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Abstract
A barcode is a finite multiset of intervals on the real line. Jaramillo-Rodriguez (2023) pre-
viously defined a map from the space of barcodes with a fixed number of bars to a set of
multipermutations, which presented new combinatorial invariants on the space of barcodes.
A partial order can be defined on these multipermutations, resulting in a class of posets
known as combinatorial barcode lattices. In this paper, we provide a number of equivalent
definitions for the combinatorial barcode lattice, show that its Möbius function is a restric-
tion of the Möbius function of the symmetric group under the weak Bruhat order, and show
its ground set is the Jordan-Hölder set of a labeled poset. Furthermore, we obtain formulas
for the number of join-irreducible elements, the rank-generating function, and the number
of maximal chains of combinatorial barcode lattices. Lastly, we make connections between
intervals in the combinatorial barcode lattice and certain classes of matchings.

Keywords Barcode · Lattice · Weak Bruhat order · Generating function

1 Introduction

Abarcode is a finitemultiset of closed intervals on the real number line.Barcodes appear in the
area of topological data analysis as summaries of the persistent homology groups of a filtration
[15] and in graph theory as interval graphs [7]. Recently, in [4] and [5], Jaramillo-Rodriguez
developed combinatorial methods for analyzing barcodes for applications in topological data
analysis and random interval graphs.

Jaramillo-Rodriguez introduced a map from the space of barcodes to certain equivalence
classes of permutations of a multiset in which every element occurs exactly twice, which
she calls double occurrence words. Futhermore, she calls the set of all such words the space
of combinatorial barcodes. By defining an order relation on this space that is based on the
weak Bruhat order, the resulting poset was shown to be a graded lattice, which is referred to
as the combinatorial barcode lattice. In particular, the covering relations of this lattice were
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used to determine the set of barcode bases of persistence modules, which arise in topological
data analysis. While being of interest from a topological perspective, we focus on obtaining
combinatorial results and thus treat the barcode lattice solely as a combinatorial object.

The paper is structured as follows:

• Section 2 presents relevant background on combinatorial barcode lattices.
• We continue with Section 3, which presents some initial counting results on the com-
binatorial barcode lattice. In particular, we determine the lattice’s Möbius function
(Proposition 3.2) and the lattice’s number of join-irreducible elements (Theorem 3.4).
We also realize the combinatorial barcode lattice as a partial order on the set of linear
extensions of a labeled poset, connecting our work to a paper of Björner and Wachs [2].

• In Section 4, we determine the rank-generating function of the combinatorial barcode
lattice (Theorem 4.2) by presenting a different lattice which is more manageable to work
with and show that it has the same rank-generating function as the combinatorial barcode
lattice.

• Section 5 is devoted to determining the number of maximal chains in the combinatorial
barcode lattice (Theorem 5.1).

• Connections between the combinatorial barcode lattice and matchings are presented in
Section 6.

• Lastly, we conclude with further directions for future work in Section 7.

2 Background & Preliminaries

The original combinatorial barcode lattice L(n, 2)/Sn defined by Jaramillo-Rodriguez in [5]
is a lattice whose elements are multipermutations of the multiset {{1, 1, 2, 2, . . . , n, n}} such
that the first appearance of the element i in the multipermutation appears before the first
appearance of the element i + 1 for each i . Jaramillo-Rodriguez’s power-k barcode lattice
L(n, 2k + 1)/Sn is defined similarly, but for multipermutations of the multiset

{{1, . . . , 1
︸ ︷︷ ︸

2k+1

, 2, . . . , 2
︸ ︷︷ ︸

2k+1

, . . . , n, . . . , n
︸ ︷︷ ︸

2k+1

}}.

To develop a more general combinatorial theory, we relax the definition of the combi-
natorial barcode lattice. We allow the multiplicities of elements in the multiset to be any
positive integer and we do not require all multiplicities to be the same. With this in mind, for
m = (m1, . . . , mn), we define BL(m) to be the set of multiset permutations of the multiset
{{1m1 , . . . , nmn }}, where for i ∈ [n−1], we require the first occurrence of i in the permutation
to appear before the first occurrence of i + 1. We call the elements of this set “barcodes”
and we partially order them by declaring that a barcode t covers a barcode s (written s � t)
if and only if t differs from s by a transposition of two distinct adjacent elements which are
increasing in s and decreasing in t . We call the resulting poset the combinatorial barcode
lattice. It will follow from Proposition 3.1 that BL(m) is, in fact, a lattice. (See Fig. 1 for the
Hasse diagram of a combinatorial barcode lattice.)

We see that BL(2, 2, . . . , 2) is the standard combinatorial (power-0) barcode lattice
L(n, 2)/Sn andBL(2k +1, 2k +1, . . . , 2k +1) is the power-k barcode lattice L(n, 2k +1)/Sn

defined in [5]. For convenience, we will denote the combinatorial barcode lattice with n bars
all of size k by

BL(kn) = BL(k, . . . , k
︸ ︷︷ ︸

n times

).
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Fig. 1 The combinatorial barcode
lattice BL(2, 2, 2)

Equivalently, we can also write elements of the combinatorial barcode lattice BL(m) as
permutations of the totally ordered set

11, . . . , 1m1 , 21, . . . , 2m2 , . . . , n1, . . . , nmn ,

where we require that the subsequence consisting of the entries 11, 21, 31, . . . , n1 appears in
exactly that order and that for each i the subsequence consisting of the entries i1, i2, . . . , imi

appears in exactly that order. For an entry i j in a barcode s, we will refer to i as the label and
j as the index.

Then, for s ∈ BL(m), we define �s(i j ) to be the number of entries of s that occur before
i j with a label larger than i . For example,

if s = 112122122313 ∈ BL(32), then �s(12) = 2 and �s(13) = 3.

We observe that for any i , �s(i1) = 0, because we require the subsequence
11, 21, 31, . . . , n1 to appear in order, so we can also think of �s(i j ) as the number of entries
between i1 and i j with label larger than i . Furthermore, since the subsequence i1, i2, . . . , imi

appears in order, we know that for any i, j , we have that �s(i j ) ≤ �s(i j+1). Lastly, we
observe that for s ∈ BL(m1, . . . , mn), there can be at most

∑n
k=i+1 mk entries between i1

and i j whose label is larger than i .

3 Initial Counting Results on the Combinatorial Barcode Lattice

We now present a number of initial observations about the combinatorial barcode lattice
BL(m). We begin by realizing that BL(m) is a principal order ideal of the symmetric group
under the weak Bruhat order, which immediately gives us theMöbius function ofBL(m) and
a characterization of whenBL(m) is distributive.We then find the number of join-irreducible
elements of BL(m) and conclude this section by realizing that the combinatorial barcode
lattice is a partial order on linear extensions of another poset.

Let us start by recalling that the symmetric group Sn forms a lattice under the weak Bruhat
order, which can be defined by the covering relation σ ≺ τ if and only if σ and τ (written in
one line notation) differ exactly by a transposition of adjacent entries that appear in order in
σ and reversed in τ . We begin by noticing that the combinatorial barcode lattice BL(m) is
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a principal order ideal of the symmetric group under the weak Bruhat order. The following
result generalizes [5, Theorems 3.1 and 5.1]:

Proposition 3.1 The combinatorial barcode lattice BL(m1, . . . , mn) with
∑n

i=1 mi = M is
isomorphic to a principal order ideal of the symmetric group SM in the weak Bruhat order.

For ease of notation, define Mi = (
∑i

k=1 mi ) so that Mn = M , then break the set [M]
into n blocks:

1, . . . , M1 (B1)

M1 + 1, . . . , M2 (B2)

M2 + 1, . . . , M3 (B3)

...

Mn−1 + 1, . . . , Mn (Bn).

We claim that BL(m1, . . . , mn) is isomorphic to the principal order ideal of SM generated
by the permutation given in one line notation by reading the first entry of each block Bi

in increasing order, then reading the remaining entries of Bn in increasing order, then the
remaining entries of Bn−1 in increasing order, and so on, until all of the blocks have been
read off. We denote this permutation as β.

Proof of Proposition 3.1 Note that any element s of the principal order ideal [1m1 · · · nmn , β]
will have all entries from the same block appearing in numerical order, with the first entry
of one block appearing before each entry of subsequent blocks. Thus, after making the
identification

Mi + j �→ (i + 1) j ,

for 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ mi so that entries from the same block have the same label,
we see that s is a barcode inBL(m1, . . . , mn). Additionally, any barcode inBL(m1, . . . , mn)

must be less than or equal to the fully reversed barcode 11 . . . n1n2 . . . nmn . . . 12 . . . 1m1 (in
the weak Bruhat order), which is identified with β. This identification is order-preserving
and order-reflecting, which follows from the fact that the two lattices have the same covering
relation. ��

This immediately gives us two results on the combinatorial barcode lattice:

Proposition 3.2 If
∑n

i=1 mi = M, then the Möbius function of BL(m) is a restriction of the
Möbius function of the symmetric group SM with the weak Bruhat order. That is, the Möbius
function of BL(m) is

μ(s, t) =
{

(−1)|J | if t = sw0(J ) for some J ⊆ SM ,

0 otherwise,

where w0(J ) is the top element of the subgroup of SM generated by J , and sw0(J ) is the
product of s and w0(J ) in SM .

Proof SinceBL(m) is isomorphic to an interval in SM and theMöbius function of an interval
in a poset is the same as the Möbius function of the entire poset restricted to the interval, the
proposition follows. ��
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Proposition 3.3 Let m = (m1, . . . , mn). Then BL(m) is distributive if and only if

#{i | mi ≥ 2} ≤ 2.

Proof It is known that the principal order ideal [12 · · · M, w] ⊆ SM in the weak Bruhat order
is a distributive lattice if and only if w is 321-avoiding [13]. For more results on pattern
avoidance and intervals in the Bruhat order, see [13, 14]. Equivalently, [12 · · · M, w] is a
distributive lattice if and only if the length of the longest decreasing subsequence of w is less
than three. Taking SM to act on the set {11, . . . , 1mn , . . . , n1, . . . , nmn }, we write β as

1121 · · · n1n2 · · · nmn · · · 22 · · · 2m212 · · · 1m1 .

Then, it is discerned that a maximum-length decreasing subsequence of β is

n2, (n − 1)2, . . . , 22, 12.

The length of this subsequence is less than three if and only if there are fewer than three
i such that mi ≥ 2. ��

For our first entirely enumerative result, we determine the number of join-irreducible
elements of the combinatorial barcode lattice:

Theorem 3.4 For m = (m1, . . . , mn), the number of join-irreducible elements in BL(m) is

n
∏

i=1

(mi + 1) − (m1 + m2 + · · · + mn + 1) −
n−1
∑

i=1

⎡

⎣

⎛

⎝

i−1
∏

j=1

m j

⎞

⎠

⎛

⎝

( n
∏

j=i+1

m j + 1

)

− 1

⎞

⎠

⎤

⎦ .

Proof Recall that the multinomial Newman lattice L(m) defined in [1] is the lattice of strings
containing mi copies of i for each i ∈ [n], where the covering relation is defined by s ≺ t if
and only if s and t differ exactly by a transposition of adjacent entries that appear in order
in s and reversed in t . Bennett and Birkhoff prove in [1] that the number of join-irreducible
elements in L(m) is

∏n
i=1(mi + 1) − (m1 + m2 + · · · + mn + 1). Note that by a similar

argument to Proposition 3.1, we have thatBL(m) is also a principal order ideal of L(m)which
is itself a principal order ideal of SM . The permutation that generates L(m) as a principal
order ideal of SM is given by reading the blocks B1, . . . , Bn from Proposition 3.1 in reverse
(i.e., Bn, Bn−1, . . . , B1). We proceed by recounting Bennett and Birkhoff’s proof and then
subtracting off the extra join-irreducibles that are present in L(m), but not in BL(m).

Fig. 2 A depiction showing that
1223113 and 1221133 are two
join-irreducible elements of
BL(3, 2, 2)
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Observe that each join-irreducible element consists of a weakly increasing string followed
by a unique descent into another increasing string. (See Fig. 2 for an example inBL(3, 2, 2).)
This is because if there are two descents in a string

S = r�ba�s�dc�t,

where r , s, and t are strings, a, b, c and d are elements of the ground set such that a < b and
c < d , and � denotes concatenation of strings, then we can express S as

S = r�ab�s�dc�t ∨ r�ba�s�cd�t .

Since a string with a unique descent consists of a weakly increasing substring before the
descent and a weakly increasing substring after the descent, we can uniquely specify a join-
irreducible element by how many entries with each label come before the adjacent inversion.
Thus, we can represent a join-irreducible element of L(m) by the vector x = (x1, . . . , xn),
where xi is the number of entries i j appearing before the descent. There are

∏n
i=1(mi + 1)

vectors (x1, . . . , xn) with 0 ≤ xi ≤ mi for each i .
We must now subtract off all vectors that do not correspond to a join-irreducible element.

We first subtract all vectors of the form (m1, . . . , mi , xi+1, 0, . . . , 0), since such a vector
corresponds to a string having initial segment 1m12m2 · · · imi (i + 1)xi+1k with k < i + 1.
This cannot be, since each k with k < i + 1 appears before the first occurrence of i + 1.
We also subtract the zero vector because a minimal element of a lattice does not count as a
join-irreducible element. This leaves us with

∏n
i=1(mi + 1) − (m1 + m2 + · · · + mn + 1)

join-irreducible elements in L(m).
We continue by subtracting the vectors that correspond to elements that are join-irreducible

in L(m) but not in BL(m). These vectors correspond to strings s containing entries i1 and
j1 with i < j and j1 appearing before i1 in s. Since we are only considering strings that
have a unique descent, we know that j1 must appear before the descent and i1 must appear
after the descent. If j1 appears before the descent, we know that the vector x corresponding
to this element must have x j > 0, and if i1 appears after the descent, we must have xi = 0.
Thus, a vector (x1, . . . , xn) corresponding to a join-irreducible element of L(m) is also a
join-irreducible element of BL(m) if whenever xi is positive for some i , x j is positive for all
j < i .

Now, we count all vectors having xi = 0 and x j > 0 for some i < j . Let i be minimal
such that xi = 0. Then, for each j < i , x j can be anything greater than 0, and for each k > i ,
xk can be anything as long as there is at least one k > i with xk > 0. Taking the sum over all
i less than n gives us

n−1
∑

i=1

⎡

⎣

⎛

⎝

i−1
∏

j=1

m j

⎞

⎠

⎛

⎝

( n
∏

j=i+1

m j + 1

)

− 1

⎞

⎠

⎤

⎦

vectors to exclude. This gives us a total of

n
∏

i=1

(mi + 1) − (m1 + m2 + · · · + mn + 1) −
n−1
∑

i=1

⎡

⎣

⎛

⎝

i−1
∏

j=1

m j

⎞

⎠

⎛

⎝

( n
∏

j=i+1

m j + 1

)

− 1

⎞

⎠

⎤

⎦

join-irreducible elements in BL(m), as was to be proved. ��
To see the number of join-irreducible elements in some of the power-k barcode lattices, refer
to Table 1.
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Table 1 Numbers of join-irreducible elements in some power-k barcode lattices

Number of Number of Number of
(cn) join-irreducible (cn) join-irreducible (cn) join-irreducible

Elements in BL(cn) Elements in BL(cn) Elements in BL(cn)

22 2 32 6 52 20

23 8 33 30 53 140

24 22 34 108 54 760

25 52 35 348 55 3880

26 114 36 1074 56 19500

92 72 172 272 332 1056

93 792 173 5168 333 36960

94 7344 174 88672 334 1222848

95 66384 175 1508512 335 40358208

96 597816 176 25646064 336 1331826144

Now, we observe that the multinomial Newman lattice and the combinatorial barcode
lattice are both examples of a more general class of structures.

Proposition 3.5 Denote by n̂ the chain 1 < 2 < · · · < n − 1 < n. Then, for m =
(m1, . . . , mn), let P(m) denote the poset consisting of the n + 1 chains m̂1, . . . , m̂n, n̂,
where for each i the minimum element of m̂i is identified with i in the chain n̂. The combi-
natorial barcode lattice BL(m) is a partial order on the set of linear extensions of the poset
P(m).

Proof We obtain the poset P(m) by partially ordering the set

S = {11, . . . , 1m1 , . . . , n1, . . . , nmn }
with the order ≺ defined by

ai ≺ b j ⇔ (a ≤ b ∧ i = 1) ∨ (i ≤ j ∧ a = b).

Then we see that the permutation of the labels of S obtained from a linear order on S
by listing the elements of S in order corresponds to a barcode if and only if the linear order
extends ≺. ��

Note that in general, if we have a poset P with |P| = n and a (bijective) labelling
ω : P → [n] of P by elements of [n], then the linear extensions of P can be thought of as
elements of the symmetric group Sn by identifying the linear extension x1 < x2 < · · · < xn

with the permutation ω(x1)ω(x2) · · · ω(xn). We can then consider the induced subposet of
the weakly ordered symmetric group consisting of these elements. We call the resulting poset
L(P, ω).

• We can see that for the poset P(m) defined in the previous proof, taking ω to be the
labelling that sends i j to j +∑

1≤k<i mk ,L(P(m), ω) is isomorphic to the combinatorial
barcode lattice via the identification in the proof of Proposition 3.1.

• If the base poset is instead the antichain A on [n] and ω is any labelling, then L(A, ω) is
the entire symmetric group.
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• If the base poset is Q(m) whose underlying set is {i j | j ∈ [mi ]} and whose order is
defined by i j ≤ kl ⇔ i = k ∧ j ≤ l, and ω is the labelling ω(i j ) = j +∑

1≤k<i mk then
L(Q(m), ω) is isomorphic to themultinomial Newman lattice L(m) via the identification
in the proof of 3.1.

The (unordered) ground set of L(P, ω) is called the Jordan-Hölder set of P . There is
some literature on the set of linear extensions of a labeled poset under the weak Bruhat order,
namely Björner and Wach’s paper [2]. This paper focuses mainly on the posets L(P, ω) that
satisfy

∑

σ∈L(P,ω)

q inv(σ ) =
∑

σ∈L(P,ω)

qmaj(σ ),

and proves that equality holds only when the ground poset P is a forest (i.e., every element
of P is covered by at most one element) and w is a postorder labeling.1 The poset P for
which L(P, ω) = BL(m), where m = (m1, m2, . . . , mn) is only a forest when mi = 1
for all i < n. If m is of this form, however, BL(m) only contains a single element. We can
conclude that in all cases where BL(m) has more than one element,

∑

σ∈BL(m)

q inv(σ ) �=
∑

σ∈BL(m)

qmaj(σ ).

We realize that the left hand side of the equation above is the rank-generating function of
BL(m). To see this, notice that for s, t ∈ BL(m) we have that t covers s if and only if a pair
of increasing adjacent elements of s can be swapped to obtain t , meaning inv(t) = inv(s)+1.
Thus, if we have rk(t) = r then we have a sequence

id = s0 � s1 � · · · � sr = t,

where id is the identity permutation with rk(id) = inv(id) = 0. Thus,

inv(t) = inv(sr ) = inv(sr−1) + 1 = · · · = inv(id) + r = r = rk(t).

In what follows, we give an explicit formula for the rank-generating function of BL(m).

4 The Rank-generating Function of BL(m)

To obtain the rank-generating function of BL(m), we will define a “simpler” lattice whose
rank-generating function is clear and show that this lattice has the same rank-generating
function asBL(m). Let V (m) be the set of integer vectors 〈x11 , . . . , x1m1

, . . . , xn1 , . . . , xnmn
〉

such that for all i, j ,

0 = xi1 ≤ xi j ≤ xi j+1 ≤
n

∑

k=i+1

mk .

We partially order V (m) by declaring that v�v′ if and only if v and v′ differ at exactly one
entry, which is one larger in v′ than in v. Figure 3 shows the Hasse diagram of V (4, 3). Note
that we omit the first entry and the last three entries from a vector in the Hasse diagram of
V (4, 3) because they will always be zero: the first entry must be zero because we define xi1 =
0 for each i and the last three entries must be zero because we require x2 j ≤ ∑2

k=3 mk = 0
for each j .

1 Recall that for a permutation π = π1 · · ·πn , inv(π) = #{(πi , π j ) | πi > π j , i < j}, Des(π) = {i ∈
[n − 1] | πi > πi+1}, and maj(π) = ∑

i∈Des(π) i .
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Fig. 3 The Hasse diagram of V (4, 3)

Now, we note that an element s ∈ BL(m) can be specified uniquely by listing the values of
�s(i j ) for each entry i j in s. We call the vector 〈�s(11), . . . , �s(nmn )〉 the inversion vector
of s. We claim that the map f : BL(m) → V (m) given by s �→ 〈�s(11), . . . , �s(nmn )〉
is a bijection between the ground sets of BL(m) and V (m) as illustrated in the following
example.

Example 4.1 Let us construct the barcode s ∈ BL(4, 3, 3, 3) with inversion vector

〈0, 0, 3, 7; 0, 1, 4; 0, 1, 3; 0, 0, 0〉.
We start by listing the subsequence consisting of all entries with index 1, since these must

appear in order:
11213141.

We then insert all of the entries that have the largest label, which in this case is 4. These
appear after all entries that have been listed so far, since the subsequence 414243 must appear
in order:

112131414243.

Next, we insert all of the entries with label 3. Observe that 32 must appear after 41 so that
we have one entry (namely, 41) between 31 and 32 whose label is greater than 3. Similarly,
33 must appear after 41, 42, and 43:

1121314132424333.
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We insert 22 after 31, and we insert 23 after 31, 41, 32, and 42:

11213122413242234333.

Finally, we insert the 1s. Observe that 12 gets inserted directly after 11, 13 is inserted after
21, 31 and 22, and 14 is inserted after 21, 31, 22, 41, 32, 42, and 23, giving us

s = 11122131221341324223144333.

��
Observe that this process holds in general by identifying any element of V (m) with an

element of BL(m) for any m. Going from the permutation to the inversion vector requires
us to simply count, for each i j , how many entries to the left of i j have labels greater than i .
This gives us a bijection f between BL(m) and the corresponding set of inversion vectors,
which we claim is V (m). To see why, notice that we get the bound

0 = xi1 ≤ xi j ≤ xi j+1 ≤
n

∑

k=i+1

mk,

for all i and j , from the fact that in an element s ∈ BL(m), each entry with label i other than
i1 can be placed to the right of at most

∑n
k=i+1 mk entries with label greater than i .

Further note that f : BL(m) → V (m) is not an isomorphism, but does preserve the
number of elements of each rank. This is because the rank of a barcode s ∈ BL(m) is the
number of inversions in s, i.e.,

rk(s) =
∑

i j ∈s

�s(i j ),

which is exactly the sum of the entries in f (s), equivalently, the rank of f (s) in V (m). This
tells us that BL(m) and V (m) have the same rank-generating function.

Theorem 4.2 If m = (m1, . . . , mn), the rank-generating function of V (m), and thus of
BL(m), is

n
∏

i=1

[

(
∑n

j=i m j ) − 1

mi − 1

]

q
,

where
[n

k

]

q is the standard q-analog of the binomial coefficient:

[

n

k

]

q
= [n]q !

[n − k]q ![k]q ! .

Proof For a vector v ∈ V (m) the rank of v is
∑M

i=1 vi where M = ∑n
i=1 mi . We break this

sum into blocks:

Bi =
∑i

k=1 mk
∑

j=
(
∑i−1

k=1 mk

)

+1

v j ,

so that the rank of v is
∑n

i=1 Bi . Since v must satisfy

0 = vi1 ≤ vi j ≤ vi j+1 ≤
n

∑

j=i+1

m j
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for each i, j , the number of vectors v with rank(v) = r is the number of ways to partition

each block Bi into at most mi − 1 parts each of size at most
n
∑

j=i+1
m j , summed over all

choices of B1, . . . , Bn such that
n
∑

i=1
Bi = r . Following a slight modification in [11, Section

1.7, pp. 59-60], this is:
∑

∑

i Bi =r

p(Bi ,

n
∑

j=i+1

m j , mi − 1).

Thus, the rank-generating function of V (m) is

∑

k

⎛

⎝

∑

∑

Bi =k

p(Bi ,

n
∑

j=i+1

m j , mi − 1)

⎞

⎠ qk .

Since the coefficients are sums taken over compositions of the exponents, we can be
decompose the summation above as a product of generating functions. Separating this gen-
erating function into a product gives us:

n
∏

i=1

∑

k

(p(k,

n
∑

j=i+1

m j , mi − 1))qk .

Using [11, Proposition 1.7.3], namely that
[

a + b

b

]

q
=

∑

λ⊆a×b

q |λ| =
∑

k

p(k, a, b)qk ,

we can rewrite our product for the rank-generating function of V (m) as

n
∏

i=1

[

mi − 1 + ∑n
j=i+1 m j

mi − 1

]

q
,

as was to be proved. ��

We now have a description of the rank-generating function of BL(m) for any m. It is
important to note that Theorem 4.2 generalizes [5, Corollary 4.1], which (in our notation)
states that the rank generating function of BL(2n) is

∏n
i=1(1 + q + · · · + q2(n−i)). We next

shift our attention to another combinatorial property of BL(m), namely maximal chains.

5 Maximal Chains

To find the number of maximal chains in the combinatorial barcode lattice, recall thatBL(m)

is isomorphic to the principal order ideal generated by the permutation β as established in
Proposition 3.1.

For a permutation σ = σ1 · · · σM ∈ SM , define:

• ri (σ ) to be the number of entries σ j that appear before σi such that σ j > σi , and
• si (σ ) to be the number of entries σ j that appear after σi such that σ j < σi .
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That is, we define

ri (σ ) = #{ j | j < i, σ j > σi }
si (σ ) = #{ j | j > i, σ j < σi }.

It is a well-known theorem of Stanley [9, Corollary 4.2] that if the Ferrers diagram λ(σ )

obtained by reading the positive ri (σ )’s for i ∈ [M] in decreasing order is the same as the
transpose μ′(σ ) of the Ferrers diagram μ(σ) obtained by reading the positive si (σ )’s for
i ∈ [M] in decreasing order, then the number of reduced decompositions of σ is equal to the
number of standard Young tableaux with shape λ(σ ). By applying the hook length formula
[10, Corollary 7.21.6] we obtain that the number of reduced decompositions of σ is

|λ(σ )|!
∏

(i, j)∈λ(σ) hi, j
,

where hi, j is the number of cells (k, l) ∈ λ(σ ) with k ≥ i and l ≥ j .
By [6, Lemma 2.3], λ(σ ) = μ′(σ ) is equivalent to σ being vexillary (i.e., 2143-avoiding).

We now confirm that the permutation β that generates the combinatorial barcode lattice is
vexillary. For the sake of contradiction, let i, j, and k be integers between 1 and the length
of β such that i < j < k, while β( j) < β(i) < β(k). Keeping in mind the definition of β,
suppose β(i) belongs to block Bt . Since the entries of each block appear in increasing order,
β( j) < β(i) and i < j implies β( j) must be from a block Bs with s < t , and it cannot
be the first element of the block. Note, however, that this means every entry of β after β( j)
must be lower than β(i) since all of the entries of β that appear at or after the second entry
of the block Bs must be from some block Br with r ≤ s. Thus, there cannot be a k > j with
β(k) > β(i), meaning β is 213-avoiding. In particular, β is 2143-avoiding.

The following theorem follows from the above exposition.

Theorem 5.1 If λ is the Ferrers diagram obtained by ordering the positive entries of {{ri (β) |
i ∈ [M]}} in decreasing order, whereβ is the permutation generatingBL(m), then the number
of maximal chains in BL(m) is

|λ|!
∏

(i, j)∈λ hi, j
,

where hi, j is the number of cells (k, l) ∈ λ with k ≥ i and l ≥ j .

When we setm = (kn), we obtain the following corollary.

Corollary 5.2 The number of maximal chains in BL(kn) is

n!
⎛

⎜

⎝

n−1
∏

i=1

⎛

⎝

2k−2
∏

j=1

(((2k − 1)(n − i)) + j)min{ j,2k−1− j}
⎞

⎠

i
⎞

⎟

⎠

−1

and in particular the number of maximal chains in BL(2n) is

(n(n − 1))!
n−1
∏

i=1

3i (i !)
(3i)! .

Proof We can check that the permutation β generating BL(kn) has ri (β) = 0 for i ≤ n and
ri (β) = k� i−n−1

k−1 � for n + 1 ≤ i ≤ kn. It follows that the resulting diagram λ is

λ = ((k(n − 1))k−1, (k(n − 2))k−1, . . . , kk−1).
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Fig. 4 The filling H of the Ferrers diagram λ(β) for β generating BL(34), partitioned into rectangles of size
2 × 3

Let H = (Hi j ) be the filling of the cells of λwith their hook length (i.e., Hi j = hi j ). Then the
number of maximal chains in BL(m) is n! divided by the product of the cells in the filling H .
To simplify calculations, note that the diagram can be partitioned into

(n
2

)

rectangles of size
(k −1)× k by placing the top left cell of a (k −1)× k rectangle at cell (i(k −1)+1, jk +1)
of λ for each i and j for which the cell is contained in λ. (See Fig. 4 for an example.)

With this in mind, we define Ri j for 2 ≤ i + j ≤ n to be the (k − 1)× k array of numbers
where the element of Ri j in row a and column b is the hook length (in λ) of the cell in the
ath row and bth column of the rectangle starting at cell ((i − 1)(k − 1) + 1, ( j − 1)k + 1)
of λ. More succinctly, we let Ri j : [k − 1] × [k] → N be given by

Ri j (a, b) = H((i−1)(k−1)+a,( j−1)k+b).

Notice that for all (i, j) and (i ′, j ′) with i + j = i ′ + j ′ ≤ n we have Ri j = Ri ′ j ′ , and
because of this we need only keep track of rectangles in the top row. Letting Ri = Ri1, since
the rectangle corresponding to Ri occurs i times in λ, we have that the product of the hook
lengths is

n−1
∏

i=1

⎛

⎝

∏

(a,b)∈[k−1]×[k]
Ri (a, b)

⎞

⎠

i

.

Next, we calculate the Ri (a, b). Define Hook(a, b) to be the hook starting at (a, b) in λ,
then observe that #(Hook(a, b) \ Ri ) is the same for any (a, b) ∈ Ri . Thus, we have

Ri (a, b) = 1 + Ri (a + 1, b) = 1 + Ri (a, b + 1),

which also gives us

Ri (a, b) = Ri (a − 1, b + 1) = Ri (a + 1, b − 1).
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From these two equalities, we can conclude that there are (k −1)+k −1 = 2k −2 distinct
values in the cells of Ri since we have

Ri (1, 1) = 1 + Ri (2, 1)

...

= (k − 3) + Ri (k − 2, 1)

= (k − 2) + Ri (k − 1, 1)

= (k − 1) + Ri (k − 1, 2)

...

= (2k − 3) + Ri (k − 1, k),

and every other cell in the rectangle is determined by these 2k −2 values. Let us relabel once
again and take Ri ( j) for 1 ≤ j ≤ 2k − 2 to be

Ri ( j) =
{

Ri ( j, 1) if j ≤ k − 1,

Ri (k − 1, j − k + 2) if k ≤ j .

The cells (a, b) ∈ [k − 1]× [k] such that Ri (a, b) = Ri ( j) appear in a diagonal of length
min{ j, 2k − 1 − j}. It follows that the product of the hook lengths is

n−1
∏

i=1

⎛

⎝

2k−2
∏

j=1

(Ri (k − 1, k) + j)min{ j,2k−1− j}
⎞

⎠

i

.

Now, note that

Rn−1(k − 1, k) = 1 and Ri (k − 1, k) = Ri+1(k − 1, k) + 2k − 1,

since there are k more cells to the right of Ri ( j) than there are to the right of Ri+1( j) and
there are k − 1 more cells below Ri ( j) than there are below Ri+1( j) for all j . Thus, we can
finally conclude that the product of the hook lengths of cells in λ is

n−1
∏

i=1

⎛

⎝

2k−2
∏

j=1

(((2k − 1)(n − i)) + j)min{ j,2k−1− j}
⎞

⎠

i

,

and the desired result follows from the hook length formula. ��

6 Connection toMatchings

Jaramillo-Rodriguez in [5] was mainly interested in barcodes as combinatorial invariants on
the space of barcodes, but it is interesting to note that the underlying set of BL(2n) is the set
of perfect matchings on [2n]. Recall that a perfect matching of a set is a partition of the set
into 2-element blocks or equivalently a multipermutation of the multiset {{12, 22, . . . , nn}}.
This allows us to introduce a new order on the set of perfect matchings, and the following
two results suggest that this may be a natural way to order the matchings. For those interested
in reading more on matchings, we recommend [8].
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Proposition 6.1 The permutational matchings on [2n], i.e., the matchings that avoid the
pattern 1122, consist of exactly the matchings in the interval

[12 · · · n12 · · · n, 12 · · · nn · · · 21] ⊆ BL(2n).

Proof Recall that the first appearances of each label of any matching s ∈ BL(2n) must
occur in increasing order. (That is, s must contain the subsequence 1121 · · · n1 in that order).
Now note that an occurrence of the pattern 1122 in s corresponds to the presence of the
subsequence a1a2b1b2 in s for some a, b ∈ [n]. Such a subsequence occurs exactly when
there is an occurrence of some entry a2 before an occurrence of some entry b1, for a and
b in [n], so we observe that a matching s is permutational if and only if it is of the form
τ = 1121 · · · n1σ , where σ is a permutation of {12, . . . , n2}.

It follows that a matching s is permutational if and only if its inversion set contains
{(i1, j2) | j < i ∈ [n]}. Since 12 · · · n12 · · · n is the matching having exactly this inversion
set, and since the weak Bruhat order on the symmetric group is the same as ordering by
inclusion of inversion sets, we have that s ≥ 12 · · · n12 · · · n if and only if s is permutational.
��
Corollary 6.2 There are n! elements in the interval [12 · · · n12 · · · n, 12 · · · nn · · · 21].
Proof This follows directly from the previous observation and the fact that there are n!
permutations of [n] and thus n! permutational matchings. ��
Proposition 6.3 The non-nesting matchings on [2n], i.e., the matchings that avoid the pattern
1221, consist of exactly the matchings in the interval

[1122 · · · nn, 12 · · · n12 · · · n] ⊆ BL(m).

Proof A matching s is non-nesting if and only if the subsequence of s consisting of only the
entries 11, 21, . . . , n1 has the same relative order as the subsequence of s consisting of only
the entries 12, 22, . . . , n2. Since matchings are combinatorial barcodes, we have that these
subsequences must appear in increasing order, so s is a non-nesting matching if and only if
the only inversions of s are of the form

(i1, j2) for j < i .

This is equivalent to s being less than or equal to 12 · · · n12 · · · n in the weak Bruhat order,
since the inversion set of 12 · · · n12 · · · n is {(i1, j2) | j < i}. ��
Corollary 6.4 The size of the interval [1122 · · · nn, 12 · · · n12 · · · n] is the nth Catalan num-
ber,

Cn = 1

n + 1

(

2n

n

)

.

Proof It is well-known that the non-nesting matchings on [2n] are counted by the Catalan
numbers [12], so this follows from the previous observation. ��

7 Further Directions

Section 6 suggests that it may be worth looking into intervals in the combinatorial barcode
lattice from the perspective of matchings. The order dimension of the combinatorial barcode
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lattice is currently unknown. Flath characterized the order dimension of the multinomial
Newman lattice in [3] using techniques from formal context analysis. Flath’s proof does not
immediately apply to the combinatorial barcode lattice, in part because the meet-irreducible
elements of the combinatorial barcode lattice do not have as simple a characterization as the
meet-irreducible elements of the multinomial Newman lattice, but we are hopeful that Flath’s
proof could be modified to give the order dimension of the barcode lattice.

Also, recall that we saw that in general

∑

σ∈BL(m)

q inv(σ ) �=
∑

σ∈BL(m)

qmaj(σ ).

The left side is the rank-generating function, which we proved is
∏n

i=1

[(
∑n

j=i m j )−1
mi −1

]

q
, but

we do not yet have a description of the right hand side. Combinatorial interpretations of the
inversions and major index statistics in terms of the properties of the barcodes would also be
of interest.

Parts of the work in this paper can be generalized to other classes of posets, particularly
those of the formL(P, ω)mentioned in Section 3. A first step may be to determine for which
(P, ω) can we use similar proofs as to those in Sections 4 and 5 to find the rank-generating
function and number of maximal chains in L(P, ω).
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