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INTRODUCTION

The aim of this paper is to discuss theoretical foun-
dations and examples of practical applications of ant
algorithms. These algorithms represent a new promis-
ing approach to solving optimization problems that is
based on the simulation of the behavior of ant colonies.
An ant colony can be regarded as a multi-agent system
where each agent (ant) is functioning independently by
very simple rules. Unlike the nearly primitive behavior
of the agents, the whole system happens to function in
an amazingly reasonable way: “… nests of many spe-
cies of ants surprise us by their dimensions and com-
plex and rational architectonics. There are paths and
tunnels scattered on the niche territory for arphides and
cochineal, and mushroom gardens… There exist vari-
ous ways of storing and stoking up with food as well as
a real domestication of some species of insects…” [1].

An interesting result of the cooperative behavior of
biologic ants is the way they locate the shortest path
from food source to the nest. Optimization algorithms
imitating such a behavior of ants were proposed in early
1990s in Italy [2]. The first paper on ant algorithms was
published in an international journal in 1996 [3], and, it
took only a few years after this for a new field of scien-
tific research (Swarm Intelligence and Ant Algorithms)
to appear. Currently, many European researchers have
successfully been working in this field. Biennially,
international workshops on ant colony optimization
and swarm intelligence have been organized in Bel-
gium. Special “ant” sections and workshops have been
organized in the framework of international congresses
and big conferences, and special-purpose issues of
international scientific journals have been published.

Ant optimization algorithms have successfully been
applied to solving many complex combinatorial prob-

lems, such as the traveling salesman problem, the vehi-
cle routing problem, the problem of graph coloring, the
quadratic assignment problem, the problem of net-
work-traffic optimization, the problem of job-shop
schedule planning, etc. A key event in recognizing
promises of the ant optimization was the winning of the
50000-Euro Marie Curie Excellence Award by the
inventor of ant algorithms Dr. Dorigo in 2003. In spite
of the quick advancement of ant algorithms, the major-
ity of Russian-language specialists in mathematical
programming have little idea of this research direction.
The first paper on the ant optimization written by Rus-
sian scientists in an international journal appeared only
in 2004 [4].

This paper consists of four sections. The first section
presents the self-organization principles of social
insects and explains the way the ants locate the shortest
path. The second section brings an example of the tra-
veling salesman problem to demonstrate how the coo-
perative behavior of ants can be used in algorithms of
combinatorial optimization. The third section discusses
methods for improving ant algorithms; and the fourth
section reviews the applications of the ant algorithms.
The first and second sections are based on the works
[5–7].

1. PRINCIPLES OF ANT BEHAVIOR

Ants are 

 

social

 

 insects living within a collective (a
family or colony). Some two percent of insects are
social, and ants account for half of these. The number
of ants in a single colony may vary from 30 to tens of
millions. Ants are dominant in the Amazon basin, con-
stituting more than 30% of the biomass of the local for-
ests. The behavior of ants in transporting food, over-
coming obstacles, building anthills, and other opera-
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tions is almost optimal. Principles of ant behavior have
withstood the proof of one hundred million years, after
they had “colonized” the Earth. Ant colonies are ama-
zingly survivable: a reduction of up to 40% of insects
has practically no effect on the functioning of the whole
society [8]. A mass destruction of ants (for example,
resulting from a chemical treatment of their habitat)
leads to the consolidation of insects from the neighbor-
ing anthills into one family to save the society [1].

The social behavior of ants is based on 

 

self-organi-
zation

 

, a set of dynamical mechanisms ensuring that the
system can achieve its global aim through low-level
interactions between its elements. A key feature of this
interaction is that the system elements use 

 

only local
information.

 

 In this case, any centralized control and
reference to the global pattern representing the system
in the external world are ruled out. Self-organization is
a result of the interaction between the following four
components:

(1) multiple renewal;

(2) randomness;

(3) positive feedback;

(4) negative feedback.

There are two ways of information transfer between
ants: a direct communication (which includes food
exchange and mandible, visual, and chemical contacts)
and an indirect communication, which is called stig-
mergy. 

 

Stigmergy

 

 is a form of communication sepa-
rated in time, when one participant of the communica-
tion modifies the environment, and the others make use
of this information later, when they occur in a neighbor-
hood of the modified environment. Biologically, stig-
mergy is realized through 

 

pheromones

 

, a special secre-
tory chemical that is deposited as trail by ants when
they move. The higher the pheromone concentration on
the path, the more the number of ants moving along it.
With time, the pheromones evaporate, which allows the
ants to adapt their behavior when the environment is
modified. The distribution of pheromones is a sort of
dynamically varying global memory of the anthill. At

any moment, an ant can sense and change only one
local cell of this global memory.

On the example of experiments with ants on an
asymmetric bridge, we demonstrate how the coopera-
tive behavior of ants makes it possible to find the sho-
rtest path to food. The asymmetric bridge (Fig. 1) con-
nects the ant nest with the food source by two branches
of different length. The experiments [9] were carried
out with a laboratory colony of Argentine ants (

 

Irido-
murmex humilis

 

), which deposit pheromones on the
paths both from and to the nest. The scheme of the
experiments was as follows:

(1) the bridge A-B-C-D was constructed;

(2) the gate at point A was opened;

(3) the numbers of ants selecting the longer (A-C-D)
and shorter branches of the bridge were counted.

At the early stage of the experiments, both branches
have been selected by the ants at about the same rate. In
some time, almost all ants choose to move along the
shortest route A-B-D, which is explained in the follow-
ing way. First, the branches were free of pheromones;
therefore, the A-C-D and A-B-D branches have been
selected with equal rate. The ants that selected the
shorter route A-B-D-B-A returned sooner with food to
the nest and laid pheromone trails on this shorter
branch. When they had to select the next time, the ants
preferred to move along the shorter branch of the
bridge, since the concentration of pheromones on it is
higher. Therefore, the pheromones are accumulated
faster on the branch A-B-D, attracting the ants to select
the shortest route.

2. ANT APPROACH TO THE TRAVELING 
SALESMAN PROBLEM

The traveling salesman problem consists in finding
the shortest closed route passing once through each
town. The choice of this problem for the demonstration
of the ideas of the ant algorithms is explained as fol-
lows:

(1) the problem can conveniently be interpreted in
terms of the ant behavior: intuitively, displacements of
a traveling salesman are similar to those of ants;

(2) this is an NP-hard problem;

(3) this is a traditional benchmark problem for com-
binatorial optimization methods. There is a big library
of test traveling salesman problems and methods of
their solution, which makes it possible to compare effi-
ciency of the ant algorithms with other optimization
approaches;

(4) this is a didactic problem, for which the process
of searching for an optimum can be explained without
discussing technical details of the algorithm;

(5) this is the first combinatorial problem that was
solved by ant algorithms.

 

A

B

C

 

FoodNest

 

D

 

Fig. 1.

 

 An asymmetric bridge (taken from [9]).
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Let us consider how the four components of the ant
self-organization can be implemented as applied to the
optimization of the traveling salesman route.

The 

 

multiple communication

 

 is provided through an
iterative search of the traveling salesman route by se-
veral ants simultaneously. Each ant is considered as a
separate and independent traveling salesman solving
his own problem. In the course of one iteration, the ant
completes an entire traveling salesman route.

The 

 

positive feedback

 

 is provided through a simula-
tion of the “trail-laying and trail-following” type of ant
behavior. The more trails are laid on a path (on a graph
edge in the traveling salesman problem), the greater the
number of ants choosing this path. This results in new
trails on the path, which, at the subsequent iterations of
the algorithm, will attract additional ants. For the tra-
veling salesman problem, the positive feedback is pro-
vided through the following stochastic rule: the proba-
bility that a graph edge is included into the ant route is
proportional to its pheromone value. Such a probabilis-
tic rule implements also the next component of the self-
organization, the 

 

randomness.

 

 The shorter a path from
the food source to the anthill, the more often a biologi-
cal ant can pass it for a fixed time interval, laying down
certain amount of pheromones during each passage. To
imitate this behavior of ants, the volume of virtual pher-
omones laid down on a graph edge is taken to be
inversely proportional to the path length. The shorter
the path, the more the pheromones laid down on the
corresponding edges of the graph, and the more the ants
will use pheromones in synthesizing new paths.

The positive feedback alone leads to the stagnation;
in this case, all ants choose one suboptimal path. To
avoid this, the 

 

negative feedback

 

 through the phero-
mone evaporation is introduced. The intensity of the
evaporation should not be too high; otherwise, the
search area will narrow down. The evaporation should
not be too fast to avoid the situation when the colony
prematurely “forgets” its experience gained in the past
(loss of memory), which breaks down the cooperative
behavior of ants.

For each ant, the passage from a town 

 

i

 

 to a town 

 

j

 

depends on the following three components: the tabu
list, visibility, and trails of virtual pheromones.

The 

 

tabu list

 

 (ant memory) is a data structure that
saves the list of the towns already visited, which should
not be visited again. This list is growing in size during
the tour and is set zero at the start of each iteration of
the algorithm. Let us denote by 

 

J

 

ik

 

 the list of towns yet
to be visited by the ant 

 

k

 

 located in the town 

 

i

 

. It is clear
that 

 

J

 

ik

 

 is the complement of the tabu list.
The 

 

visibility

 

 is a quantity reciprocal to the distance:

 

η

 

ij

 

 = 1/

 

D

 

ij

 

, where 

 

D

 

ij

 

 is the distance between the towns

 

i

 

 and 

 

j

 

. The visibility is a local static value reflecting the
heuristic desire to move to the town 

 

j

 

 from the town 

 

i

 

:
the closer the town, the stronger the desire to visit it.

The 

 

trail of virtual pheromones

 

 on the edge (

 

i

 

 – 

 

j

 

) is
the desire based on the experience of the colony to

move to the town 

 

j

 

 from 

 

i

 

. Unlike the visibility, the dis-
tribution of the pheromones is changed after each ite-
ration, reflecting the experience gained by the ants. The
number of virtual pheromones on the edge (

 

i

 

 – 

 

j

 

) at an
iteration 

 

t

 

 is denoted by 

 

τ

 

ij

 

(

 

t

 

).
The probability that an ant 

 

k

 

 moves at iteration 

 

t

 

from a town 

 

i

 

 to a town 

 

j

 

 is calculated by the following
probabilistic–proportional rule:

(1)

where 

 

α

 

 

 

≥

 

 0 and 

 

β

 

 

 

≥

 

 0 are adjustable parameters
describing the weights of the pheromone trail and visi-
bility when choosing the route. When 

 

α

 

 = 0, the nearest
town is chosen, which corresponds to a greedy algo-
rithm in the classical optimization theory. When 

 

β

 

 = 0,
only the pheromone trail is taken into account, which
implies that all ants select one suboptimal route. To pro-
vide a good optimization dynamics, it is recommended
in [3] to set 

 

β

 

 

 

≥

 

 

 

α

 

.
We note that rule (1) determines the probabilities of

choosing a particular town. The very choice is per-
formed according to the “roulette-wheel” principle:
each town on it has its own sector with the area propor-
tional to probability (1). The town is chosen like throw-
ing a roulette ball, i.e., by generating a random number
to determine the sector where it stops.

When the tour is completed, the 

 

k

 

th ant lays down
on the edge (

 

i

 

, 

 

j

 

) the pheromone value

where 

 

T

 

k

 

(

 

t

 

) is the route of the ant 

 

k

 

 at iteration 

 

t

 

, 

 

L

 

k

 

(

 

t

 

) is
the length of the route 

 

T

 

k

 

(

 

t

 

), and 

 

Q

 

 > 0 is an adjustable
parameter.

To study the whole space of solutions, the phero-
mones should evaporate. If the coefficient of evapora-
tion is denoted by 

 

p

 

 

 

∈

 

 [0, 1], the update rule for the
pheromones takes the form

(2)

where 

 

m

 

 is the number of ants in the colony. At the early
stage of the optimization process, the pheromone value on
edges is taken to be equal to a small positive number 

 

τ

 

0

 

.
The total number of ants in the colony remains con-

stant. A very large colony leads to a quick growth of
suboptimal routes, while a small number of ants may
result in a breakdown of their cooperative behavior

Pij k, t( )

τij t( )( )α ηij( )β

τil t( )( )α ηil( )β

l Jik∈
∑
-------------------------------------------, if j Jik,∈

0, if j Jik,∉







=
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Q

Lk t( )
------------, if i j,( ) Tk t( ),∈
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because of the reduced communication and quick eva-
poration of the pheromones. Normally, the number of
ants is taken equal to the number of towns. In this case,
each ant starts moving from its own town.

Unlike biological ants, the virtual agents remember
the list of visited towns and live in discrete time. In addi-
tion, they are not completely “blind” and choose their
routes not only by the pheromone concentration but also
using heuristics [3]. These differences are governed by
the fact that the virtual ants are used to solve optimiza-
tion problems, rather than to simulate the insect colonies.
Figure 2 presents the ant system for optimizing the tra-
veling salesman route, which implements the above-
mentioned principles of self-organization.

In our experiments for a test problem with 29 loca-
lities in Bavaria (Bays29) [10], the ant system found
(after 100 iterations) an optimal route of length 2020 in
two experiments out of ten. To guarantee that the opti-
mum is found, the number of iterations in the algorithm
should be increased up to one or two thousand. The
algorithm prevents the set of solutions from being

degenerated to a single route selected by all ants. In
Fig. 3a, the best solutions found at each iteration of the
ant algorithm are depicted by the thin lines. The bold
lines show the best solutions found from the start of the
algorithm. The fact that these lines are different implies
that the ant algorithm generates new solutions at each
iteration. This is attested also by Fig. 3b, which shows
the standard deviations of the lengths of the routes
found by the ants at the current iteration. Figure 3c
shows the average (by towns) number of branches of
the pheromone trails, which is obtained by finding the
number of edges incidental to a graph vertex with the
pheromone values exceeding some threshold. Through-
out the algorithm operation, in any town, there may be
found about five promising alternatives for the continu-
ation of the route.

Compared to the exact methods (for example, the
dynamic programming or the method of branches and
bounds), the ant algorithm is faster in finding subopti-
mal solutions even for problems of low dimensions.
The optimization time in the ant algorithm is a polyno-

%Ant system for solving the traveling salesman problem:
<Input of matrix D of distances>
<Initialization of the parameters of the algorithm: α, β, Q, p, and τ0>
m=n %Number of ants is equal to the number of towns
For i=1:n %For each edge

For j=1:n
If i~=j

η(i,j)=1/D(i,j) %Visibility
τ(i,j)= τ0 %Pheromone

Else τ(i,j)=0
End

End
End
For k=1:m

<Allocate ant k in randomly chosen town>
End
<Select a conditionally shortest route T+ and calculate its length L+>;
%Main loop
For t=1:tmax %tmax - number of iterations

For k=1:m %For each ant:
<Build a route Tk(t) according to rule (1)>
<Calculate Lk(t), the length of the route Tk(t)>

End
If “Is the best solution found?” <Update T+ and L+> End
For i=1:n

For j=1:n %For each edge
<Update pheromone trails according to rule (2)>

End
End

End
<Output the shortest route T+ and its length L+>

Fig. 2. Ant system for the optimization of the traveling salesman route.
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mial function of the dimension O(tmax, n2, m), whereas
the dependence for the exact methods is exponential.

3. METHODS FOR IMPROVING 
THE ANT SYSTEM

The ant system solves the traveling salesman prob-
lems of low dimensions (with the number of towns up

to 75) with the same accuracy as other general-purpose
heuristic methods, such as genetic algorithms and the
simulated annealing [3]. For problems of higher dimen-
sions, the simple ant algorithm cannot compete against
modern special-purpose methods for optimization of
the traveling salesman route. The insufficient efficiency
of the ant system is explained by the following facts:

20
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Fig. 4. Comparison of algorithms with different numbers of elite ants for the Bays29 problem.
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(1) The best solution found can be lost by virtue of
the probabilistic rule of route selection.

(2) The convergence near an optimum is low due to
the approximately equal contributions of both the best
and worst solutions to the update of the pheromones.

(3) The memory of the colony stores obviously
unpromising variants, which leads to a considerable exten-
sion of the search area in high-dimensional problems.

Similar problems arise also in the genetic algo-
rithms based on the selection by the roulette-wheel
principle, when the areas of the roulette sectors for the
best and worst chromosomes are almost equal [11]. To
differentiate between good and bad solutions, the
genetic algorithms use an adaptive fitness function,
ranking of the chromosomes, and truncated and tourna-
ment selections. To save the best solution, the selection
is performed with an elitism strategy, when the new
population first incorporates the best chromosome and,
then, the remaining chromosomes are selected. The
convergence in the neighborhood of the optimum is
enhanced through the use of the local search methods.
To reduce the search space, the so-called “building
blocks” are used. Below, we consider similar tech-
niques for improving the ant algorithms.

3.1. Elite Ants

In the neighborhood of an optimum, the difference
in the lengths of ant routes is insignificant; therefore,
according to (2), the contribution of both the best and
worst solutions to the update of the pheromones is
almost the same. This results in slow convergence in the
neighborhood of the optimum. The first improvement
of the ant algorithms consists in using elite ants [3]. The
elite ants deposit pheromones only on edges of the best
route T+ found.

For the traveling salesman problem, the pheromone
value of an elite ant on each edge of the route T+ is taken
to be equal to Q/L+, where L+ is the length of the route T+.
The idea of the elitism is to increase the pheromone value
in order to attract more ants, forcing them to consider
solutions containing edges of the best (at a given time)
route T+. If the anthill has e elite ants, the edges of the
route T+ are additionally strengthened by the value

(3)

Figure 4 presents the dynamics of averaged (over 10
runs) solutions of the Bays29 problem by algorithms
with different numbers of the elite ants. When this num-
ber is high, the ants find very quickly (using 30 to
40 iterations) suboptimal routes of lengths 2033, 2028,
and 2026. Then, however, the algorithms are locked for
a long time in local optima, which are greatly streng-
thened by the elite ants. In our ten experiments with
100 iterations, the algorithms found the optimal route
three times in the case of three and five elite ants, six
times with ten elite ants, and only twice with thirty elite
ants.

∆τij e, eQ/L+, i j,( )∀ T+.∈=

The elitism ideas are developed in rank-based ant
systems [12], ant colony systems [13], MAX–MIN ant
systems [14], and best-worst ant systems [15]. In these
algorithms, the optimization is achieved owing to
increasing the probabilities of selecting the best route
fragments.

3.2. Rank-Based Ant Systems

In the rank-based algorithms, the solutions found at
each iteration are ranked, and only (w – 1) best ants and
one elite ant deposit pheromones. Thus, the bad routes
are not stored. The pheromone value depends on the ant
rank.

For the traveling salesman problem, rule (2) for
updating pheromones takes the form

(4)

where

are the pheromones of the elite ant,

are pheromones of the ant with rank r, Tr(t) is the route
of the ant with rank r at iteration t, and Lr(t) is the length
of the route Tr(t).

In terms of the ant system, rule (4) can be interpreted
as follows: w ants move along the best route T+, (w – 1)
ants move along the best current route T1(t), (w – 2) ants
move along the second-best (by rank) route T2(t), and
so on. The pheromone values on edges of two routes of
almost equal length differ significantly, at least by
100/(w – 1)%. Therefore, in the neighborhood of the
optimum, when the route lengths are almost the same,
the ranking leads to a significant speed-up in searching
for the best solution.

3.3. The Ant Colony System

In the ant colony algorithms, the weight of the best
solution is increased if it is in use. At each iteration, the
pheromones are updated only at the edges of the best
route.

For the traveling salesman problem, the rule of the
pheromone updating (2) takes the form

(5)

where (i, j) is the edge of the best route (either at the
current iteration or from the beginning of the algo-

τij t 1+( ) 1 p–( )τij t( )=

+ w r–( )∆τij r, t( ) w∆τij e, t( ),+
r 1 … w 1–, ,=

∑

∆τij e,
Q/L+, if i j,( ) T+,∈

0, if i j,( ) T+∉



=

∆τij r,
Q/Lr t( ), if i j,( ) Tr t( ),∈

0, if i j,( ) Tr t( )∉



=

τij t 1+( ) 1 p–( )τij t( ) p∆τij e, t( ),+=
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rithm). For high-dimensional problems, good results
can be obtained by updating the pheromones along the
route T+.

Rule (1) is modified as follows: the kth ant moves
with the probability q0 from town i to the most attrac-
tive town z ∈ Jik and, with the probability (1 – q0),
selects town j by rule (1). The more the q0, the higher
the usage of the experience gained by the ant colony in
synthesizing new routes. The most attractive town is
determined as

The adopted rules force the ants to search for an
optimum in a narrow neighborhood of the previous best
solution. To support an adequate balance between
explanation and exploitation, the ant colony systems
include the following rule for the local update of the
pheromones. At each iteration, when moving from
town i to town j, the ant “eats” some amount of phero-
mones from the edge (i – j). This edge losses its attrac-
tiveness for the other ants, thus forcing them to consider
alternative routes from towns i and j. The solutions
become more diverse owing to the dynamic update of
the pheromone distribution.

3.4. MAX–MIN Ant System

This algorithm differs from the ant system by the
following three rules:

(1) At each iteration, the pheromones are added only
to the edges of the best route in line with rule (5).

(2) The pheromone value on a graph edge is con-
fined to the range [τmin, τmax].

(3) Initially, the pheromone value on each edge of
the graph is taken to be τmax.

The restrictions imposed on the pheromone value
make it possible to diversify the solutions and, thus,
avoid stagnation. To extend the solution domain, the
max–min ant systems use a trail smoothing mechanism,
according to which the pheromone value ∆τij(t) on the
edge (i – j) is proportional to (τmax – τij(t)).

z τij t( )( )α ηij( )β( ).
j Jik∈
maxarg=

Computer experiments with the traveling salesman
problem [14] show that the average time of optimiza-
tion can be significantly reduced, if the pheromones are
updated on the route T+, rather than on the edges of the
best route at the current iteration. For high-dimensional
problems, the optimization time is reduced through a
hybrid strategy, when, at certain iterations, the phero-
mones are laid down on the route T+, while, at other
iterations, the best current route is used. The rate of the
pheromone update on the route T+ must increase during
the execution of the algorithm [14].

Table 1 compares results of solving traveling sales-
man problems from library [10] by the following algo-
rithms: the ant system (AS), the ant system with elite
ants (ASE), the rank-based ant system (ASR), the ant
colony system (ACS), and the max–min ant system
(MMAS). The symbols “+pts” mean that the trail
smoothing mechanism was used. All algorithms syn-
thesized the same number of routes: 10000 · n for the
symmetric problems Eil51, KroA100, and Dl98, and
20000 · n for the asymmetric problems Ry48p, Ft70,
Kro124p, and Ftv170. The numbers in the problem
names mean the number of the towns (n). The numbers
in the table cells denote lengths of the shortest routes

Table 1.  Solution of the traveling salesman problem by different ant algorithms [14]

Problem Eil51 Kroa100 Dl98 Ry48p Ft70 Kro124p Ftv70

Optimum 426 21282 15780 14422 38673 36230 2755

MMAS + pts 427.1 21291.6 15956.8 14523.4 38922.7 36573.6 2817.7
MMAS 427.6 21320.3 15972.5 14553.2 39040.2 36773.5 2828.8

ACS 428.1 21420 16054 14565.4 39099 36857 2826.5

ASR 434.5 21746 16199.1 14511.4 39410.1 36973.5 2854.2

ASR + pts 428.8 21394.9 16025.2 14644.6 39199.2 37218 2915.6

ASE 428.3 21522.8 16205 14685.2 39261.8 37510.2 2952.4

ASE + pts 427.4 21431.9 16140.8 14657.9 39161 37417.7 2908.1

AS 437.3 22471.4 16702.1 15296.4 39596.3 38733.1 3154.5

MMAS+pts

1
0

2

3

4

5

6
Relative accuracy, %

MMAS
ACS

ASR+pts
ASR

ASE+pts
ASE

AS

Fig. 5. Comparison of the ant algorithms in terms of relative
accuracy (based on the data from Table 1).
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found (averaged over 25 runs). The best solutions are
highlighted by the bold face.

Figure 5 compares the ant algorithms in terms of the
average relative accuracy,

where opti is the length of the optimal route for the ith
test problem in Table 1 and Li is the averaged length of
routes found by the corresponding ant algorithm for the
ith test problem.

It can be seen from Fig. 5 that the max–min ant sys-
tem is most efficient, and the ant colony system is the
second-best. Note that, according to the data presented
in [14], for the two high-dimensional symmetric prob-
lems (Att532 and Rat783 [10]), the averaged lengths of
routes obtained by the MMAS were even shorter than
those obtained by the ACS.

3.5. Best-Worst Ant System

This algorithm differs from the basic ant algorithm
by the following three rules:

(1) the pheromones are laid down on edges of the
best route T+ by rule (5);

(2) at a given iteration t, the pheromones evaporate
only from the worst route T–(t):

ϕ 1
7
---

Li opti–
opti

--------------------
i 1 … 7, ,=

∑ 100%,⋅=

τij t 1+( ) 1 p–( )τij t( ),=

i j,( ) T– t( ) and i j,( ) T+;∉∈

(3) the pheromone trail on an edge (i – j) is subjected
to mutation with a probability pmut:

where i, j = 1, …, n, i ≠ j, ∆τmut is a random number
from a range depending on the iteration number and the
average pheromone value on the edges of the route T+,
and a ∈ {0, 1} is a random number.

The first rule increases the contribution of the best
solution. The second rule reduces the contribution of
the worst current solution. The third rule is similar to
the operation of mutation in genetic algorithms and is
used to diversify the solutions through extending the
search area. When approaching stagnation (when the
best and worst solutions differ only by a few edges), the
pheromone values on all edges are set equal each other,
τij = τ0; i, j = 1, …, n. It was shown experimentally [16]
that, among the above-mentioned algorithms, the best–
worst ant system is the most efficient one for solving
quadratic assignment problems.

3.6. Candidate List

In high-dimensional problems, a candidate list is
used. This is a small list of preferential nodes that can
be reached by an ant from a given node. The candidate
list is generated on the basis of prior knowledge of the
problem or data updated dynamically during the solu-
tion. An ant selects a node different from those in the
list only when the list has been exhausted. The candi-
date list makes it possible to exclude obviously
unpromising variants and force the ants to consider the
most promising routes, thus essentially reducing the
search area.

For the traveling salesman problem, the candidate
list includes neighboring towns. For example, the opti-
mum for the problem Pr2392 with 2392 towns [10] can
be found by studying route continuations to eight nea-
rest towns [17]. The candidate list can be used with all
considered modifications of the ant algorithms. The
candidate list was first implemented in [18].

τij t 1+( )
τij t( ) ∆τmut, if a 0,=+

τij t( ) ∆τmut, if a 0,≠–



=

Table 2.  Comparison of metaheuristic optimization methods
for the traveling salesman problem [6]

Test Problem Eil50 Eil75 KroA100

Simulated Annealing 443 580 Data not
available

Genetic Algorithms 428 545 22761

Evolutionary Programming 426 542 Data not
available

Ant Colony System 425 535 21282

Table 3.  Comparison of metaheuristic methods for solving the quadratic assignment problem [6]

Test Problem Nugent (12) Nugent (15) Nugent (20) Nugent (30) Elshafei (19) Krarup (30)

Simulated Annealing 578 1150 2570 6128 17937024 89800

Tabu Search 578 1150 2570 6124 17212548 90090

Genetic Algorithms 588 1160 2688 6748 17640584 108830

Evolution Strategies 598 1168 2654 6308 19600212 97880

Ant System 578 1150 2598 6232 18122850 92490

Ant System with Local Search 578 1150 2570 6128 17212548 88900
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3.7. Hybridization of Ant Algorithms

The ant algorithms are most often hybridized by
adding local-search techniques. At each iteration of an
algorithm, these techniques try to improve solutions
found by the ants. Commonly used techniques are
applied iteratively: they improve solutions until a local
optimum is reached. A successful selection of the local-
search method speeds up considerably solution of the
optimization problem. For the traveling salesman prob-
lem, the 2-opt, 3-opt, and Lin–Kernighan local-search
procedures are frequently used, which improve routes
by replacing two, three, or a variable number of edges,
respectively.

There have been recent efforts in hybridizing the ant
algorithms with other metaheuristic optimization meth-
ods and natural computing (first and foremost, with
genetic algorithms). There are two main directions of
such hybridization: the island mechanism and use of
genetic operations in ant algorithms. The island me-
chanism relies on concurrent solving the problem by
genetic and ant algorithms, which exchange solutions
after some time period. To date, there have been efforts
in solving the traveling salesman problem and the vehi-
cle routing problem by the island ant–genetic mecha-
nism [19–21]; however, the time has not yet come to do
some generalizations. The second direction of hybri-
dization is based on the best–worst ant system [15, 16],
where the pheromone value on the graph edges is mo-
dified through mutation.

Of interest are fuzzy <if-then> rules when using the
virtual ants for the route selection. This kind of hybri-

dization of ant algorithms makes it possible to draw good
transportation schedules under fuzzy source data [22].

4. A REVIEW OF APPLICATIONS 
OF ANT SYSTEMS OF OPTIMIZATION

After insignificant modifications, the considered ant
algorithm for optimizing the traveling salesman route
can be used for solving other combinatorial problems,
such as the quadratic assignment problem, the vehicle
routing problem, the job-shop schedule planning prob-
lem, the problem of graph coloring, the problem of the
shortest common supersequence, the problem of multi-
ple knapsack, and the like. To solve these problems by
the ant algorithms, it is required (1) to reduce them to
the search for the shortest path on some graph, (2) to
define the mechanisms of pheromone initialization and
update, and (3) to assign heuristic rules for the route
selection.

The ant algorithms can solve discrete optimization
problems as successfully as other metaheuristic tech-
niques and some problem-oriented methods. They
ensure a good balance between the solution accuracy
and the optimization time. To illustrate this, we com-
pare different metaheuristic methods for solving the
traveling salesman problem (Table 2) and the quadratic
assignment problem (Table 3). The numbers in the table
cells are values of the optimality criteria for the solu-
tions obtained by the corresponding methods. In Table 4,
three vehicle scheduling methods for high-dimensional
problems are compared. The optimization time was
recalculated to fit the power of the Pentium 900 Mhz

Table 4.  Comparison of metaheuristic methods for solving the problem of vehicle scheduling [23]

Number
of clients

Rang-based ant system with problem 
decomposition and local search (D-Ant) Genetic Algorithm Granular Tabu Search

Solution averaged 
over 10 runs

Best
solution

Solution
time (min)

Solution
obtained

Solution
time (min)

Solution
obtained

Solution
time (min)

200 6460.98 6460.98 7.13 6460.98 1.04 6697.53 2.38

255 589.28 586.87 139.27 596.89 14.32 593.35 11.67

300 1007.81 1007.07 32.55 1018.74 39.33 1016.83 21.45

399 932.58 927.27 158.93 933.74 78.50 936.04 33.12

420 1836.87 1834.79 239.47 1846.55 210.42 1915.83 43.05

480 13958.68 13816.98 240.00 13728.8 187.6 14910.62 15.13

Table 5.  Comparison of the routing algorithms for the NSFNET network [42]

Algorithm AntNet OSRF SRF Daemon BF

Mean communication delay (s) 0.93 (0.2) 5.85 (1.43) 3.58 (0.83) 0.10 (0.03) 4.27 (1.22)

Capacity (×107 bits/s) 2.392 (0.011) 2.100 (0.002) 2.284 (0.003) 2.403 (0.010) 1.410 (0.047)
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processor. Boldface letters mark the currently best solu-
tions.

The ant algorithms can also be applied to problems
of stochastic combinatorial optimization. The conver-
gence of stochastic ant algorithms to a global optimum
has been demonstrated in [24].

The following applications of the ant systems
should be emphasized:

• in engineering, multiple objective design of water
irrigation grids [25], optimization of water distribution
[26], optimization of the GPS geodetic grids [27], opti-
mization of the reliability with the help of redundancy
[28], ergonomic design of computer keyboards [29],
data allocation in memory of supercomputers [30], and
dynamic optimization of chemical processes [31];

• in management, university course timetabling
[32], optimization of the allocation of bus stops [33],
balancing transportation timetables [22];

• in biology, prediction of the protein folding by its
amino-acid chains [34];

• in arts, music composition [35] and painting [36].
Good results were obtained by using the ant algo-

rithms for learning Bayesian networks [37], classical
logical rules [38], and fuzzy knowledge bases [39], as
well as for the extraction of fuzzy rules from experi-
mental data [40]. Based on ant optimization, fuzzy
logic, and swarm intelligence, the Siemens Corporation
developed a hybrid method for logistics control. A pilot
use of this method at the storage facilities in Munich
reduced delays in the delivery of goods by 44% [41].

The ant algorithms are highly efficient in the optimi-
zation of distributed nonstationary systems. An exam-
ple of such problems is finding optimal traffics in tele-
communication networks [6, 42]. Table 5 presents
results of routing in the American network NSFNET,
which consists of 14 nodes and 21 bidirectional com-
munication lines. The following algorithms were com-
pared: AntNet (the ant algorithm), OSRF (the official
internet routing algorithm), SRF (the algorithm using a
dynamic metric in calculating the connection cost),
Daemon (the approximation of ideal routing algo-
rithm), and BF (the Bellman–Ford algorithm). Table 5
shows the average delay times and capacities for the
case of high network loading. The numbers in parenthe-
ses aree values of the rms deviations after ten runs of
the algorithms. Data on other applications of ant algo-
rithms can be found in review articles [43, 44] and
books [6, 45].

5. CONCLUSIONS
In recent years, there has been a significant impact

of biosciences on mathematics and computer technolo-
gies, leading to the genesis of a new science, technobi-
ology, which uses biological principles to improve
technology and information processes [8]. The ant
algorithms can be attributed to technobiology, since
they are based on the self-organization mechanisms of

social insects. Proposed in the early 1990s, the ant algo-
rithms, for ten years, have turned from “toy” demon-
strations to an important field of theory of optimization.

This paper shows (on the example of the traveling
salesman problem) how to solve combinatorial optimi-
zation problems with the help of the ant algorithms.
Basic techniques for improving the ant algorithms,
such as the use of elite ants, local-search techniques,
trail smoothing mechanisms, and candidate lists, have
been discussed. Modern modifications of the ant algo-
rithms—the rank-based, max–min, and best–worst ant
systems—have been analyzed.

The ant algorithms can be applied to optimization
problems that are reduced to searching for the shortest
path on a graph with certain constraints. The virtual
ants select routes on the graph by a probability rule,
based on the pheromone value and heuristic methods
for solving specific problems. Computer experiments
have attested that the ant algorithms ensure a good bal-
ance between the solution accuracy and the optimiza-
tion time. The results are especially nice in the case of
ant optimization of dynamical systems with nonstation-
ary parameters (for example, telecommunication and
computer networks). An important feature is that the
ant optimization is non-convergent: even after many
iterations, a variety of solutions can simultaneously be
investigated, and, thus, the algorithms are not entrapped
in local optima. All this allows us to recommend using
ant algorithms for solving complex combinatorial opti-
mization problems.
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