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Abstract The numerical tool EKINOX-Zr has been upgraded to simulate oxygen
tracer experiments during the high-temperature oxidation of a metal with a high
oxygen solubility limit. The penetration of '®O tracer is calculated during the
dynamic evolution of the ZrO, /07,0y, system. The numerical approach allows
to explicitly take into account the variation of the tracer diffusion coefficient
through the oxide scale as a function of the vacancy concentration. A classical two-
stages '°0,/'®0, tracer experiment has been simulated. It is shown that a classical
fitting procedure on the 'O concentration profile obtained for short-time experi-
ments leads to the identification of the oxygen chemical diffusion coefficient. The
second type of tracer experiment is proposed using a three-stages '°0,/'*0,/'°0,
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oxidation. It allows the direct estimation of the diffusion coefficient from the
transport of '®0 peak in the growing oxide scale.

Keywords Zirconium - Tracer experiment - '*0 - Numerical modeling - Diffusion

List of symbols

a Chemical activity of the specie i

R Universal gas constant

Co Oxygen concentration

Ri3  Volume ratio of the mix gas 1802/1602

DY, Oxygen diffusion coefficient in the metal

T Temperature

D?  Oxygen diffusion coefficient in the oxide

X7 Concentration of the specie i in the slab r

e Elementary charge

a Relative electric charge of the oxygen vacancies
fo  Correlation factor

At Numerical time step

JI Flux of the specie i from the slab r to the slab r + 1
Uo  Chemical potential of oxygen

K Equilibrium constant

o, Electrical conductivity of the specie k

L;  Crossed diffusion coefficient

Q" Molar volume of the slab r

Introduction

Oxygen tracer (O-tracer) experiments are one mode to measure oxygen diffusion
coefficients and/or to understand the growth mechanisms of an oxide scale.
Nowadays, these experiments consist in a two-stage oxidation. The first stage is
generally performed under a natural oxygen atmosphere (majority of '°0,) while the
second stage is carried out under an lez-enriched atmosphere. Then, SIMS, RBS or
NRA can be used to measure the distribution profile of each isotope and extract the
expected information.

In order to analyze the isotopic distribution profiles, an analytical theory of
O-tracer penetration in two-stage oxidation experiments has been formalized by
Mishin and Borchardt [1]. This theory gives the equations for the O-tracer
penetration through both grain boundaries and sublattice diffusion in a growing
oxide layer, with both the anionic and the cationic transports. Hence, their work has
guided numbers of studies concerning O-tracer experiments to correctly define the
time ratio between '®0, and '°O, sequences [2]. Despite this very useful approach,
their analytical theory suffers from several restrictions. First, it is not possible to
handle neither a temperature transient oxidation nor a triple sequence
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1602/ 1802/ 1602. Furthermore, it is assumed in their work that the oxide scale growth
kinetics is fully controlled by the fluxes in the oxide because oxygen dissolution in
the metal can be often neglected.

In this study, the aim was to measure the oxygen diffusion coefficient in specific
phases of the zirconium/zirconia system. Zirconium, as titanium and hafnium, has a
very high oxygen solubility limit [3]. Thus, in order to analyze the isotope
penetration profiles in these specific systems, it was required to develop a numerical
model able to calculate '°0 and '®0 penetration for the particular case of the oxygen
penetration in the underlying metal. To do that, EKINOX-Zr numerical model [4-6]
has been upgraded in order to calculate the isotopic penetration. Formerly, the
EKINOX-Zr model was developed to simulate the high-temperature (HT) oxidation
of zirconium alloys. Hence, this numerical model is able to calculate the growth of
both the oxide scale and the a,(O) phase additionally to the penetration of oxygen.
To calculate the isotope penetration, 'O was added to the system of equations to be
solved, and it was assumed that 160 and "0 were two distinct species that diffuse
independently but on the same sublattice and under the same driving forces.

This paper deals with the development of theoretical approach to formalize the
flux equations of isotopic tracers in the oxide scale with anionic transport. Then, its
appliance with the EKINOX-Zr numerical model was tested.

Formulation of the Tracer Diffusion Equations
Theoretical Approach

In this part, the equations of the fluxes of "®*0?~ and '°O*~ species in the oxide scale
are detailed. They lead to the numerical model presented in the next part.

The electrochemical potential fi; of a given specie i' is linked to its chemical
activity a; by the Eq. (1):

Vi€ {16;18}, fi; = ; + 2e¢™ = 1 + RTIn(a;) + oep™ (1)

where ¢°* is the local electrostatic potential, e is the elementary charge, and o is the
charge of the specie i. Let us assume the case of an oxygen deficient n-type
semiconducting oxide.

In this case, there is a transport of oxygen anions and electrons in the oxide due to
the electrochemical potential gradient across the oxide scale. The diffusion of
charged particles gives rise to partial current densities of oxygen and electrons that
leads to a total current iy, [7, 8]. Because of the electroneutrality of the overall oxide
layer, i,y = 0, the flux of specie i can be expressed as follows:

! In order to clarify the notations, all the terms “A” linked to 130 will be mentioned as A;g. The same
convention is followed for the terms linked to the '°O. When a generic term is used, it will be mentioned
as A;.
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Vie {16;18},J; = —

Di.G; {dui dd)‘“] ?

RT |dr %€ dx

By using the Wagner model of oxidation (see [8]), with the hypotheses of a
semiconducting oxide in which the electronic defects diffuse much faster than the
anions and with the assumption of the local equilibrium across the oxide, it is
possible to write the flux equations of the diffusing species in the oxide scale as a
function of the oxygen activity gradient across the oxide scale:

dCi dll’l(lo
Vie {16;18},J; = — Do - -C-— 3
i€ {16:18) o (- o) )
In the following, the case of an oxide scale that grows via anionic transport” only
by a vacancy mechanism is considered. At the oxide/gas interface, the oxygen
adsorption is possible thanks to the annihilation of anionic vacancies following the
Eq. (4) (using Kroger-Vink notations):

150, + V& 4+ 0e™ = O (4)

The transport mechanism for anions can be described as the transport in the
opposite way of anionic vacancies V¢ ; anionic vacancies are created at the metal/
oxide interface and annihilated at the oxide/gas interfaces. It is possible to write the
equilibrium constant K of the chemical reaction at the oxide/gas interface (Eq. 5):

1
5w va]

(5)

Expressions of the chemical activities ap, a6, and a3 can be deduced from the
Eq. (5), using the local electroneutrality to remove the electron concentration n
from the equation:

1

—— (6)
a* [VS’} (1+¢)K

ap =

Ci
Vi e {16;18},a; = —ao (7)
Co

Following Egs. (1), (6), and (7), the expression of the chemical potential ,u163 is
given by:

o

the = W + RT (m (%) — (I +a)(In([vE] - 1n(Ka“)))) (8)

2 In case of an anionic transport in the oxide scale, the anion flux is predominant, whereas the cation flux
is negligible.

* The same development can be done for 1.
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Considering that, in the oxide scale, the anionic vacancies and anions are
complement one another in the anionic sublattice: Co = 1 — [Vg‘] , and that Ka* is a
constant across the scale, an expression of Vi, can be deduced from Eq. (8):

. VCig B l1+a B 1
Ve - RT< < ([ves'] - [Vm>vco> o)

According to the thermodynamic of irreversible processes (e.g. [9]), the flux Ji6
of 0%~ and the flux J;5 of '80% can be expressed with the crossed diffusion
coefficients and the chemical potentials of each specie as given in Eq. (10):

V{isj} € {16;18}[i #j,Ji = — LiViy; — LV, (10)

Knowing that LC%’ = L&%g‘, it can be assumed that: Do = %Loofo. It is chosen to fix

that fo =1 — % and Ljg3 = 0, thus fo = 1. Then, by a combination of the

Egs. (9) and (10), one can obtain an expression of the flux Ji¢ and Jis:

. . o o ' 1+oc_ 1
Vi € {16;18},J; = — DoV C; DOC’([VS‘] T— [Vg.]>VCO (11)

In the flux expression (Eq. 11), we can find two distinct parts in the RHS. The
first part, — DoV C,, corresponds to the diffusion (Brownian motion) while the

second part, — DoC; <[1V+—°‘] — ﬁ) VCo, is the transport induced by the gradient
o o
of the electrochemical potential. Considering that CoDo = [V |Dyz and defining

Y= % and 7; = C% one can express the fluxes Jj¢ and Jig as given by
Eq. (17):

Vi€ {16;18},J; = — (1 + ¢)Dy=VC; — 1;(1 —9)(1 + o0)Dyv=V [VZ']  (12)

In the case where [V&'] < 1=y~ [:/EOJ, one can simplify the Eq. (12):

Jis = — [V | Dy VCig — 113(1 + o) Dy V [V’ (13)

It is possible to obtain an expression of Do (the chemical diffusion coefficient of
oxygen) from the Eq. (13):

J]g = — [Vg’}Dvgvclg — ‘Elg(l + OC)DVS-V[V(?] = —Bovclg

_— I+o 1 vivel\ [ve]
T <1 ! ([Vé’] - C_O> Cs VCig Co Dvg (14)

Knowing that (1 + oc)DVé-V[Vg'] = —Jvz = Jo, the Eq. (18) becomes:
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Fig. 1 Schematic of the EKINOX-Zr architecture [6]

J13 = ‘Clg.lo — CoDoVClg (15)

In [1], Mishin and Borchardt defined the oxygen tracer flux as the following
equation (Eq. (10) p. 867 in [1]):

J(*) = CJO — CQDEVC (16)

A one-to-one identification between Eqs. (15) and (16) can be done. Jg is the flux
of O-tracer, noticed J;g in the present work; c is the ratio of O-tracer, corresponding
to 713 in the present work; Vc is the gradient of the tracer concentration, that is to
say VCisg in the present work; and Dy = fDo, where the correlation factor f is
named f, and it is equal to the unity.

Thus, when [Vfﬂ < 1 the Egs. (15) and (16) are equivalent, this corresponds to
the conditions of Mishin and Borchardt’s work.

The isotope fluxes in the metallic matrix are governed by the Brownian’s motion
and are given by Eq. (17). In those two equations, the approximation on the activity
coefficient y, = 1 is assumed.

Vi € {16;18},J; = — DoV (; (17)

Modifications of EKINOX-Zr Model

Detailed presentations of the EKINOX-Zr model are available in [5, 6]. It is
reminded that in this model, the fuel cladding tube is modeled as a one-dimensional
planar domain divided into n slabs (Fig. 1). The growth kinetics of both the oxide
scale and the o0z(O) layer is calculated by EKINOX-Zr model. A numerical
resolution of Fick’s equations (thanks to an explicit finite difference algorithm) with
boundary conditions on moving interfaces allows determining the penetration
profile of oxygen. The interfaces are considered at local equilibrium, and the
thermodynamic database Zircobase [10] (CALPHAD formalism) is used to
calculate the boundary concentrations.

Given that EKINOX-Zr model is already able to calculate the overall oxygen
penetration, one can follow the penetration of each isotope by adding only the
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calculation of the penetration of '°0 and calculating 'O by the difference. Firstly, it
is assumed that the Eq. (18)* is valid in the bulk metal (O diffuses as an interstitial)
and that the Eq. (19) is valid in the oxide. Then, the whole penetration profile of
80 can be deduced from Egs. (18) and (19) once the O, %0, and vacancies
concentrations have been calculated by the EKINOX-Zr model.

(metal) Vp e N|I <p<i X} = X5 + X6 (18)
(oxide) quN\i+1§q§”7x(q):1_X§1/o:X(118+X;16 (19)

A discretized expression of Eq. (17) for the flux J7; in the bulk metal is given by
the Eq. (20). If one defines the diffusion coefficient Doy as Dox = (1 + a)DVg)-, a
discretized expression of the Eq. (12) for the flux J% can be provided by Eq. (21).

p+1 P
Xie —Xie

(metal) Vp € N[l <p<i,Jig=—Dp—0m (20)

X _ xa g+l _ x4
(Oxide) Vq S N|l+ 1 ngn,]i% = _’qugxlitH,ieqHMJ’» T(IIG(] - 'yq)Dgx%
(21

From the Eqs. (20) and (21), it is possible to obtain the evolution of isotopic
concentrations as follows:

r+1
— ‘]16

er

dXy J7
Yre N\{jj+ Lii+ 1}2<p<n—1,= 6= Q=6 (22)

The variations of isotopic concentrations in the slabs around each interface are
given by Egs. (23-28):

va J116,met 2
X16 - ol ( 3)
i Nome
Xy = o (24)
j+1
+1 16,met
X = -om (25)
g _ Jioma 26)
16 — ei
iJﬁrl
1 16,0x
Xig =~ i+1 (27)

4 The superscript p is linked to the metallic slabs whereas the superscript ¢ is linked to the oxide slabs.
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A
Xie = —, (28)

It is now possible to express the equations of the variation of isotopic
concentrations between two time steps:

de
VreN|1§r§n—l,Xfﬁ(t—i—At):X%(t)—&—At?m (29)
VreN|[I<r<n—1X[(t+At) =1 —X5(t + At) — X[ (1 + At) (30)

At the oxide/gas interface, the proportion of each isotope changes as a function of
the incoming flux of mixed '°0,/'®0, gas. The fraction of 'O isotope in the
1602/ 1802 mixed gas is called Rig. Then, the concentrations of %0 and B0 at each
time step in the slab n are given by Eqgs. (31) and (32):

X (t 4+ At) = X[ (1) + (1 — Ryg) ArXs (31)
Xig(t +At) = 1 = Xy, (t+ At) — Xj(t + At) (32)

As stated before, the oxygen concentrations at the interface are fixed to the
equilibrium values. Then, the isotopic concentrations in the slabs 1, j, j + 1, i, and
i+ 1 are fixed to the boundary concentrations as a function of the ratio of each
isotope in the slab. For example, the isotopic concentrations in the slab i (metal/
oxide interface in oz (O)) are given by the Eqs. (33) and (34):

Xi (1 + At) = (M) Co /o (33)
XiS(t + At) = (1 - W%%S(O) Caz;/ox (34)

Results and Discussion

Tables 1 and 2 summarize all the thermodynamic and diffusion data used to perform
calculations shown in this part. Please note that in the oxide scale, the boundary
concentrations of vacancies and oxygen are defined with reference to the
stoichiometry of ZrO,_,. Notice that a constant value for diffusion coefficient of
vacancies in the oxide is used as the only input parameter for diffusion in the oxide

Table 1 Oxygen boundary concentrations calculated with ThermoCalc and the Zircobase [10]

T C/ Br oz C“Zr Bz C“Zl [ox [Vg.] ox/az, [Vé.} ox/gas
Q) (at)

1200 2.76 x 1072 1.15 x 107! 3.00 x 107! 6.92 x 1072 1.00 x 1078
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Table 2 Oxygen diffusion coefficients used in EKINOX-Zr calculations [11]

T Dﬁ Dﬁ(Z, Doy = (l + OC)DV;;' Do‘ux/a(l,. DO'(}}c/gm‘

Zr

o) (em’s™h

1200 1.55 x 107¢ 1.10 x 1077 9.36 x 1077 2.16 x 1078 3.12 x 1071

for EKINOX calculation. Considering the gradient of vacancies in the oxide, this
leads to variation of the O intrinsic diffusion coefficient across the oxide. Table 2
also gives in the two last columns the corresponding values for O intrinsic diffusion
coefficient at ox/o, interface and oxide/gas interface.

Figure 2 shows a comparison between Mishin and Borchardt study [1] and
EKINOX-Zr calculations. Figure 2 presents two isotopic distribution profiles
calculated for the oxidation of zirconium during 1000 s at 1200 °C. The first 500 s
corresponds to an oxidation under 1°0, (natural stage) and the last 500 s are under
80, (tracer stage). The total oxygen concentration profile is also depicted in the
figure. Hence, one can follow both the growth of the zirconia scale and o, (O) layer.
The shape of the '®0 concentration profiles corresponds to the typical profiles for
systems where diffusion takes place only by lattice diffusion. Notice that the '*O
distribution profile would be very different in the case of short-circuit contribution
[12].

Mishin and Borchardt [1] report that the tracer penetration profile can be fitted by

the Eq. (35) where Do is the average chemical diffusion coefficient of the tracer:

117
1.04 160
0t o ;
081 x erf , h
I Y
0.7 AR
¥

i

0.6 4 LA
0.5 | 900s%’  550s

3 *
04| Ak f
03+ P
®
024
0.1

0.0 S
150 200 250 300 350

X (um)

Oxygen concentration (at.)

Fig. 2 EKINOX-Zr calculation: two sets of distribution profiles of O, '°0, and 'O plotted for an
oxidation of zirconium alloy during 1000 s at 1200 °C, the first stage (500 s) is performed under 160,
while the second stage (500 s) is performed under '®0,. Comparison between the analytical solution
“erf” (Eq. 38) and the '®0 penetration profile calculated by EKINOX-Zr
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Cis(x) = Cly*/®erf | — (35)

2/ Dot

Following this statement, Fig. 2 presents a comparison between the '*O
penetration profile calculated by EKINOX-Zr and the analytical solution of
Ci5(x) given by Eq. (35). The parameters of the analytical formula were chosen as

followed: Co9/%% — 0988 at (equal to the value of X7, given by EKINOX-Zr
calculation), + = 550 s (that corresponds to the calculation duration). With an

adjusted value of Do = 4.5 x 107'° cm? s™" in Eq. (35), a good fit is obtained
between the analytical solution and the numerical calculation. Following the
Eq. (14), it is possible to calculate the values of Dg close to the oxide/gas interface
and at the “end” of the '®0 penetration profile. All the values are summarized in

Table 3 that clearly shows that the value of D used in the Eq. (35) is consistent
with two values of Dg calculated with the Eq. (14).

Initially, the Eq. (35) is provided in [1] to measure the self-diffusion coefficient
Doer of the oxygen tracer. To do so, authors assumed that the self-diffusion
coefficient is constant in the whole oxide scale, even if they clearly mentioned that
the self-diffusion coefficient depends strongly on the local vacancy concentration.
Finally, they conclude that their assumption is available for short-term oxidation
(i.e., in the case when the diffusion is largely predominant over the transport). In the
case of zirconium oxidation, if we take a look at the Eq. (14), we can see that close
to the oxide/gas interface, because of the very small value of the vacancy
concentration; the global diffusion coefficient of the diffusion part (first term in
RHS of Eq. 14) is equal to 3.12 x 107" cm? s, whereas the global diffusion
coefficient of the transport part (second term in RHS of Eq. 14) is equal to
9.36 x 1077 cm? s™'. Thus, the transport part cannot be neglected even for short-
time tracer stage. So, we can say that the Eq. (35) allows us to measure only an
average chemical diffusion coefficient and not the self-diffusion coefficient.

The numerical model has also been used to imagine a new type of tracer
experiments with a short-time '®0, stage surrounded by two '°0, stages of longer
durations. Hence, a calculation has been realized considering that the entire
oxidation is performed under the natural stage with 100% '°0, except between 200
and 230 s when the tracer stage is performed under 100% '*0.,.

Table 3 Comparison between the values of Do calculated with the Eqgs. (14) and (35)

X (um) 280 320-329 329

“End of '80 profile” DTO Oxide/gas interface
Calculated from Eq. (14) Eq. (35) Eq. (14)
Do (cm2.s™Y) 1.4 x 1078 45 x 107" 3.1 x 10710
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Fig. 3 a Time evolution of 'O concentration in the first numerical slab of oxide. b Isotope diffusion
profiles calculated at 240, 280 and 360 s by EKINOX-Zr for an oxidation of zirconium containing a
30 pm prior-oxide layer. The following sequences have been ordered as follows: 200 s under '°0, —
30 s under l802 — 970 s under '602. For a better understanding, we chose to set all the oxide/gas
interfaces at the same abscissa

Table 4 Values of Do measured by following the %0 peak displacement from Fig. 3. The maximum
value of the %0 at the oxide/gas interface is reached for t = 230 s

t (s) 240 280 360
At (s) 10 50 130
Ax (pm) 3 8.6 18
Do (cm*s™h) 9.0 x 107° 15 x 107 25 x 1078
Metal TD Oxide Gas
Dyy =3.12107cm?s7t |
1.40108cm?s?!
02.16108cm?s ! - 4.510%cm?s!
A 5 3.1210%cm?s!
Do(x) = Co®) Dyz ° o
o x 312105 cm?s™®

Fig. 4 Schematic illustration of the evolution of each diffusion coefficients along the oxide scale

Figure 3a shows the time evolution of the concentration of '8O in the first
numerical slab of oxide besides the oxide/gas interface, that is to say the evolution
of 0 concentration at the oxide scale surface for this specific calculation. The
evolution of '®0 concentration at the surface results from the Egs. (31) and (32)
which differ from the drastic assumption usually made by imposing a constant
surface concentration. Figure 3a shows that the enrichment in '®O at the oxide
surface is rapid and the maximum value is reached 30 s after the introduction of
'80, in the atmosphere. Figure 3b shows the evolution and displacement of the peak
of '80 tracer for three different durations. The evolution of the '®O distribution
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profiles illustrates both contributions: diffusion and transport. The transport term
induced the inward displacement of the '®0 peak position in the oxide scale while
the diffusion term induced the spreading of the O peak with time.

If one follows the abscissa of the summit of the 'O peak as a function of time,

we can obtain values of Do considering that Ax = /DoArt [13]. The values are
summarized in Table 4.

Table 4 shows the same evolution of Dg than in Table 3. Tables 3 and 4 clearly
show that Dy is increasing from the oxide/gas interface to the metal/oxide interface,
as for Dg. This is due to the increase of the vacancy concentration.

Figure 4 presents a schematic illustration of the evolution of each diffusion
coefficient. We can see that all the values are consistent with each other.
Furthermore, Fig. 4 shows that the assumption made in [1] on the constant value of
the self-diffusion coefficient is not relevant in the case of zirconium oxidation.

Conclusions

In this work, our aim was to simulate O-tracer experiments at high temperature
taking into account a high oxygen solubility limit of oxygen in the metal. A second
objective was to obtain a numerical model able to simulate any kind of tracer
diffusion during the oxidation, even in non-stationary regimes. The diffusion
equations of '°0 and '"*0 were deduced from classical diffusion equations taking
into account the electrochemical potential gradient across the oxide scale through
the large gradient of anionic vacancy concentration. The numerical implementation
of these equations in the existing EKINOX-Zr model enabled direct calculation of
isotope fluxes without making the approximation of a constant oxygen intrinsic
diffusion coefficient which was done in Mishin and Borchardt’s work [1]. Indeed,
the oxygen diffusion coefficient is proportional to the local vacancy concentration;
therefore, it is best to use a flux equation expressed as a function of a constant
diffusion coefficient of the oxygen vacancies. Two examples of numerical
calculations illustrated how the shape of the '®O-tracer distribution profile is
governed by both the diffusion by Brownian motion and the transport under the
large gradient of defects through the growing oxide scale.

Firstly, the simulation of a classical two-stage tracer experiment is consistent

with the analytical solution given in [1]. The average value of Do used in the
Eq. (35) is clearly included between the two values of Do obtained from the
Eq. (14). Despite what is reported in [1], in the case of zirconium oxidation, the
transport contribution cannot be neglected in the isotope flux expression, even for
short-term oxidation.

Secondly, a new type of O-tracer experiment is proposed to evaluate oxygen
chemical diffusion and transport contributions from the drift of a '®0 peak. In this
case, the values of Do were calculated using the peak drift. The values of Do
obtained by this way and reported in Table 4 are consistent with the one reported in
Table 3. By three different ways of calculation, all the values of Do are consistent
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with each other. Thus, we can conclude that the “peak shift” method together with
Eq. 14 should be used to determine the values of oxygen diffusion coefficient in
growing oxide scales.

Next step to improve the EKINOX-Zr will be to express the flux as a function of
the gradient of the local chemical potential gradients calculated using the
thermodynamic database Zircobase [11]. This improvement would avoid the strong
assumption of the constant value of the coefficient of activity in the metal. For
example, thermodynamic calculations show that in 0 (O) the activity coefficient
evolves over two order of magnitude.
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