

N(4S)–N(2D).

Results

We have done three types of calculations for the transport properties (as in part I), for the

first two were for five species chemical system and the last dealt with eight species

chemical system:

(a) It is the usual case, the collision integrals are determined only with the N(4S)–N(4S)

interaction and we write down our results in ‘‘SS’’,

(b) As in part I (section ‘e–N2 interaction’), we have generalized the weighted collision

integrals by introducing the probability a associated with two interacting species i

and j (i, j = S, D, P or R for N(4S), N(2D), N(2P) or N(R) respectively) as

aij ¼
n ið Þ
n Nð Þ �

n jð Þ
n Nð Þ (independent probability hypothesis) and we have verified that

P
i;j

aij ¼ 1. But as N(R) is dependent on composition and we have to calculate �Q
‘;sð Þ

f

directly in the computer code and we denoted our results ‘‘wgh’’.

(c) In this case (eight species), N(4S), N(2D), N(2P) and N(R) are considered as

independent chemical species, then the transport properties are determined classically

and ours results are noted ‘‘SDPR’’.

To calculate the transport properties classical Cramer’s rule can be used i.e., the solution

of a set of linear equations can be expressed as the ratio of determinants. Another way is to

solve directly the set of linear equations. The viscosity can be expressed as:

g nð Þ ¼ 1

2
kT
X

njbjo nð Þ ¼
X

j

gj nð Þ ð6Þ

where gj nð Þ ¼ 1
2

kTnbjo nð Þ is the viscosity of j specie at n order of approximation (in this

paper n = 3): equation 7.4–20 [21]. We have the same kind of results for translational

thermal conductivity: ktr nð Þ ¼
P

j

k
j
tr. Now we present some results of thermal conductivity

and viscosity for the two values of the pressure (p = 1 and 10 atm).

Thermal Conductivity

Figure 3 shows the evolution of translational thermal conductivity versus temperature at

p = 1 atm obtained by the three calculation methods. Here ktrðSDPRÞ ¼
kð4SÞ þ ktrð2DÞ þ kð2PÞ þ ktr(R) where ktr(X) is the translational thermal conductivity

associated at the specie X.

The shape of ktr (SDPR), ktr (SS) and ktr (wgh) follows the temperature evolution of

n(N) and n(N(4S)) i.e., the numerical densities of these species are smaller than n(N2) at

232 Plasma Chem Plasma Process (2007) 27:225–240
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T = 5,000 K and n(N+) at T = 15,000 K, the molar fractions x(N) and x(N(4S)) are

maximum at around T = 9,500 K. As shown in part I, the contribution of each state to the

total translational thermal conductivity has been determined, for T < 7,000 K, we have

kðSDPRÞ ¼ ktrð4SÞ ¼ kðSSÞ ¼ ktrðwghÞ. With the increase temperature the excited states

play a more important role but ktr(
2P) and ktr (R) remain negligible (their numerical

densities are small in the temperature range) and only ktrð2 D) contributed notably to

ktrðSDPRÞ: For T = 11,000 K we have ktrð2 D) = 0.075 Wm�1K�1 and ktr

(SDPR) = 0.459 Wm�1K�1, leading to relative contribution of 16% (82% for ktrð4 S) and

2% for the two other states).

As previously remarked the transfer of energy between the different states of N leads to

small variations on the values of the translational thermal conductivity. We have k (SDPR)


 ktr (wgh), and the maximum relative discrepancy between ktr (SDPR) and ktr (SS) is

obtained around 10,000 K and which, for all the temperature values in the range, the

discrepancy is even less 3%. Finally, at T = 15,000 K we have ktr (SDPR) 
 ktr (wgh) 
 k

(SS), for this temperature N–N+ and N+–N+ interactions (the integral collisions are the

same whatever the calculation method) play an important role on transport properties.

For p = 1 atm, the temperature where the two different approaches lead to discrepancies

between transport properties, is around 10,000 K. Figure 4 depicts the dependence on

temperature, p = 1 atm, of internal (kint) and reaction (kreac) thermal conductivities. The

total thermal conductivity kt is the sum of the internal and reaction conductivities.

In this temperature range we have:

– kint(SDPR) 
 0 then kreac(SDPR) 
 kt(SDPR),

– kreac(SS) 
 kreac(wgh), these two transport properties take into account the dissociation

(N2 ? 2N at low temperature) and ionization (N ? N+ + e at high temperature)

reactions. Thence, on Fig. 4, we have omitted kint(SDPR) and kreac(wgh).
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Fig. 3 Evolution of the translational thermal conductivity as function of temperature (p = 1 atm)
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As usual, for p = 1 atm, the minimum values for kt is around 10,000 K. For this

temperature value we have kt(SDPR) = 0.459, kt(SS) = 0.582 and

kt(wgh) = 0.518 Wm�1K�1, leading to relative discrepancies (kt(SS) is taken as the ref-

erence) of 21% (SDPR) and 11% (wgh). It should be noted that kt(wgh) 
 kt(SS) at low

temperature (T = 8,500 K) and kt(wgh) 
 kt(SDPR) at high temperature (T = 12,000 K):

the excited states influence on the determination of the averaged collision integrals �Q
‘;sð Þ

f .

On Figs. 5 and 6, we show the evolution of the total thermal conductivity versus

temperature (8,500 < T < 12,000 K for p = 1 atm and 9,500 < T < 13,000 K for

p = 10 atm).

The introduction of the translational thermal conductivity shifts the minimum of ktot to a

lower temperature: 9,500 K against 10,000 K. Now for this temperature we have k

(SDPR) = 1.271, ktot (SS) = 1.406 and ktot (wgh) = 1.336 Wm�1K�1. Remark that ktot

(SDPR)–ktot (SS) = 0.135 Wm�1K�1 compared to 0.123 Wm�1K�1 obtained previously

for kt(SDPR)–kt(SS) at 10000 K. This is due to the small influence of transfer collision

integrals on translational thermal conductivity. The relative discrepancies (kt(SS) is always

taken as the reference) are of 10% for (SDPR) and 5% for (wgh). The same explanation for

the relative position of ktot (wgh) is valid in this case as well.

To emphasize the influence of the excited states on the transport properties we have

increased the pressure up to 10 atm. As expected the minimum of the total thermal

conductivity is shifted at higher temperature: 11,000 K against 9,500 K. Now for this

temperature we have ktot (SDPR) = 1.631, ktot (SS) = 1.789 and ktot

(wgh) = 1.688 Wm�1K�1. Remark that ktot (SDPR)–ktot (SS) = 0.158 Wm�1K�1 compared

to 0.135 Wm�1K�1 obtained previously for ktot (SDPR) –k (SS) at 9,500 K, this increase is

due to the influence of excited states of N. However, the relative discrepancies (kt(SS) is

always taken as the reference) are quite the same and we have 9% and 3% for (SDPR) and

(wgh) respectively. The same explanation is valid for the relative position of k (wgh) as

well.
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Viscosity

Figures 7 and 8 show the evolution of the total viscosity versus temperature (7,500 < T <

12,000 K for p = 1 atm and 9,000 < T < 14,000 K for p = 10 atm). As remarked in part I

we have l(wgh) 
 l (SDPR) independent temperature and pressure values. The collision
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Fig. 5 Evolution of the total thermal conductivities (p = 1 atm)
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Fig. 6 Evolution of the total thermal conductivities (p = 10 atm)

Plasma Chem Plasma Process (2007) 27:225–240 235

123



integrals (‘ = 1 and 3) are strongly influenced by energy transfer between excited species

involved only in the viscosity correction i.e., for a pure gas we have l ¼ f �Q 2;2ð Þ� �
.

The maximum discrepancy (corresponding to the maximum values of the viscosity),

obtained at T 
 10,000 K, between l(SS) =2:397� 10�4 kgm�1s�1

and l(SDPR) =2:355� 10�4 kgm�1s�1 is Dl = 0.042 kgm�1s�1, that is a relative

discrepancy of 2%. In Table 5 we report the total viscosity along with the viscosity

contributions (in 10�4 kgm�1s�1) of N(4S), N(2D), N+ and N2 for different temperatures.
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Fig. 7 Evolution of the total viscosity (p = 1 atm)

2,20E-04

2,30E-04

2,40E-04

2,50E-04

2,60E-04

2,70E-04

2,80E-04

9000 10000 11000 12000 13000 14000

T (K)

)s/
m/

gk( ytis
ocsi

V

vist (SDPR)
vist (SS)
vist (wgh)

Fig. 8 Evolution of the total viscosity (p = 10 atm)

236 Plasma Chem Plasma Process (2007) 27:225–240

123



In Table 5 N(4S)...N2 represents the sum of the four contributions. The difference

between the values of these sums and l T is principally due to N(2P) contribution which is

0:054� 10�4 kgm�1s�1 at 12,000 K. In temperature range (8,000–12,000 K) the main

contribution to lT is l (N(4S)): between 70 and 80%.

For Fig. 8 (p = 10 atm) can be explained in the same way as Fig. 7 (p = 1atm). In this

case the maximum value of viscosity is obtained for T 
 11,700 K and for this temperature

value we have l(SS) =2:689� 10�4 kgm�1s�1 and l(SDPR) =2:614� 10�4 kgm�1s�1

leading to Dl = 0.075 kgm�1s�1 and a relative discrepancy of 3%.

Discussion and Conclusion

In these two papers we have tested the influence of the excited states of N on the transport

properties (thermal conductivity and viscosity). In the first part we have taken into account

only three species (N(4S), N(2D) and N(2P)) and introduced new averaged collision integral
�Qf. In the second part we have taken into account five (e, N, N+, N2 and N2

+) or eight (e,

N(4S), N(2P), N(2D), N(R), N+, N2 and N2
+) species and we have generalized the weighted

collision integrals.

Without Energy Transfer between Excited States of N

In these two papers we have shown that without taking into account the energy transfer

between the excited states, the values of the collision integrals obtained through the known

interaction potential are quite the same. The values of averaged collision integrals �Q
‘;sð Þ

SD ,
�Q
‘;sð Þ

SP , �Q
‘;sð Þ

DD , �Q
‘;sð Þ

DP and �Q
‘;sð Þ

PP are slightly greater than �Q
‘;ð Þ

SS . It can be noted that the collision

integrals of two nitrogen atoms in the excited 2D–2D states (H3U u) or 2D–4S states (C3pu)

are lower than the corresponding interaction of two nitrogen atoms in the ground state

(X1Rþg ). This behaviour can be considered as unusual, because atoms in the excited states

are commonly regarded as having collision integral with values greater those in the ground

state [22]. In this case, independent of chosen transport property, the values obtained

classically (�Q
‘;sð Þ

SS Þ are overestimated of only few percents (at most 3%) in comparison to

those obtained by taking into account the excited states.

Generally:

• The number of repulsive potentials is larger than that of attractive potentials and their

total statistical weights are always larger (as example for the interaction C–O we have

eight attractive potentials (total statistical weight 24) and 10 repulsive potentials (total

statistical weight 56)) [11],

• The data is more easily available for attractive potential, as these corresponding states

can be studied by optic spectroscopy. This remark is confirmed by the previous table.

Table 5 Viscosity values for p = 1 atm

T (K) N(4S) N(2D) N+ N2 N(4S)...N2 Total

8,000 1.694 0.133 0.004 0.237 2.068 2.079

10,000 1.960 0.307 0.037 0.015 2.319 2.355

12,000 1.349 0.334 0.094 0.001 1.778 1.837
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Therefore the collision integrals that we used in our calculation are overestimated

(except for the N(4S)–N(4S) interaction), principally for the N(2D)–N(2D) collision,

leading to an underestimation of the different transport properties.

From above it can be concluded that in given case the classical approach is applicable.

With Energy Transfer between Excited States of N

The introduction of the energy transfer between the different states of N has only a small

influence on the values of viscosity and translational thermal conductivity (see Figs. 4 and

5 part I) but also on electrical conductivity (this transport property is strongly related to

electronic density). The maximum relative discrepancy DM(%) between the total thermal

conductivities determined with the first (five species) and the second (eight species)

approaches is around 10% for all pressure values. It is due to the fact that calculation

method of kint depends only on �Q
‘;sð Þ

SS and kreac depends on energy transfer (the values of the

collision integrals are large for ‘ ¼ 1 or 3) for atomic nitrogen and as shown in Table 5 of

part I. This discrepancy is obtained for T = 9,500 K and 11,000 K at p = 1 and 10 atm when

the values of ktot are minimum.

To minimize DM(%) we have replaced �Q ‘;sð Þ by weighted mean cross sections �Q
‘;sð Þ

f

(relation [8] of part I) which is function of �Q ‘;sð Þ . . . �Q ‘;sð Þ. The introduction of these cross

sections reduces DM(%) from 10% to 5%.

It should be kept in mind that there are two approaches for taking into account the

excited N states:

(a) Classically using kint

(b) By determining kreac using following successive reactions (the densities of N(2P) and

N(R) are always negligible: Figs. 1 and 2):

N2 ! 2Nð4SÞ
Nð4SÞ ! Nð2DÞ:

If �Q
‘;sð Þ

SS ¼ �Q
‘;sð Þ

SD then k ¼ kreac. In our case, the ‘‘exact’’ value of the thermal con-

ductivity (taking into account energy transfer) is between ktot ¼ ktr þ kreac + kint and

k1 ¼ ktr þ kreac. This remark can be generalized for all the plasma chemical mixtures used

in the study. However, we have �Q ‘;sð Þ and this relation �Q1;1
ij Tð Þ >> �Q

ð1;1Þ
ii is also always

true. The ratio A ¼ �Q
ð1;1Þ
ij Tð Þ=�Q

ð1;1Þ
ii and the values of A are generally between 2 and 4. For

atomic nitrogen we have A = 3 and for atomic oxygen we have at 10,000

K½22��Qð1;1Þ ¼ 9:7 Å2, �Q
ð1;1Þ
PD Tð Þ ¼ 21:9 Å2 and �Q

ð1;1Þ
PS Tð Þ ¼ 19:5 Å2 leading to A = 2.3

and 2.0 respectively.

In Fig. 9 we represent the evolution of the total conductivity versus temperature at

p = 1 atm. The total conductivity is calculated classically (ktot (SS)) or taking excited states

(ktot (SDPR)) into account along with k1 (SS) =ktot (SS)–kint and k2 (SS) =ktot (SS)–2 kint /

3. For k2 we used a weight of 2 / 3 for kint based on the values of two collision integrals
�Q
ð1;1Þ
SD Tð Þ 
 3�Q

ð1;1Þ
SS in this temperature range.

It should be noted that ktot (SDPR) & k2 (SS) but this result may be obtained only after

calculation of �Q
‘;sð Þ

SD . . .
In our opinion we have two methods to determine the transport properties in plasma.
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• The first one is the classical well known approach in which some elementary

approximation (see previous remark) may be done to increase the accuracy of the

transport properties. While we take into account the energy transfer in molecules or

atoms, the values of these transport coefficients become smaller. For p& 1 atm, the

classical approach is sufficient.

• In this study, we have introduced energy transfer only between the excited states of N

but we have not taken into account the charge transfer as, for example, in the following

reaction:

Nð2DÞ þ Nþð3PÞ ! Nþð3PÞ þ Nð2DÞ

The composition may be determined by a state-to-state approach. In the simple case of

hydrogen plasma (H+ can be only in a ground state) Capitelli et al. [3, 5] calculated the

composition taking into account the different states of H (up to n = 12). Then they

estimated the charge transfer (H(n)–H+) and excitation transfer (H(n)–H(m)) cross sections

and they showed that this kind of reaction leads to a non-negligible difference between

transport properties calculated with ‘‘usual’’ and ‘‘abnormal’’ cross sections (Capitelli

notations). This kind of approach may be essential at high pressure: at 100 atm, Capitelli

[3] obtained discrepancies between the values of ‘‘usual’’ and ‘‘abnormal’’ transport

properties up to 70%. Even if it is possible to apply a state-to-state theory on hydrogen

plasmas, for other cases the greatest problem of this method is the number of electronic

states and lack of available data (unknown potentials). However works are developed to

take into account excited and charge transfers involving excited states of atoms and ions.

As an example and in the nitrogen case, Kosarim et al. [23] study the resonant charge

transfer between the N(4S, 2D, 2P) and N+(3P, 1D, 1S).
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