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Abstract It is proposed that processes characteristic of biology today, autocatalysis, selection
of molecules for linkage by their electrical shape, and evolution by survival selection were also
the processes that initiated biology. A reconnaissance is made of both paradoxes and potential
questions. It is argued that the minimal requirement for initiating Darwinian evolution is not a
molecule copying process, but a linkage copying process. Survival selection evolution does
not require a heterocatalytic polymer and a separate replicase process until there is uncertainty
where molecular additions will occur. It is argued that a linkage directing process will be found
for a lipid membrane (though this needs to be verified) and may in the right environment result
in initial evolution, including initiation of o-helices, the development of a single chirality and
NTPs. The system has at this point become sufficiently complex that higher precision copying
is needed. However it seems likely that this state is able to generate the first miniature
ribozymes and their replicases, and so satisfies the prior requirement. With the proposed
requirements, it is likely that the development of polymers was within membranes.

Keywords Life - Autocatalysis - Membrane - NTP- Helix

Introduction

About 10 years ago, the late Lynn Margulis asked me “Where is the theory of the Origin of
Biology?” She explained that she did not consider that a list of chemical reactions was an
adequate explanation. I too consider that the development of biological processes involves
issues of selection and linkage of molecules by their electrical shape, processes only otherwise
found in crystal growth, though in both inorganic and organic chemistry. In this section we
deal with the reason for writing the paper, and its goals. Below we shall discuss biological
issues before continuing to paradoxes and further questions about life. Because life does not
have an agreed definition, the transition from ingredients to a form that performs multiple
survival-assisting tasks are here all considered to be part of the origin of biology, and this paper
stops with an entry into a world where RNA is active.

The goal of this paper is to discuss mechanisms and potential mechanisms that may help
resolve origin of life issues. It is now clear that the assumption by Oparin that life is an
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inevitable development is incorrect. Circumstances needed to match requirements for ingre-
dients, energy supply, timescale and not being affected by bombardment by rocks, particles
and X-rays, or needed components being on different sides of impenetrable layers of rock,
water or ice. There had to be an extended development of the organism’s surface, nucleic acid
control of bond making, and metabolic pathways, with the development sequence requiring
interplay between these. The formation of life needed direction. With current understanding,
that survival selection required a complex pre-development, and there seemed to be no
adequately directive path to achieve this (discussed below in section “How Biological
Processes Differ from Organic Chemistry”). The key proposals of this paper are that survival
selection can operate with simpler conditions, and that survival selection drove the entire
development process.

It is suggested here that there has been an imbalance between studying processes that can
produce the chemicals of life outside an initial structure, a proto-organism, and processes
inside it, with far more attention to processes outside. External processes form two groups.
First there is the production of a huge variety of molecular forms. These are found in
astronomical environments and Miller-Urey experiments. Their formation can be called
“chemical production”. These molecules would have been available to proto-organisms and
are not at issue. But also, nucleic acids and NTPs and their ingredient D-ribose, are at best rare.
They require developments beyond chemical production. Processes for their production
outside the proto-organism, and which can be studied in vitro have been studied as “chemical
evolution”, external evolution. Processes that develop inside the initial structure are called
“biological evolution”, internal evolution, and require studying in vivo, or rather, in
membrano. This paper is at variance with some prior understanding of the words chemical
and biological evolution, because here it is assumed they are potential alternatives for
producing the same molecules and polymers. Internal processes have been less studied, partly
because it has been believed that though survival guides development of simple organisms,
that until genetic processes are available, developed benefits to proto-organisms cannot be
continued to future generations, It will be proposed below, that benefits can be continued,
while the development is simple, but as options for growth and change increases inside the
proto-organism, survival benefit continuity does later require that a copying mechanism be
developed. Spanning this transition phase is the main focus of this paper.

External processes could benefit from separate chemical environments which favored
specific products. For example, the formose reaction might benefit from a warm lime pit.
But then the separately produced products need next to be incorporated into the proto-
organism by a process that Shapiro (1986) called “this little pool empties into that little pool”
with an associated problem of dilution unless the products are encapsulated at the source.
Further the “poisoning” of RNA growth processes with mixed chirality ribose, (Joyce 1987),
implies that chiral issues needed to be resolved before RNA growth could self-explore. Yet
organic chemical reactions do not readily produce single chirality products, whereas an
enzyme-like process, selection for a molecule’s electrical shape, could more readily produce
a single chirality ribose, provided that somehow the chiral enzyme was produced.

For internal processes there is the benefit that small molecules can easily penetrate the
membrane, and the products of adding them will tend to be retained because of difficulty of the
larger produced molecules crossing back out of the membrane. And once a single chirality is
developed, a proto-organism could grow that way, and divide, so propagating the chirality.

Internal process studies need to show how to develop all the processes of life. This is
contrary to the normal method of solution in both science and mathematics, where a problem is
broken down into its components and they are solved by parts. But we do not know how
Nature solved the development of life. Was it by parts, or was there a development in which
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membranes, amino acids and the components of nucleic acids assisted one another into
forming polymers as is explored below?

This paper does not propose a totally internal process to add to chemical production. But
that is an attractive option that deserves experimental study. At this conference Turk-MacLeod
and Szathmary reported that formaldehyde, H,CO, appears to perform a formose reaction
inside a membrane. One might similarly explore whether HCN and/or formamide HCONH,,
energized inside a membrane would produce nucleobases. These small organic molecules are
among the most common. But in the interest of making a rapid exploration, it has been
assumed here that nucleobases form outside the first membrane, even though they are of very
low abundance in meteoritic matter. And it will be assumed that ribose initially formed by an
external formose reaction, though its production as a single chiral form required an internal
mechanism to replace it. Those mechanisms explored in this paper use membrane assisted
synthesis to produce internal formation of NTPs, formation of a crude early cytoskeleton,
internal formation of monochiral «-helices and through that, to monochiral developments that
include initiation of the RNA World.

How Biological Processes Differ from Organic Chemistry

Biological processes perform a set of reactions between organic compounds by using distinc-
tive processes. Modern biochemical processes grow complex organisms, and so need addi-
tional steps beyond crystal growth. Reactions are commonly selected by enzyme action.
Further, it is suggested here that terrestrial biological processes have a special relationship
to water. A fifth aspect is that evolution itself has a necessary sequence in which there is first a
separation of roles or functions, (explained below) and then optimization of the roles. These
five aspects arise as follows:

1) Survival, as contrasted with slow degradation, is a situation in which there is growth by a
process called “autocatalysis” (Troland 1916; Muller 1962) or “order from order”
(Schrodinger 1944) or “dissipative structure” (Nicolis and Prigogine 1977). Autocatalysis
is a process where an object or system uses the energy and material resources of the
environment to grow itself, or something closely resembling itself. In this way it maintains
itself through time, despite degradation processes. Autocatalytic processes occur both in
living and non-living forms. Life, crystals, convection, forest fires, and hurricanes are all
examples of autocatalytic processes. In such a process, both energy and necessary
ingredients are made available by the environment, and the structure of the autocatalytic
system organizes the growth, as e.g. by a crystal adding molecules so that they fit its
electrical shape. Growth also permits parts to break off and grow independently, so it is
the mother of reproduction. Thus parts of a crystal may break off, or a piece of a plant, and
either can continue to grow.

Nicolis and Prigogine noted that autocatalysis results in dissipative structures, which are
approximately steady states, resulting from environmental energy flow providing order that
replaces the order lost to decay processes. All autocatalytic processes are dissipative, but
dissipative structures also include non-autocatalytic processes, mechanical engines, refrigera-
tors etc. Schrodinger’s term, “order from order”, seems to have been used only for the example
of life, but it presents a view of life processes in which parasitic and symbiotic processes can
be more easily understood. Order accumulates in living organisms, and so it is potentially
available to drive other processes, especially other living processes.
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Ordered accumulation of matter, without an energizing mechanism, is usually improbable
because random processes and randomizing processes produce decay and dispersion. Despite
that, the production of membranes and crystals require material but not additional energy. For
crystals, the energy of attraction released from making molecular links is able to overcome
thermal disordering processes, even though super-thermal processes such as convective
motions may later break the crystals. For membranes the energy is instead, of electrical
repulsion of lipids by water, with energy release as lipid structures grow. And membranes
too may be broken. Both crystals and membranes add either individual appropriate molecules,
or even smaller versions of themselves.

Other linkage reactions in life forms do require energizing, and require a cycle in which, at
least for condensation reactions, polyphosphate is broken up and later phosphate is re-
energized into a polyphosphate form. This energy flow was required for the development of
life, and is why membrane-first models of the origin of life were classified by Shapiro (2007)
as metabolism first processes. But a variety of processes of phosphate re-energizing, to
complete the cycle, may have been used, and the focus here is not on those processes, but
on the condensation reactions, and that which they energize. They are needed to make NTPs
and RNA and an assortment of polypeptides.

2) Molecular evolution requires multivalent atoms so that a wide variety of compounds can
form. Then the compounds can be incrementally varied, linked, or split, sometimes by
substitution of small parts (functional groups), to improve survival probability. In partic-
ular, carbon’s nuclear charge and small inner electron core, allows it to link simultaneous-
ly to four different groups, and over a wide range of angles between them. So it gives rise
to an extremely large range of compounds. Because of this, carbon is the preferred atom
for making evolvable molecules (Pace 2001). Survival selection arises because population
and/or individual growth (e.g. a banyan tree) limits resources, and therefore variant
populations, distinguishable groupings and individuals are in competition with each other
(Darwin 1859).

3) Because carbon bonding is so versatile, its molecules are correspondingly unselective.
Carbon compounds need “help” in choosing their linkages. In biology, this help is
provided by molecules that select by electrical shape, enzymes. Two molecules, which
are the biochemical substrates to be linked, are held in their linked orientation, and
commonly there is a “hinge” in the enzyme that links the substrates. The hinge thermal
motion force differential motion of the substrates to be joined so that they move through
the potential energy curve, and settle into the state of lowest energy, either bound or
unbound. The weak binding of enzyme to substrate(s) is broken when bond formation
occurs and the enzyme is freed to repeat its action.

In modern organisms most enzymes are large molecules, each specifically tailored by
evolution to make one connection, but over and over again. Some small enzymes are
promiscuous, performing a number of tasks. Yarus (2011) suggests that “early enzymes may
have served a different function than today’s highly evolved, highly specific protein catalysts.
Instead of furthering a pathway, or enforcing a highly specific fate for substrate, early catalysts
may have facilitated many parallel reactions, and thereby allowed evolution to act on a variety
of related products”.

Nonetheless it is necessary to explain how enzyme-like selective processes began. Yarus
(2010) suggests that “The so-called ‘axiom of origin’ quantitates this notion; it presumes that
the threshold for the RNA world can be approximately computed as the point at which
sufficient random-sequence RNA exists to allow significant RNA activities to be selected”.
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A measure of the difficulty of producing this threshold for the RNA world by random
external reactions is seen by considering the tiny ribozyme GUGGC which aminoacylates
GCCU from Phenylalanine-AMP as described by Yarus (2011). Even if we were to make a
simplifying assumption that the only variables for making the ribozyme were selecting the
form of the 5-carbon sugar, and the choice of the nucleobases for the nucleotides, there are 12
isomers of a pentose sugar, and within the isomers there are furanose, pyranose and linear
forms. Also Joyce (2002) lists 11 potential nucleobases plus three substituted forms each of
which would have multiple options. If we conservatively consider there to be only 12 variants
of the sugar and only 12 variants of the nucleobases, the random assembly of a 5 nucleotide
string would have over 61 billion variants, and only one would be GUGGC as we currently
interpret those symbols.

It is the making of those selections, that seem to require enzyme-like paths to precede the
production of this simplest known ribozyme. So, if D-ribose had already been selected, and
only 4 nucleobases had been selected, the number of variants would be reduced to 1024, which
would present no problem for further development. Even if we had a 25 % content of modified
nucleobases, as in tRNA, the number of variants needed would only increase to 4315. The
ratio of 61 billion and 4315 is about 2>*. That is the selection of ingredients corresponds to
making 24 sequential selections that each reduce the options by a factor 2, or somewhat fewer
if some of the selections are by a factor 4, 8 or larger.

Yet Turk et al. (2011) state “Before the evolution of modern proteins, initial peptide
synthesis reactions, could not require protein enzymes. The discovery of RNA enzymes led to
the RNA world hypothesis, which supposes that RNA was the sole biological macromolecule in
early evolution. According to this hypothesis, early peptide synthesis was an RNA activity”.
But the transmission of a selective process to later generations is currently seen as requiring
that not only must an enzyme perform the reaction, but there needs to be a process or molecule
that copies the enzyme, a so-called “replicase”.

Since the numerical comparison above shows that it is extremely improbable that the RNA
World could have been initiated without enzyme-like selection and assistance, and that initial
simple survival development was without amino acid enzymes or RNA enzymes or replicases,
it is instead suggested that it used a promiscuous enzyme like behavior of membranes,
predicted and discussed in section “How Membrane Structures Performed the Roles of the
First Enzymes, and What Did They Do?” to produce the first NTPs, structural proteins and
RNA linkages. Such an ultra-simple prior replicating and copying system has been proposed
many times, e.g. Joyce et al. (1987), most recently by Robertson and Joyce (2012) but it does
not seem to have been considered that a membrane might serve this role.

4) Water was an available medium in which chemicals could interact at the start of life.
Biological development seems to have made a virtue of necessity and now water serves
two functions in life. The first is that water controls linkage processes, allowing specific
reactions which are selected and energized. Other not-energized linkages are thermody-
namically excluded. That is, without energizing, hydrolysis is favored over linkage.

Commonly, life uses chemical reactions that need energizing. Most of these are water
producing reactions, “condensation reactions”, and because they produce water where water
already is, these reactions require energy, usually from polyphosphate in the form of ATP. ATP
uses up the water produced in the reaction, by the phosphate breaking itself in two, and so it
assists condensation reactions. But then it needs re-energizing to make more reactions.
Molecules remain unconnected until the combination of energizing and the necessary enzyme
produced the condensation reaction.
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The second role of water is in the formation and maintenance of membranes. In section
“How Membrane Structures Performed the Roles of the First Enzymes, and What Did They
Do?” it is argued that membranes in a water environment will direct which thermodynamically
permitted linkages will occur and which not.

It is not yet clear whether a kind of life could develop in a different medium. The advantage
of a polar medium is that it drives non-polar and semi-polar molecules together, regardless of
their detailed composition, and so it assists evolution by keeping the products together. So life
might well be impossible in the methane lakes of Titan because methane is not polar. Alternate
polar media would seem more plausible

5) Evolution has a molecular sequence because specific functions arise by separation from a
stem generalized activity. An example is how the simple autocatlytic process of mem-
brane growth needed to be augmented, by membrane shape control and by nucleic acid
copying to perform the more selective task of microbial reproduction.

Each time a new function developed it also became available for modification to assist
some other survival assisting task, or as a start for another development. More complex
molecular structures evolved from structures with fewer components and linkages. So there
was a path of molecular development which we may trace, and so understand. Regardless of
whether the early stage of a new development was neutral to survival or not, the continual
selection for survival resulted in a web of reactions, in which some earlier developed molecular
products, later became vital to survival.

Paradoxes and Questions
There are three paradoxes that require resolution before understanding how life originated.

A) The first is the gene paradox, that if information copying is required for evolution, how
did the first information copying evolve? (Section “The Gene Paradox”)

B) The second is the Muller paradox (1962), that the arrangement of chemical pro-
cesses to produce autocatalysis is not trivial. So how is it that when a genetic
autocatalytic process changes, the evolved process is also autocatalytic? (section
“The Autocatalytic Paradox™)

C) Eigen (1971) argued that a complex autocatalytic process without precision copying
would cease because of an error catastrophe. But one cannot expect an unevolved process
to have precision. So how could the complexity of life begin? (section “The Absence of
an Error Catastrophe Paradox”)

Following discussion of these, three questions are used to lead through processes and
developments n needed for the “origin”, which is treated as the steps that lead into an RNA
(plus structural protein) World:-

D) What was the range of pre-biological molecules available on early Earth. (section “The
Variety of Pre-biological Molecules Available on Early Earth™)

E) How do membranes form? And how could or did membrane structures perform the roles
of first enzymes? And what did they do? (section “How Membrane Structures Performed
the Roles of the First Enzymes, and What Did They Do?”)

F) How did chiral biopolymers arise? (section “The First Linear Polymers”)

@ Springer



A Hypothesis About the Origin of Biology 263

Handedness, chirality, enters the discussion of polymer production because it determines
the direction of rotation of alpha helices and nucleic acids. The origin of chiral polymers was
required to be at the beginning of the development of linear polymers. It would have led to the
first processes for distinguishing, separating and using amino acids. The origin and start of
development of linear polymers and their first use marks the transition between the origin of
life and the development of genetic life. That will be the terminal development for this paper.

The Gene Paradox

The gene paradox is, that if information copying by replication is required for survival
selection evolution, how did information copying first evolve? The standard position, is
that there was no biological evolution before genetic replication. It has been restated by
Joyce (1987). “Two informational processes are fundamental to the operation of an
evolving system. First the genetic information must be replicated in order to compensate
for the inevitable loss of individual copies due to chemical degradation. Second the
genetic information must be expressed as a behavioral phenotype so that its usefulness
can be assessed by natural selection. In biology, both of these processes rely on the use
of a polymerase enzyme.” Similarly Dobzhansky (1965) stated “In order to have natural
selection, you have to have self-reproduction or self-replication, and at least two distinct
self-replicating units or entities.” This need for two entities, is that one unit performs the
copying, of both self and the other unit, and stays the same, and the other unit, which
evolves, performs survival assisting tasks, so that it can be subject to natural selection,
but it is copied so that the copier and evolver are both transmitted to future generations.
It is this paradox, that complex units were needed before biological evolution could
begin, that drove the concept of an alternative to biological evolution—chemical evolu-
tion, to produce the first evolvable genetic components.

I disagree with the premise and conclusion. My disagreement is not with the reality of
random degradation, but that even at the beginning, genetic information must be generated to
compensate for it. I deny that gene-like components are required for initial evolution. As
stated, above, any autocatalytic process, genetic or not, can and will (competition permitting)
compensate for random degradation. As seen from the Dobzhansky discussion above, it is the
requirement for evolution as well as autocatalysis that creates a problem.

I stated at the conference that “Without genes, life had to start very simply. It had to start
itself, be evolvable, and in the absence of genes and enzymes it had to be directive.” If one
thinks only in terms of making copies of molecules, I believe the problem would be insoluble.
But there is a stem activity (section “How Biological Processes Differ from Organic
Chemistry”, aspect 5) which is the parent process to copying a molecule. It is internal
modification by energy flow through the system. And a like process, in a like system, will
tend to produce a like result. Thus the molecules produced by energy flow in the parent, will
also be produced by energy flow in the descendant.

So an approximate copy can be made, not only by copying the product, but alternately by
copying its growth process. This can be much simpler! And when growth is selective and
directed, because of enzyme-like activity, inside the proto-organism, copying the process can
lead to selective formation. An evolutionary process without a genetic core is a novel concept
that requires discussion beyond that possible here.

As stated above in section “How Biological Processes Differ from Organic Chemistry”,
aspect 3, it is because carbon is so versatile in its linkages that it requires highly selective
processes be used to produce specific molecules. Evolution without enzyme-like processes,
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seems an improbable solution to the origin of biological evolution, because there are so many
possibilities for organic chemical reactions.

Disagreement with the standard position has also been taken by Sowerby and Petersen
(2002). “The origin of these self-replicating molecules also suffers from an informational
paradox.” and “The odds are stacked against the random de novo appearance of exceptionally
rare polymer sequences, and that begs for a deterministic rather than a stochastic origin. Such
considerations inevitably force us to consider the possibility that life arose from simpler
processes that did not rely on the primary involvement of linear, self-replicating molecules.”

If one were to imagine the simplest process for selective growth producing order, it would be
that small molecules are added to one another and to the resultants, but each link is made in only
one possible way. It would also be simpler if the process separated classes of molecules, amino
acids were added to amino acids, and the components of NTPs were put together uniquely, and
added to one another However it seems more likely that interconnecting processes were
important too, because still today, amino acids begin their self-linking process by linking to
an NTP. Also, it seems likely that «-helix amino acid chains would naturally develop as chiral,
whereas there seems to be no such driver for NTPs. So there would need to be a reverse process
too, where D-ribose was formed using amino acid and helix chirality to direct the formation.

Organic chemical processes commonly perform exothermic reactions, while biological ones
are commonly endothermic before the use of phosphate, and use external energizing e.g. with
ATP. While enzyme directed reactions allow survival selection to choose which links will be
made, exothermic reactions will commonly produce an assortment of linkages. An example of
this problem is in the formose reaction which is exothermic (Breslow 1959) where there are two
sequential additions of formaldehyde to a diose sugar, which results in a tetrose which then breaks
into two dioses, thus apparently reproducing the diose. In the process, one becomes two, becomes
four etc. But unless there is some natural or human intervention, the formose reaction finds
additional growth routes, and proceeds to make larger and larger polyols and on to form a
chemical tar (Benner et al. 2010). It is possible to stabilize ribose with borate, aluminate or silicate,
but the variety of potential products in such reactions, is mind boggling. It is therefore significant
that, other than the manufacture of D-ribose, the reactions used by life to build the amino acid and
nucleic acid polymers, are instead endothermic, in which dehydration occurs in an aqueous
environment, and so the reactions are controlled by energy availability and its directed applica-
tion. Benner et al. point to the possible resolution to the origin of ribose, that free carbohydrates
were not biologically significant on Earth, rather they were linked to other molecules. An
alternative is that those carbohydrates used were developed by an internal selection processes
which added formaldehyde, molecule by molecule.

In the model/hypothesis discussed here, the gene paradox does not occur because sequential
addition determined the early path of molecule development. Membranes formed spontane-
ously from meteoritic or cometary matter. Condensation reactions, driven by the availability of
polyphosphate and re-energizing options for it, and the availability of glycerol (Pizzarello
2006), acted with polyphosphate in membrane molecules to make them become phospholipid.
Further condensation reactions linked phosphate to ribose to nucleobases so making the first
NTPs and used them to built crude cytoskeletons. Because these stronger membranes survived,
they also selected whatever additional ingredients in the membranes that helped early NTPs (of
both handedness) to form and produce the cytoskeletons.

Also these NTPs initiated processes of making «-helices, which solved a problem of the
phospholipid membranes being relatively impermeable. However a-helices need to be
monochiral to penetrate the membrane, and so the first chiral components developed. The
preferred chirality of meteoritic amino acids led to production of membranes with only L- -
helices. It was then necessary to transfer this chirality to ribose, and so make monochiral NTPs.
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It seems necessary that the further D-ribose was manufactured in these protocells, somehow
using the helices to select the way formaldehyde added to glycoaldehyde, giving D-
glyceraldehyde etc. and produced D-ribose. (A directed formose reaction seems easier to control
than a pentose phosphate pathway). In this way the NTPs became chiral, and the development of
RNA became possible. Evidence of how the amino acids were selected for the helices still exists
in the genetic code, and implicates uracil and adenine as needed (see section “The First Linear
Polymers”). Then RNA linkage further suggests how G and C might be added.

At about this point the processes would have completed those selections, D-ribose and 4
nucleobases that were needed to bring the probability of production of tiny ribozymes into the
realm of plausible numbers. The RNA world processes could begin. The proposal here is of
necessity sketchy, and has many hidden issues, but it does face the need for a huge reduction in
options before the RNA World could start.

The model here is similar to the model by Szostak et al. (2001), except that no replicase is
needed initially, because the membrane is able to produce it by evolution, and also, needed
ingredients could be gained from the environment.

Beyond the discussions of this paper were further developments that stabilized genes by
making them with DNA, and improvement in making enzymes by making them from selected
amino acids. The whole apparatus of modern reproduction and metabolism had to be devel-
oped, but the basis for it was available.

The Autocatalytic Paradox

Muller (1962) has pointed out that the arrangement of chemical processes to produce autoca-
talysis is not trivial. So how is it that when a genetic autocatalytic process changes, the evolved
process is also autocatalytic ?

“But the most remarkable feature of the situation is not this oft-noted autocatalytic action
in itself—it is the fact that, when the structure of the gene becomes changed, through
some “chance variation” the catalytic property of the gene may' become correspond-
ingly changed, in such a way as to leave it still auto-catalytic”. In other words the change
in gene structure- accidental though it was-has resulted in a change of exactly appro-
priate nature in the catalytic reactions, so that the new reactions are adapted to produce
more material like that in the new changed gene itself. It is this paradoxical phenomenon
which is implied in the expression “change in the individual gene” or as it is often
called, “mutation”.

The answer to Muller’s question has a number of components, but underlying them
is this:

Simple inorganic autocatalytic systems, e.g. crystals or hurricanes and even membranes
alone, have just a single growing unit (i.e. an NaCl crystal grows by addition of molecules, not
the separate atoms). To build higher levels of structure, it is necessary for an autocatalytic unit
to also perform heterocatalytic action. That is, it must catalyze additional reactions. Because
the first reaction is autocatalytic, that would then link the heterocatalytic action to be part of the
autocatalytic action. And then further heterocatalytic processes were also added. It is in this
way that the reaction network of life was able to expand. That is the basis of the solution
discussed here.

It is likely initially that autocatalytic processes produced membranes. We will see that,
because membranes are pushed together objects, rather than autocatalytic because they pull
together, they are able to be substantially modified and remain autocatalytic. And as noted by
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Budin and Szostak (2011), when the membrane acquires phospholipids in quantity, these are
able to eject former membrane lipids such as monoacyl fatty acids. So survival improvement
could occur.

Next is that the property of assembling other molecules into polymers, either by copying, or
by repeating a standard pattern of linkage, is required to remain intact, even though that which
is assembled changes. Changes to the polymer assembler would usually be expected to be
lethal. This is why ribosomes have remained so stable over time that they can be used to create
tree of life structures. However we shall find that the heterocatalytic property expected from
membranes arises from the structure of the cytoplasm-membrane boundary, and so is likely
independent of the exact form of the membrane.

Finally, evolution will favor producing molecules which not only perform a task, but
which are also helpful to other needed tasks. That tends to change the mode of interaction
of a subsidiary component from parasitic to symbiotic to essential. Originally membranes
were autocatalytic and so formed. Because they constituted ordered structures, they were
helpful as hosts to other processes, including ones that did not help survival. On that
model, nucleic acid processes started as parasitic. Even today they do not directly assist the
survival of their host membrane. Rather, they make components that assist the survival of
their membrane. It was that making of survival-assisting components which evolved, and
which made survive, those strong membranes which also supported nucleic acid process-
es. Though some parasitic processes continue to be supported, in general those processes
we find today form a survival network. Those proto-organisms which did not develop a
survival network of processes, and even those which were not efficient, failed to survive.
The autocatalytic processes Muller found were just those processes which had passed the
test of survival.

The Absence of an Error Catastrophe Paradox

Eigen (1971) argued that in a multi-step autocatalytic process with n steps, that unless the
precision of copying for each step were at least~(1-1/n), the process would decay. On the
other hand it has been found that efficient evolution requires that copying precision be not too
high, so as to have mutation test for optimum development. This is why observed systems sit
close to the error catastrophe rate. However, in a natural system one would not expect precision
copying, and so a first organism using an initial multi-step process for survival would be
expected to fail. Polymer formation is such a multi-step process, and this is why it could not be
a starting point.

However, the formation of a membrane is a 1-step autocatalytic process, so it is free from
that problem. Amphiphilic molecules can add to a membrane one by one, or a complete
micelle may be added. But the additions are independent and there is a complete unit with all
needed properties after that one step.

All other processes that we will discuss, e.g. the development of the first o-helices, or the
first miniature ribozyme required multiple steps to achieve a working unit. However, they
arose as parasitic developments within a membrane, within a proto-organism that was already
surviving. So completeness was not required for their survival.

If in any protocell population, the energy drain of a parasitic process was excessive,
compared to its equivalent energetic support, that protocell population became extinct. But
otherwise the development with increasing variations continued until the variation produced a
new supportive process. Then the parasitism was transformed to symbiosis, and so became the
basis for a further evolutionary development.
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A model which starts with membrane autocatalysis is free from the Eigen error catastrophe.
A model which begins with a muti-step production of a self-replicating polymer is not.

The Variety of Pre-biological Molecules Available on Early Earth

Although the solar system started to form 4.57 billion years ago, the formation of planets
was delayed, and the huge collision that produced a Moon and Earth occurred about 70
million years later, when Solar System volatiles were concentrated into icy and rock
clumps. Since the heat of the Moon forming collision got rid of its initial atmosphere and
oceans, they would have rid Earth of its initial volatiles too. The icy material falling in
afterwards probably produced most of the volatiles to remake the atmosphere and oceans
over a period of about ' billion years, but already by 4.4 billion years ago, the Earth had
water oceans and had a moderate temperature surface as shown by zircon studies
(Mojzsis et al. 2010).

The volatile material that fell in, must have included the water carbon and nitrogen we now
find here, though in unknown original forms. From comets and meteorites today e.g. Pizzarello
and Shock (2010), we see that it also had assorted complex carbon containing molecules
entering. To this mix, volcanoes on Earth were spewing out sulfur compounds and
polyphosphate rich dust. When we compare these resources to the molecules needed for life,
we see three different groupings. First, organic acids that could form membranes and amino
acids were present in the infall. Secondly, phosphorus and sulfur were likely more readily
available from volcanoes than from meteorites. Thirdly, nucleobases, nucleic acids and NTPs
(nucleoside triphosphates) were not present or rare, likely because they are too reactive.
Instead, materials from which they could be made, formaldehyde, formamide and hydrogen
cyanide were present. We know this because we see these organic molecules in the interstellar
clouds where new planetary systems are forming, and we also find them in comets and in some
of the least heat-modified meteorites that land on Earth. There would have been a substantial
aspect of the manufacture of nucleobases, sugars and NTPs in which proto-life processes
produced the components. It is possible, even likely, that chemical reactions on Earth also
produced organic molecules by Miller-Urey (Miller 1953) processes, but the need for them
remains to be verified.

The forms from space were largely characterized by smaller molecules being more
abundant than larger molecules. The stable forms from space included amino acids and
soap-like organic acids. Although the majority of these are short chain and branched,
there also appear to be longer chains not branched. Deamer (1985) discovered that the
organic molecules in a meteorite, when in water could spontaneously form vesicles.
Deamer and Pashley (1989) showed the variety of structures formed, and that long
carbon chain organic acids were an essential part of this. Allen and Ponnamperuma
(1967) suggest that the long chains might have arisen from surface interactions. Others
have suggested Fischer Tropsch reactions. There is also the possibility that long carbon
chains were produced by initially in space when acetylene molecules linking together as
polyyenes including cyanopolyyenes (seen in space). Cyanopolyyenes, or polyenes (such
molecules with carbon triple bonds broken and linked to hydrogen), in water might
convert themselves to organic acids or amino acids by Strecker synthesis. The presence
of all these ingredients suggest that a major metabolic development, such as developing
the Krebs cycle was not needed until after life began. Prior chemical reactions were
doing most of the work. The materials to make life were all present, but they needed
organizing.
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How Membrane Structures Performed the Roles of the First Enzymes, and What Did
They Do?

Since submission of this article, the author has become aware of prior discussions that touch on
this topic, see Pohorille and Wilson (1995) and Bohler et al. (1996). There are two basic ways
of driving growth. The growing matter may pull itself together, or it may be pushed together by
their environment. Crystals energize their own formation because there is a binding energy. In
contrast, Hurricanes are regions of low pressure which use external atmospheric pressure to
push them together, until the moist air in the middle regions rises and rains out. Life seems to
mainly use pushing processes, with most of the ingredients being pushed together, either by
the watery environment or by enzymes. As a result, molecules that have one end polarizable sit
with that end in the water, and the other end on a water surface. In water, two kinds of structure
formed from part polarizable molecules are found. Micelles have the non-polar parts inside and
make a kind of tiny bubble in the water. Vesicles make a double layer with water inside and
water outside, and a thin oily layer between.

The structure of a membrane bilayer has been shown by Wiener and White (1992) to place the
parts of the membrane molecules according to their polarizability. Their results an electric force
field which stretches the molecules. There is a rapid force gradient at the membrane water
boundary, and reduced force gradient away from it. The gradient places non-membrane molecules
in positions where the force towards the water balances the force away from it. Individual
functional groups are typically placed within a range of 0.4 nm in a boundary layer which is about
2 nm wide. It is this which results in selection for linkage as shewn next.

In a modern enzyme, molecules to be linked are held in all 6° of freedom, usually with
some thermal flexing to exercise a potential bond. Contrast this with a membrane where the
line of sight (Z axis) is into the plane of the membrane, and the membrane is spread in the X-Y
plane. But a membrane holds a non-membrane molecule in 3° of freedom, with translation in
the X-Y plane of the membrane occurring at fixed Z, and rotation about the Z axis also
occurring. It is the fixing of the non-membrane molecule in the Z direction, and the inhibition
of rotation around the X and Y axes that limits the possible linkages that can be made. All
molecules where the Z depth of functional groups is similar will collide frequently, and so
provided that energetics favors linkage, they will link. Those that do not match another in Z,
remain unconnected to each other. This is part of the primary hypothesis of this paper, and it
needs experimental verification.

In general, after a linkage between polar parts of two molecules has been made, the linked part is
more hydrophobic than before and so migrates towards the membrane center. This leaves the new
most-polar part of the combined molecule in a position for further linkage. Thus the joining of part
polar molecules, as positioned by the membrane, can produce a linear polymer. The processes that
need to have been aided by the membrane are all the early condensation reactions. These include
phosphate being added to sugars and the products added to other molecules.

The origin of polyphosphate linked to sugars and their presence in protocells requires explana-
tion. Polyphosphates are likely produced in volcanic dust (Yamagata et al. 1991), and conveying
them to membranes through a water environment without their decay is not simple. Possibly,
polyphosphates encapsulated themselves if they fell on an oil surface over water, which might
develop an intermediate amphiphilic layer, which would curl up around the dust particles. Later
disturbance of the water layer would precipitate these tiny membranes through the oil layer.
Alternately, drying and rehydrating processes can move phosphate into a membrane.

Phosphate could link to the sugars if these passed through the encapsulating membrane.
Glycerol is one of the more common sugar-like molecules in carbonaceous meteorites, and it
would likely have been caught up in the process of making both cell and encapsulating
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membranes. Also it has been shown that ribose can pass through membranes (Sacerdote and
Szostak 2005; Wei and Pohorille 2013). It is not clear whether the initial production of ribose
was external or biological. If it were biological, the ribose to phosphate linkage would need to
have used a cell membrane to bring the active sites together. One could expect formaldehyde to
pass through a membrane, and so be available for an internal formose reaction.

The number of condensation reactions required for life to originate from modest sized
molecules is huge. It is minimally one condensation reaction for every several carbon atoms.
But the ratio of carbon to phosphorus atoms is about 100:1, and so the number of such
reactions needed is far more than any plausible number of polyphosphate molecules originally
present. Therefore the phosphate had to be re-energized. Today polyphosphates are largely re-
energized by a complex enzyme system, ATP synthase. There must be an energy flow to re-
energize phosphate. There are questions of whether this energy might re-energize with organic
chemical processes, including use of thioesters (de Duve 1995) without enzymes, or even by
photon absorption.

An alternate possibility discussed by Damer, Deamer and Norkus (2015) is that condensa-
tion reactions could be made by drying out the membrane. But then the ordering of which
molecule links to which other, which is a result of orientation and position, produced by the
water environment could be lost. For this reason it is assumed here that polyphosphate was
both present with a re-energizing process, from the start. We will see that to make linkages
polyphosphate first needed to operate with sugar-like molecules, and later, that increased
directivity in linking amino acids required nucleobases too. Sugars were needed to bridge the
hydrophobicity range from phosphate to other more hydrophobic molecules.

Because membranes made with monoacyl acids would have been weak, any process which
converted them to stronger membranes would have had a survival benefit. And further
conversion in any such survivor would have helped the survivors grow bigger and stronger.
Some part of that process needed to be the growth of stronger membranes by adding in
molecules from broken membranes and converting them too.

The simplest of the phosphate plus sugar added to another molecule, was the addition of
polyphosphate to glycerol, abundant according to Pizzarello (2006), and then the linkage of
this to a pair of monoacyl organic acids as discussed by Budin and Szostak (2011). This would
have produced the first simple phospholipids. Phospholipids make much stronger membranes,
and when they become the main membrane molecule they even eject single chain molecules
from the membrane. However, the phospholipid membranes so created were far less perme-
able. So, because the transition to phospholipid membranes sealed protocells against trans-
mission across the membrane, the development of a transmission path to permit materials for
growth, and ejection of waste became essential. This was potentially the driver that selected the
initial linkage of amino acids to make «-helices.

To link to amino acids, which are the second most abundant soluble molecular form in
some carbonaceous meteorites, there is an additional task needed of bringing the OH from the
sugar to the same level with respect to the membrane as the COOH of the amino acid, and with
an appropriate orientation for linking. This seems to have been solved by making the sugar
ribose, and by adding another molecule to it, a nucleobase which, by its hydrophobicity or
hydrophilicity would accomplish both setting the level and setting the correct orientation.

It is likely that an early cytoskeleton was also made by the protocell. Membranes are
relatively weak in holding together against shear forces. The strong bonds are perpendicular to
the plane of the membrane. To make the membrane stronger, a structure is needed in which the
bonds lie in the plane of the membrane. But first, the molecules to be linked must be pulled
into the vicinity of the membrane. This requires that they be amphiphilic. Then there need to be
multiple, at least two, functional groups in the plane of the membrane for each molecule so that
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lateral linkages can be produced. A number of molecular forms could satisfy this. Hydropho-
bic amino acids would suffice. Other options include hydroxy acids, and polycarboxylic acids.
They would need to be bonded together by condensation reactions. Such a cytoskeleton would
surely enter into the issue of how the first membranes divided when they became large. Today
the cytoskeleton initiates the division by making a z-ring.

In this section we have seen that the presence of energized phosphate, sugars and some
molecules that would adjust the height and orientation of the sugar bonds would result in
stronger membranes. The linkages would have used these molecules, which were in form like
NTPs. The second has not shown that these early NTP like molecules would form. That would
preferably be examined by experiments.

The First Linear Polymers
Chirality

Joyce (1989) has pointed out that until a single handedness ribose had been developed, the
origin of RNA would have been exceedingly difficult because of the way RNA of one
handedness would have interacted with the other handedness. Now there are two ways that
handedness enters into common biological polymers. In RNA the handedness comes from the
use of D-ribose. In proteins it enters from the use of L-amino acids. If we recognize that natural
ingredients provided both handedness, but biased to L-amino acids, then it would seem most
reasonable that the amino acids selected handedness, and RNA followed suit.

The handedness of amino acids is important in making o-helices. The Wimley-White
hydrophobicity scale (1996) shows that the peptide bond is itself polarizable, and would cause
difficulty in insertion of hydrophobic amino acids through a membrane unless the bond is
shielded, (Wimley and White 2000). In «-helices, the bond is shielded by virtue of the use of
single handedness amino acids. The side group wraps around the helix and acts as a shield.
Consequently only with a common handedness would «-helices self-insert.

These helices are structures that have a second interesting property. They can be made by
linking random composition hydrophobic amino acids, which makes the amino acids amena-
ble to being selected by membrane processes discussed here. However, because only linkages
of common chirality amino acids will be able to insert themselves into and through mem-
branes, a link between opposite chirality amino acids would seem to leave that bond open to
destruction by hydrolysis and replacement by a same chirality amino acid. In this way it would
seem that monochiral alpha helices which provide a path across the membrane may be self-
developing. Not only would the path help the membrane grow, but by being a first purely
chiral molecule for a membrane it might become a template for further chiral development.

The issues now become how amino acid chains grow, and whether this process itself would
create monochiral helices. It is likely that the first linkage processes for an amino acid was a
linkage to an NTP. The growth of an amino acid chain then requires these bonds to be broken.
A possible process worth exploration is that there is an exchange reaction, which results in the
initiation of both an amino acid chain and an initial RNA chain. This might be a process by
which amino acid and NTP chirality became linked. Questions then arise about the linkages.
Does an L amino acid attach itself as easily to L-RNA as to D-RNA? Do exchange reactions
occur as easily between L-L and D-D pairs as mixed chirality? It could well be that the chain
would keep on growing chiral. Experiments are needed.

Regardless of the processes, the probability of growing a monochiral chain would be
strongly affected by the relative frequency of the two chiral varieties. Thus if the ratio of L
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to D were 0.55:0.45, and a 15 amino acid chain were required to bridge the membrane
core, the probabilities of producing an L helix rather than a D helix would be 20 times
higher. And if protocell development were to depend on the presence of such chains, then
L-chain protocells would soon become the norm. However, unless the protocell itself
started producing D-ribose, there would be a problem of NTPs and then RNA of both
chiralities. As Joyce (1989) pointed out, the determination of chirality of necessity
preceded the production of RNA polymers. Clearly some process terminated dual chirality
fairly early in the development of polymers.

The questions above can best be tested by experiment, and they are the next group of
required experiments to answer whether membrane evolutionary processes are the missing
process prior to RNA origin as discussed in section “The Gene Paradox”. If the answer is in
the affirmative, then it would seem likely that the origin of Biology was moderately simple as
discussed here. If not, further processes must have entered.

The Need for Nucleobases U and A

In an «-helix, the center which crosses the membrane is made of linked hydrophobic amino
acids. At either end, hydrophilic amino acids link to the watery environments, and form N and
C termini. These helices are the simplest structures that can be made with minimal selection of
amino acids, but that selection, for hydrophobicity, is necessary. It appears that this selection
can be achieved by the attachment of nucleobases to ribose-triphosphate. Of the five standard
nucleobases in RNA and DNA, uracil is the most hydrophilic, and adenine is the most
hydrophobic as inferred from bond polarizability, and so these bases will most pull or push
on ribose-triphosphate when attached to it, either towards the membrane or away from it. The
effect of this on linkage of hydrophobic versus hydrophilic amino acids needs to be checked,
but the genetic code seems to show that the effect is used, as discussed below. Here we use the
hydrophobicity scale of Engelman et al. (1986) because it is based on the partitioning of amino
acids between membrane and cytoplasm.

In the RNA genetic code, U as middle letter codes for the most hydrophobic amino acids,
phenylalanine, leucine, isoleucine, methionine and valine, and no others. On the Englemann
scale these are all the most hydrophobic of the amino acids. Also, the START code is in this
group.

A as middle letter, codes for the hydrophilic amino acids aspartic acid, lysine, glutamic
acid, asparagine, glutamine, histidine, and tyrosine and no others. On the Englemann scale
these are the most negative of the amino acids except that arginine is coded by G. The STOP
code is also in this group.

Arginine is one of the amino acids not yet detected in meteorites, and it is also the most
nitrogen rich of the biological amino acids. It would seem possible that this amino acid was
never or rarely present in the material for the origin of life, and that it was later manufactured.
These initial selections would have been retained during the further development of the code,
and explain this aspect of the code today.

Addition of G and C

In the discussion above, the nucleobases G and C have not had an obvious role. Guanine as
noted by Eigen (1971), is a compound, that not only links to C but to other nuclobases. And in
RNA, the normal Crick-Watson bonding of UA and GC tends to fail sometimes because U
selects G.. Thus if (big if) there were a possibility of developing sequences of self-copying
RNA with just U and A, then the later selection of G by U and the need for G to select a
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companion nucleobase to match the UA bond length would have brought in cytosine. There
would have resulted in just the four standard RNA nucleobases.

This happy picture runs into the problem that the copying of short RNA chains is likely to
have needed both G and C. And these two nucleobases could not have been used for initial
hydrogen bonding of RNA chains before they were part of the chains. There is still the
possibility that the earliest state of RNA was of UUU and AAA triplets and hydrogen bonded
very poorly until first G, then C entered the mix.

The model of this paper, has then, that NTPs linked amino acids together, and it was the
selection of amino acids to make trans-membrane proteins, «-helices that selected single
chirality ribose for the NTPs. This interplay managed to produce small RNA groups that
selected amino acids for trans-membrane helices. It was only later that they learned to copy
themselves. The assumption that molecular addition was an adequately precise selector of
development until RNA processes developed, is a hope, without either justifying or contrary
evidence.

So far, molecules that performed some of these roles have been found, e.g. the tiny
ribozyme. The smallest known replicase for it is currently larger, but perhaps a smaller
version will be found. The key missing processes are how ATP and UTP both made an
carlier selection of hydrophobic amino acids that linked to each other, and how the
making of «-helices produced monochiral strings of amino acids as well as monochiral
strings of nucleic acids.

The overall process proposed in this paper was a bootstrap one in which self-forming
membranes started the selection process, and NTPs and RNA picked up the next stages. The
development of the first genetic organism was a very complex sequence of events, and it is
improbable that all the features suggested above will be correct. Experiments will suggest how
they will need to be modified . But the basic suggestion of this paper, that genetics was an
evolutionary development of existing Darwinian processes rather than the start of them, solves
the paradox of the origin of the gene. The key advantage of the hypothesis that life was
enzymatic from the very beginning is that it removes a number of improbable events and
replaces them by directed growth of molecules and Darwinian selection.

Conclusion

The goal of this paper has been to find a plausible route for the origin of biological organisms
that avoided the gene paradox and Muller’s paradox. It is a reconnaissance, and raised many
questions that need to be resolved by experiments. In this model, genes and genetic and
reproductive apparatus are developments from a simpler stage in which role separation had not
yet happened. The simplest initial state seems to be an autocatlytic membrane that is capable of
evolution. Muller’s paradox does not apply to biological membranes, (section ‘“Paradoxes and
Questions”) and likewise the Eigen error catastrophe is avoided (section “The Gene
Paradox”). It is proposed in section “How Biological Processes Differ from Organic
Chemistry” that copying molecules was a development that began as a repeated process.

The second goal of the paper has been to understand how the selection of the
ingredients of RNA came from an earlier stage of development. Some necessary features
of the selection have been stated, and some arguments have been found that are plausible
to the writer.

There are a number of places where it is suggested that experiments or modelling is needed.
Some of these are for verification of the principal hypothesis, others are for points where
suggestions were made to solve particular issues not in the direct line of the hypothesis.
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