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Abstract
Weighted poset block metric is a generalization of two types of metrics: one is weighted
poset metric introduced by Panek and Pinheiro (2010) and the other is metric for linear error-
block codes introduced by Feng and Hickernell (2006). This type of metrics includes many
classical metrics such as Hamming metric, Lee metric, poset metric, pomset metric, poset
block metric, pomset block metric and so on. In this work, we focus on constructing new
codes under weighted poset block metric from given ones. Some basic properties such as
minimum distance and covering radius are studied.

Keywords Weighted poset block metric · Order ideal · Covering radius · Packing radius

1 Introduction

LetFn
q be the spaces of n-tuples over a finite fieldFq .Most of the coding theorywas developed

considering the metric determined by Hamming weight on Fn
q . The study of codes endowed

with a metric other than the Hamming metric gained momentum since 1990’s. In 1995,
Brualdi, Graves and Lawrence introduced poset metric, which is defined by partial orders on
the set of coordinate positions of Fn

q [2]. Poset metric is a generalization of the Hamming
metric, in the sense that the latter is attained by considering the trivial order. This has been a
fruitful approach, since a number of unusual properties arise in this context such as intriguing
relative abundance of MDS and perfect codes [11, 19]. Over the last two decades, the study
of codes in the poset metric has made many developments in different subjects in coding
theory.

Feng, Xu and Hickernell [7] introduced the block metric by partitioning the set of coordi-
nate positions ofFn

q and studiedMDS block codes. In 2008, Alves, Panek and Firer combined
the poset and block structure, obtaining a further generalization called the poset block metric
[1]. A particular instance of poset block metric spaces, with one-dimensional blocks and the
poset is taken to be a disjoint union of chains with equal length, are the spaces introduced by
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Niederreiter in 1991 [17] and Rosenbloom and Tafasman in 1997 [21]. Later, Dass, Sharma
and Verma obtained a Singleton type bound for poset block codes [4]. A code meeting this
bound is called a maximum distance separable poset block code. Niederreiter-Rosenbloom-
Tsfasman block metric (in short, NRT block metric) is a particular case of poset block metric
when the poset is a chain [19].

As the support of a vector in F
n
q is a set and hence induces order ideals and metrics on

F
n
q , the poset metric codes could not accommodate Lee metric structure due to the fact that

the support of a vector with respect to Lee weight is not a set but rather a multiset. In order
to handle Lee metric, a much general class of metrics called pomset metric is introduced by
Irrinki and Selvaraj [22–24] for codes overZm . OverZn

2 andZ
n
3 the pomset metric is actually

the poset metric. Moreover, when the pomset is induced by an antichain, it is the Lee metric.
More recently in [18] and [20], Panek and Pinheiro has proposed and studied weighted

coordinates poset metric for finite field alphabet, which is a generalization of both the poset
metric and pomset metric. In particular, it is a generalization of Hamming metric and Lee
metric.

In [14], we proposed weighted poset block metric which unifies weighted coordinates
posetmetric and error-blockmetric.Weighted poset blockmetric includes not only all additive
metricsmentioned above but also some blockmetrics such as poset blockmetric, blockmetric,
pomset block metric and so on.

weighted poset metric with error-block metric to obtain a further generalization called the
weighted poset block metric which includes not only all additive metrics mentioned above
but also some block metric such as poset block metric, block metric, pomset block metric and
so on.

It is known thatmany interesting and important codeswill arise bymodifying or combining
existing codes under classical Hamming metric [10]. There are also several different ways to
join two ordered sets together [5]. The poset structure that could be imposed on the resultant
codes will have its effect on the minimum distance and covering radius.

The remainder of the paper is organized as follows. In Section 2, we give some definitions,
notations and basic facts of posets and weighted poset block weight over Fn

q . In Section 3,
we consider the packing radius and covering radius of a code under weighted poset block
metric when the poset is a chain. Whenw is taken to be the Hamming weight, our conclusion
will coincide with the results under NRT block metric. In Section 4, we give several different
ways to construct new (P, π,w)-codes from given ones. We introduce the concept of the
direct sum and direct product of the labeling maps. The new poset block structure that could
be imposed on the resultant codes. We focus on discussing its effect on minimum distance
and covering radius.

2 Preliminary

In the following, we give some basic definitions and notations about poset that are used
throughout the remainder of the paper. For more details of posets see [5].

Let P be a set. A partial order on P is a binary relation≤ on P such that for all x, y, z ∈ P ,
we have x ≤ x (reflexivity), x ≤ y and y ≤ x imply x = y (antisymmetry), x ≤ y and
y ≤ z imply x ≤ z (transitivity). A set equipped with an order relation is said to be a poset.
A poset P is a chain if any two elements of P are comparable. The opposition of a chain
is an antichain, that is, poset P is an antichain if x ≤ y in P only when x = y. We call a
subset Q of P an ideal if, whenever x ∈ Q, y ∈ P and y ≤ x , we have y ∈ Q. For a subset
E of P , the ideal generated by E , denoted by 〈E〉P , is the smallest ideal of P containing E .
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We prefer to denote the ideal generated by {i} as 〈i〉 instead of 〈{i}〉. We denoted by 〈i〉∗ the
difference 〈i〉 − {i} = { j ∈ P : j < i}.

There are several different ways to construct a new poset from any two given posets. Let
P and Q be two posets. We use ≤P and ≤Q to distinguish the order relation between P and
Q.

• Disjoint union: The disjoint union of P and Q denoted by P � Q is the poset formed
by defining order relation on the underlying set P ∪ Q:

x ≤ yinP ∪ Q ⇔ (x, y ∈ Pandx ≤P y)or(x, y ∈ Qandx ≤Q y).

• Linear sum: The linear sum of P and Q denoted by P ⊕ Q is also a poset whose order
relation is defined on P ∪ Q in the following way:

x≤ yinP ∪ Q ⇔ (x, y ∈ Pandx ≤P y)or(x, y∈Qandx ≤Q y)or(x ∈ Pandy ∈ Q).

• Cartesian product: Denote by P × Q = {(i, j) : i ∈ P, j ∈ Q}. Define an order
relation ≤ on the underlying set P × Q as

(x, y) ≤ (x ′, y′) in P × Q ⇔ x ≤P x ′ and y ≤Q y′.

Then P × Q is a poset with the order relation defined above and is called Cartesian
product of P and Q, denoted by P ⊗ Q.

• Lexicographic product: Define an order relation ≤ on the underlying set P × Q again
in a different way:

(x, y) ≤ (x ′, y′)inP × Q ⇔ (x <P x ′)or(x = x ′andy ≤ y′).

Then P × Q is a poset with this order relation and is called lexicographic product of P
and Q, denoted by P�Q.

For example, consider the posets P = {a, b}, Q = {c, d, e} given by the following Hasse
diagrams:

• b

• a

• e

• d

• c

The Hasse diagrams of P � Q, P ⊕ Q can be given as followings:

• b

• a

• e

• d

• c
P � Q

• e

• d

• c

• b

• a
P ⊕ Q
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The Hasse diagrams of P ⊗ Q and P�Q can be given as followings:

• (b, e)

• (b, d) • (a, e)

• (b, c) • (a, d)

• (a, c)
P ⊗ Q

• (b, e)

• (b, d)

• (b, c)

• (a, e)

• (a, d)

• (a, c)
P�Q

In the following, we give two ways to obtain a new poset from the old one. Let P be a
poset.

• Puncturing: We can get a new poset P− from P by deleting an element z ∈ P and its
order relation is defined as:

x ≤ y ∈ P− ⇔ x ≤ y ∈ P.

• Extending:By adding an element z in P , we obtain a new poset P+ whose order relation
is defined as:

x ≤ y ∈ P+ ⇔ (x, y ∈ P, x ≤ yinP)or(x = y = z).

Remark 2.1 By the definitions of puncturing poset and extending poset, we get the following.

(1) If poset P is a chain (antichain), then P− is a chain (antichain).
(2) Poset P+ can never be a chain.

The definitions of weight and metric can be defined on general rings. In particular, we
restrict it to finite field because it is the most explored topic in the context of coding theory.

Let Fq be the finite field of order q and F
n
q the n-dimensional vector space over Fq .

Definition 2.1 A map d : F
n
q × F

n
q → N is a metric on F

n
q if it satisfies the following

conditions:

(1) (non-negativity) d(u, v) ≥ 0 for all u, v ∈ F
n
q and d(u, v) = 0 if and only if u = v;

(2) (symmetry) d(u, v) = d(v, u) for all u, v ∈ F
n
q ;

(3) (triangle inequality) d(u, v) ≤ d(u,w) + d(w, v) for all u, v,w ∈ F
n
q .

Definition 2.2 A map w : Fn
q → N is a weight on Fn

q if it satisfies the following conditions:

(1) w(u) ≥ 0 for all u ∈ F
n
q and w(u) = 0 if and only if u = 0;

(2) w(u) = w(−u) for all u ∈ F
n
q ;

(3) w(u + v) ≤ w(u) + w(v) for all u, v ∈ F
n
q .

It is straightforward to prove that, if w is a weight over Fn
q , then the map dw defined by

d(u, v) = w(u − v) is a metric on Fn
q . See [6] and [9] for detailed discussion on weight and

metric.
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Let P be a poset with underlying set [s]. Let π : [s] → N be a map such that n =
s∑

i=1
π(i).

The map π is said to be a labeling of the poset P , and the pair (P, π) is called a poset block
structure over [s]. Denote π(i) by ki . We take Vi as the Fq -vector space F

ki
q for all 1 ≤ i ≤ s.

We define V as the direct sum

V = V1 ⊕ V2 ⊕ · · · ⊕ Vs

which is isomorphic to Fn
q . Each u ∈ V can be uniquely decomposed as

u = u1 + u2 + · · · + us

where ui = (ui1 , . . . , uiki ) ∈ Vi for 1 ≤ i ≤ s.
Let w be a weight on Fq and let P be a poset. Given u ∈ V , set

(1) WP
i (u) = max

{
w(ui j ) : 1 ≤ j ≤ ki

}
for 1 ≤ i ≤ s;

(2) Mw = max
{
w(α) : α ∈ Fq

}
;

(3) mw = min
{
w(α) : 0 �= α ∈ Fq

}
.

The block support or π -support of u ∈ V is the set

suppPπ (u) = {i ∈ [s] : ui �= 0} .

We denote by I Pu the ideal generated by suppPπ (u) and denote by MP
u the set of maximal

elements in the ideal I Pu . The (P, π,w)-weight of u is defined as

ωw,(P,π)(u) =
∑

i∈MP
u

WP
i (u) +

∑

i∈I Pu \MP
u

Mw.

For u, v ∈ V , define their (P, π,w)-distance as

dw,(P,π)(u, v) = ωw,(P,π)(u − v)

which induces a metric on F
n
q known as weighted poset block metric [14]. The (P, π,w)-

weight ωw,(P,π) and the (P, π,w)-distance dw,(P,π) is also called weighted poset block
weight and weighted poset block distance.

The pair
(
V , dw,(P,π)

)
is said to be a weighted poset block space. A (P, π,w)-code C of

length n over Fq is a subset of V . A linear (P, π,w)-code is a subspace of V . The minimum
(P, π,w)-distance of a code C is

dw,(P,π)(C) = min
{
dw,(P,π)(u, v) : u �= v ∈ C

}
.

When the weight w over Fq is considered to be the Hamming weight wH , we denote by
d(P,π)(C) = dwH ,(P,π)(C).

Remark 2.2 It is worth noting that this metric combines and extends several classical metrics
in coding theory. For instance,

(1) When the weight w over Fq is the Hamming weight, the (P, π,w)-weight reduces to the
poset block weight introduced by Alves et al. (see [1].

(2) When the weightw overZm is the Leeweight, the (P, π,w)-weight reduces to the pomset
block weight introduced in [13].

(3) When P is taken to be a chain and w is taken to be the Hamming weight over Fq ,
the Niederreiter-Rosenbloom-Tafasman block weight (NRT block weight), introduced by
Panek (see [19], becomes a particular case of (P, π,w)-weight.
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(4) When the label π satisfies π(i) = 1 for all i ∈ [s], the (P, π,w)-weight reduces to the
weighted coordinates poset weight introduced by Panek et al. (see [18] and [20].

(5) In case both conditions occur (π(i) = 1 for all i ∈ [s], w is the Hamming weight over
Fq and P is the antichain order), the (P, π,w)-weight reduces to the usual Hamming
weight.

(6) In case both conditions occur (π(i) = 1 for all i ∈ [s], w is the Lee weight over Zm and
P is the antichain order), the (P, π,w)-weight reduces to the usual Lee weight.

3 Packing Radius and Covering Radius

In this section, we extend the concept of radius defined for the Hamming metric (see [10])
to the case of weighted poset block metric. We always assume that w is a weight on Fq ,

P = ([s],≤) is a poset, π : [s] → N is a labeling of the poset P and V =
s⊕

i=1
F
ki
q which is

isomorphic to Fn
q .

Definition 3.1 Let w be a weight on Fq . For u ∈ V , the (P, π,w)-ball with center u and
radius r is the set

Bw,(P,π)(u, r) = {v ∈ V : dw,(P,π)(u, v) ≤ r}.
When the wight w over Fq is considered to be Hamming weight, we denote by B(P,π)(u, r)
the (P, π,w)-ball with center u and radius r .

Definition 3.2 Let C be a (P, π,w)-code. The covering radius ρ̃(C) is the smallest integer
l such that V is the union of the balls with radius l centered at the codewords of C, that is:

ρ̃(C) = max
v∈V min

u∈C dw,(P,π)(u, v).

Definition 3.3 Let C be a linear (P, π,w)-code and v ∈ V . The coset of C determined by v

is defined as v + C = {v + u : u ∈ C}. The weight of a coset is the smallest weight of all
vectors in the coset, and any vector having the smallest weight in the coset is called a coset
leader.

Remark 3.1 For a linear (P, π,w)-code C, one has that ρ̃(C) is the weight of a coset with
the largest weight.

Definition 3.4 A code C is said to be an r-perfect (P, π,w)-code if the (P, π,w)-balls of
radius r centered at the codewords of C are pairwise disjoint and their union is V .

Definition 3.5 The packing radius ρ(C) of a code C is the largest radius of balls centered
at codewords so that the balls are pairwise disjoint. We call a code C is perfect if it is
ρ(C)-perfect.

In the remainder of this section, we always suppose that P is a chain. Without loss of
generality, we may assume that P has order relation 1 < · · · < s.

Lemma 3.1 Let w be a weight on Fq and let r = l + iMw where l ∈ [Mw] and i ≥ 0 be an
integer. Then Bw,(P,π)(0, r) ⊆ B(P,π)(0, i + 1), with equality holds if and only if l = Mw.
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Proof Let u ∈ Bw,(P,π)(0, r). Then ωw,(P,π)(u) ≤ r = l + iMw ≤ (i + 1)Mw. Therefore
u j = 0 for j ≥ i + 2 and hence u ∈ B(P,π)(0, i + 1).

Suppose that Bw,(P,π)(0, r) = B(P,π)(0, i + 1). Take u ∈ B(P,π)(0, i + 1) such that
ui+1,1 = α where α ∈ Fq satisfiesw(α) = Mw. Then ωw,(P,π)(u) = Mw + iMw . Therefore
l = Mw.

Conversely suppose l = Mw. For u ∈ B(P,π)(0, i + 1), we have ωw,(P,π)(u) ≤ (i +
1)Mw = r . Therefore u ∈ Bw,(P,π)(0, r) and hence B(P,π)(0, i + 1) ⊆ Bw,(P,π)(0, r). ��

When w is taken to be the Hamming weight over Fq , the (P, π,w)-weight reduces to the
NRT block weight. It is known that the packing radius of a linear (n, K ) code C under NRT
block metric is

ρ(C) = d(P,π)(C) − 1

(see [19], Theorem 5).
By Lemma 3.1, we immediately get the following result.

Theorem 3.1 The packing radius of a linear (P, π,w)-code C satisfies that

ρ(C) ≥ (d(P,π)(C) − 1
)
Mw.

Furthermore, ρ(C) = (d(P,π)(C) − 1
)
Mw if and only if dw,(P,π)(C) = mw +(

d(P,π)(C) − 1
)
Mw .

Let C be a (P, π,w)-code, denote by Ci = {ui : u ∈ C} for i ∈ [s].

Theorem 3.2 Let C be a linear (P, π,w)-code. Set

r =
⎧
⎨

⎩

s if Cs �= F
ks
q ;

min
{
l : (Cl+1, . . . ,Cs) = F

kl+1
q ⊕ · · · ⊕ F

ks
q

}
otherwise.

Then
(r − 1)Mw < ρ̃(C) ≤ rMw.

Proof Suppose that Cs �= F
ks
q . Then there exists v ∈ F

n
q such that vs ∈ F

ks
q \ Cs . Then

(s − 1)Mw +mw ≤ dw,(P,π)(v, u) for any u ∈ C which implies that (s − 1)Mw < ρ̃(C) ≤
sMw .

Suppose that r = min
{
l : (Cl+1, . . . ,Cs) = F

kl+1
q ⊕ · · · ⊕ F

ks
q

}
. Take v ∈ F

n
q such that

vr ∈ F
kr
q \ Cr . Then dw,(P,π)(v, u) ≥ (r − 1)Mw + mw which implies that ρ̃(C) ≥ (r −

1)Mw + mw. On the other hand, for any v = (v1, . . . , vr , vr+1, . . . , vs) ∈ F
n
q , there exists

u ∈ C such that u = (u1, . . . , ur , vr+1, . . . , vs). Therefore

dw,(P,π)(u, v) = ωw,(P,π)(u1 − v1, . . . , ul − vl , 0, . . . , 0) ≤ rMw.

��

4 Code Constructions

In this section, we give several different ways to construct new (P, π,w)-codes from given
ones.
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4.1 Construction 1

Let P, Q be twoposets and letw be aweight onFq . Letπ1 : [s] → N such that n1 =
s∑

i=1
π1(i)

be a labeling of P and let π2 : [t] → N such that
t∑

i=1
π2(i) = n2 be a labeling of Q. Let

C1 ⊆ (Fn1
q , dw,(P,π1)

)
be a (P, π1, w)-code and let C2 ⊆ (Fn2

q , dw,(Q,π2)

)
be a (Q, π2, w)-

code. The direct sum of C1 and C2 denoted by C is defined as

C = C1 ⊕ C2 = {(u′, u′′) : u′ ∈ C1, u′′ ∈ C2
}
.

Define the direct sum of labeling map π1 and π2 as π = π1 ⊕ π2 : [s + t] → N such that

π(i) =
{

π1(i) if i ≤ s;
π2(i − s) if i > s.

Suppose that L = P � Q (or L = P ⊕ Q). For u = (u′, u′′) ∈ C where u′ ∈ C1 and
u′′ ∈ C2. Set

WL
i (u) =

{
WP

i

(
u′) if i ≤ s;

WQ
i−s

(
u′′) if i > s.

With notations introduced above, we obtain the following result.

Proposition 4.1 (1) The code C ⊆
(
F
n1+n2
q , dw,(P�Q,π1⊕π2)

)
is a (P � Q, π1 ⊕ π2, w)-code

such that
dw,(P�Q,π1⊕π2)(C) = min

{
dw,(P,π1)(C1), dw,(Q,π2)(C2)

}
.

(2) The code C ⊆
(
F
n1+n2
q , dw,(P⊕Q,π1⊕π2)

)
is a (P ⊕ Q, π1 ⊕ π2, w)-code such that

dw,(P⊕Q,π1⊕π2)(C) = dw,(P,π1)(C1).

Proof Take u = (u′, u′′) and v = (v′, v′′) where u′, v′ ∈ C1 and u′′, v′′ ∈ C2 respectively.
It follows from the definition of weighted poset block weight that

ωw,(L,π)(u − v) =
∑

i∈ML
u−v

WL
i (u − v) +

∑

i∈ILu−v\ML
u−v

Mw.

Considering the weighted poset block metric with poset L = P � Q, we have ILu−v =
I Pu′−v′ ∪ I Qu′′−v′′ and ML

u−v = MP
u′−v′ ∪ MQ

u′′−v′′ . Hence

ωw,(L,π)(u − v) =
∑

i∈I P
u′−v′

WP
i

(
u′ − v′)+

∑

i∈I P
u′′−v′′

WQ
i

(
u′′ − v′′)

+
∑

i∈I P
u′−v′ \MP

u′−v′

Mw +
∑

i∈I Q
u′′−v′′ \MQ

u′′−v′′

Mw

= ωw,(P,π1)

(
u′ − v′)+ ωw,(Q,π2)

(
u′′ − v′′) .
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If L = P ⊕ Q, then

u′′ �= v′′ u′′ = v′′

ILu−v P ∪ I Qu′′−v′′ I Pu′−v′
ML

u−v MQ
u′′−v′′ MP

u′−v′ .

Hence

ωw,(L,π)(u − v) =
{
sMw + ωw,(Q,π2)

(
u′′ − v′′) if u′′ �= v′′;

ωw,(P,π1)
(
u′ − v′) if u′′ = v′′.

The result then follows. ��
Lemma 4.1 Suppose that C1 is a linear (P, π1, w)-code and C2 is a linear (Q, π2, w)-code.
Let u′ be a coset leader of C1 and let u′′ be a coset leader of C2. Then

(1) u = (u′, u′′) ∈ C is a coset leader of C when L = P � Q.
(2) u = (u′, u′′) ∈ C is a coset leader of C when L = P ⊕ Q.

Proof Let v = (u′ + x′, u′′ + x′′) ∈ u + C where
(
x′, x′′) ∈ C.

If L = P � Q, then

ωw,(L,π)(v) = ωw,(P,π1)

(
u′ + x′)+ ωw,(Q,π2)

(
u′′ + x′′) ≥ ωw,(P,π1)

(
u′)

+ωw,(Q,π2)

(
u′′) = ωw,(L,π)(u)

which implies that u is a coset leader of u + C.
If L = P ⊕ Q, then we have

u′′ + x′′ �= 0 u′′ + x′′ = 0

ILv P ∪ I Qu′′+x′′ I Pu′+x′

ML
v MQ

u′′+x′′ MP
u′+x′ .

Hence

ωw,(L,π)(v) =

⎧
⎪⎨

⎪⎩

sMw + ωw,(Q,π2)

(
u′′ + x′′) ≥ sMw + ωw,(Q,π2)

(
u′′) = ωw,(L,π)(u) if u′′ + v′′ �= 0;

ωw,(P,π1)

(
u′ + x′) ≥ ωw,(P,π1)

(
u′) if u′′ + x′′ = 0.

Note that u′′ + x′′ = 0 implies that u′′ = −x′′ ∈ C2 and hence u′′ = 0. Therefore

ωw,(L,π)(v) ≥ ωw,(P,π1)

(
u′) = ωw,(L,π)(u).

The result then follows. ��
Theorem 4.1 Let C1 be a linear (P, π1, w)-code and C2 be a linear (Q, π2, w)-code. Then

(1) ρ̃(C) = ρ̃(C1) + ρ̃(C2) when L = P � Q.
(2) ρ̃(C) = sMw + ρ̃(C2) when L = P ⊕ Q.

Proof LetL = P⊕Q.We first show that ρ̃(C) ≥ sMw+ρ̃(C2). Let u′ be a coset leader ofC1

such thatωw,(P,π1)

(
u′) = ρ̃(C1) and let u′′ be a coset leader ofC2 such thatωw,(Q,π2)

(
u′′) =

ρ̃(C2). It follows from Lemma 4.1 that u = (u′, u′′) is a coset leader of C. Then for any
c ∈ C, we have

dw,(L,π)(u, c) = ωw,(L,π)(u − c) ≥ ωw,(L,π)(u) = sMw + ρ̃(C2)
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which implies that ρ̃(C) ≥ sMw + ρ̃(C2).
Conversely, let z = (z′, z′′) ∈ F

n1+n2
q . Then z′ = u′ + x′ ∈ u′ + C1 where u′ is a coset

leader of C1 and z′′ = u′′ + x′′ ∈ u′′ + C2 where u′′ is a coset leader of C2. Denote by
u = (u′, u′′). Take x = (x′, x′′) ∈ C. We have

dw,(L,π)(z, x) = ωw,(L,π)(z − x) = ωw,(L,π)(z − x) = ωw,(L,π)(u)

= sMw + ωw,(Q,π2)

(
u′′) ≤ sMw + ρ̃(C2).

Therefore min
u∈C dw,(L,π)(u, z) ≤ sMw + ρ̃(C2) for any z ∈ F

n1+n2
q and hence ρ̃(C) ≤

sMw + ρ̃(C2).
The case for L = P � Q can be proved in the same way. ��

Remark 4.1 (1) Set w be the Lee weight over Zm and set π1(i) = π2(i) = 1. Then weighted
poset block metric becomes pomset metric. An application of Theorem 4.1 implies that

(a) If L = P � Q, then ρ̃(C) = ρ̃(C1) + ρ̃(C2).
(b) If L = P ⊕ Q, then ρ̃(C) = s

⌊m
2

⌋+ ρ̃(C2).

which has appeared in [22].
(2) Set w be the Hamming weight over Fq and set π1(i) = π2(i) = 1. Then weighted poset

block metric becomes poset metric. An application of Theorem 4.1 implies that

(a) If L = P � Q, then ρ̃(C) = ρ̃(C1) + ρ̃(C2).
(b) If L = P ⊕ Q, then ρ̃(C) = s + ρ̃(C2).

which has appeared in [16]. Especially when the poset is taken to be an antichain, poset
metric becomes Hamming metric. We have ρ̃(C) = ρ̃(C1) + ρ̃(C2) when L = P � Q.
This result can be seen in [10].

(3) Suppose that P and Q are two antichains. Let π1(i) = π2(i) = 1 and let w be the
Hamming weight. Consider the poset L = P ⊕ Q which is a hierarchical poset with
two levels. It follows from Theorem 4.1 that ρ̃(C) = s + ρ̃(C2). On the other hand, the
(P ⊕ Q, π1 ⊕ π2, w) code C can be seen as a code under hierachical poset metric with
poset L = P ⊕ Q whose canonical decomposition is C = C1 ⊕C2 (see [8]). It is known
that ρ̃(C) = s + ρ̃(C2) [15].

4.2 Construction 2

Let C1 ⊆
(
F
n
q , dw,(P,π1)

)
be a (P, π1, w)-code and let C2 ⊆

(
F
n
q , dw,(Q,π2)

)
be a

(Q, π2, w)-code where n =
s∑

i=1
π1(i) =

t∑

i=1
π2(i). Let π be the direct sum of labeling

π1 and π2. Let L = P � Q (or L = P ⊕ Q). The (u′ | u′ + u′′) construction produces the
(L, π,w)-code

C = {(u′, u′ + u′′) : u′ ∈ C1, u′′ ∈ C2
}
.

With the notations introduced above, we have the following result.

Proposition 4.2 (1) The code C ⊆
(
F
2n
q , dw,(P�Q,π)

)
is a (P � Q, π,w)-code such that

dw,(P�Q,π)(C) ≥ min
{
dw,(P,π1)(C1), dw,(Q,π2)(C2)

}

or

dw,(P�Q,π)(C) ≥ min
{
dw,(Q,π2)(C2), dw,(P,π1)(C1) + dw,(Q,π2)(C1), dw,(P,π1)(C1) + dw,(Q,π2)(C1 + C2)

}
.
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(2) The code C ⊆
(
F
2n
q , dw,(P⊕Q,π)

)
is a (P ⊕ Q, π,w)-code such that

dw,(P⊕Q,π)(C) ≥ d(w,(P,π1)(C1)

or

dw,(P⊕Q,π)(C) = min
{
dw,(Q,π2)(C2), dw,(Q,π2)(C1), dw,(Q,π2)(C1 + C2)

}+ sMw

(here C1 + C2 = {u′ + u′′ : u′ ∈ C1, u′′ ∈ C2
}
).

Proof Let u = (u′, u′ + u′′) and let v = (v′, v′ + v′′) where u′, v′ ∈ C1, u′′, v′′ ∈ C2.
Then

dw,(L,π)(u, v) = ωw,(L,π)(u − v) =
∑

i∈ML
u−v

WL
i (u − v) + Mw

∣
∣ILu−v \ ML

u−v

∣
∣ .

If L = P � Q, then

u′ = v′ u′′ = v′′ u′ + u′′ = v′ + v′′ u′ + u′′ �= v′ + v′′

ILu−v I Qu′′−v′′ I Pu′−v′ ∪ I Qu′−v′ I Pu′−v′ I Pu′−v′ ∪ I Qu′+u′′−v′−v′′
ML

u−v MQ
u′′−v′′ MP

u′−v′ ∪ MQ
u′−v′ MP

u′−v′ MP
u′−v′ ∪ MQ

u′+u′′−v′−v′′ .

Therefore

ωw,(L,π)(u − v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ωw,(Q,π2)
(
u′′ − v′′) if u′ = v′;

ωw,(P,π1)
(
u′ − v′)+ ωw,(Q,π2)

(
u′ − v′) if u′′ = v′′;

ωw,(P,π1)
(
u′ − v′) if u′ + u′′ = v′ + v′′;

ωw,(P,π1)
(
u′ − v′)+ ωw,(Q,π2)

(
u′ + u′′ − v′ − v′′) if u′ + u′′ �= v′ + v′′.

Hence

dw,(L,π)(C) ≥ min
{
dw,(Q,π2)(C2), dw,(P,π1)(C1) + dw,(Q,π2)(C1), dw,(P,π1)(C1) + dw,(Q,π2)(C1 + C2)

}

if there does not exist u′, v′ ∈ C1 and u′′, v′′ ∈ C2 such that u′ + u′′ = v′ + v′′. Otherwise
we have that

dw,(L,π)(C) ≥ min
{
dw,(P,π1)(C1), dw,(Q,π2)(C2)

}
.

If L = P ⊕ Q, then

u′ = v′ u′′ = v′′ u′ + u′′ = v′ + v′′ u′ + u′′ �= v′ + v′′

ILu−v P ∪ I Qu′′−v′′ P ∪ I Qu′−v′ I Pu′−v′ P ∪ I Qu′+u′′−v′−v′′
ML

u−v MQ
u′′−v′′ MQ

u′−v′ MP
u′−v′ MQ

u′+u′′−v′−v′′ .

Therefore

ωw,(L,π)(u − v) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ωw,(Q,π2)

(
u′′ − v′′)+ sMw if u′ = v′;

ωw,(Q,π2)

(
u′ − v′)+ sMw if u′′ = v′′;

ωw,(P,π1)

(
u′ − v′) if u′ + u′′ = v′ + v′′;

ωw,(Q,π2)

(
u′ + u′′ − v′ − v′′)+ sMw if u′ + u′′ �= v′ + v′′.
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Hence

dw,(L,π)(C) = min
{
dw,(Q,π2)(C2), dw,(Q,π2)(C1), dw,(Q,π2)(C1 + C2)

}+ sMw

if there exists no u′, v′ ∈ C1 and u′′, v′′ ∈ C2 such that u′ + u′′ = v′ + v′′. ��
Theorem 4.2 Let C1 be a linear (P, π1, w)-code and C2 be a linear (Q, π2, w)-code. Then

(1) The code C is a linear (P � Q, π,w)-code satisfies ρ̃(C) ≤ ρ̃(C1) + ρ̃(C2).
(2) The code C is a linear (P ⊕ Q, π,w)-code satisfies ρ̃(C) ≤ ρ̃(C2) + sMw .

Proof Let v = (v′, v′′) ∈ F
2n
q where v′, v′′ ∈ F

n
q . Then v′ = α′ + a′ and v′′ = β ′ + b′

where a′, b′ ∈ C1, α′, β ′ are two coset leaders in the corresponding cosets of C1. Then

v = (v′, v′′) = (α′ + a′,β ′ + b′) = (α′ + a′,β ′ + a′ + (b′ − a′)) .

Assume that β ′ + (b′ − a′) = γ ′′ + c′′ where c′′ ∈ C2 and γ ′′ is a coset leader in the
corresponding coset of C2. Then

v = (α′ + a′, γ ′′ + a′ + c′′
) = (α′, γ ′′)+ (a′, a′ + c′′

)
.

Denote by c = (a′, a′ + c′′
) ∈ C and u = (α′, γ ′′), we have

dw,(L,π)(v, c) = ωw,(L,π)(v − c) = ωw,(L,π)(u).

If L = P � Q, then

ωw,(L,π)(u) = ωw,(P,π1)

(
α′)+ ωw,(Q,π2)

(
γ ′′) ≤ ρ̃(C1) + ρ̃(C2).

If L = P ⊕ Q, then

ωw,(L,π)(u) = ωw,(P,π1)

(
α′)+ ωw,(Q,π2)

(
γ ′′) ≤ sMw + ρ̃(C2).

The result then follows. ��
Remark 4.2 Suppose that w is Lee weight over Zm and all blocks have dimension one. Then
weighted poset block metric becomes pomset metric. Theorem 4.2 implies that

(a) ρ̃(C) ≤ ρ̃(C1) + ρ̃(C2) if L = P � Q.
(b) ρ̃(C) ≤ ρ̃(C2) + s

⌊m
2

⌋
if L = P ⊕ Q.

Which has appeared in [22].

4.3 Construction 3

Let L be a poset with underling set [s] and let π be a labeling map of the poset L such that
s∑

i=1
π(i) = n. Let C ⊆

(
F
n
q , dw,(L,π)

)
be a (L, π,w)-code over Fq .

The extended code Ĉ of C is defined as:

Ĉ = {(u, us+1
) : u ∈ C, us+1 ∈ Fq with u11 + · · · + u1π(1) + · · · + us1 + · · · + usπ(s) + us+1 = 0

}
.

Consider the extending poset L+ of L by adding an element s + 1 in L and the labeling
map π+ : [s + 1] → N of L+ such that π+(i) = π(i) for i ≤ s and π+(s + 1) = 1. Denote
by u+ = (u, us+1). Define

WL+
i

(
u+) =
{
WL

i (u) if i ≤ s;
w(us+1) if i = s + 1.
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The following results can be proved in a routine way.

Remark 4.3 The extended code Ĉ ⊆
(
F
n+1
q , dw,(L+,π+)

)
is a (L+, π+, w)-code satisfying

that
dw,(L,π)(C) ≤ dw,(L+,π+)(Ĉ) ≤ dw,(L,π)(C) + Mw.

Theorem 4.3 Let C be a linear (L, π,w)-code over Fq . The covering radius of the(L+, π+, w
)
-code Ĉ satisfies ρ̃(C) ≤ ρ̃(Ĉ) ≤ ρ̃(C) + Mw.

Remark 4.4 (1) Let w be Hamming weight over Fq , π(i) = 1 and let L be an antichain.
Then weighted poset block metric becomes Hamming metric. By Theorem 4.3, we have
ρ̃(C) ≤ ρ̃(Ĉ) ≤ ρ̃(C) + 1, that is, ρ̃(Ĉ) = ρ̃(C) or ρ̃(Ĉ) = ρ̃(C) + 1 which has appeared
in [10].

(2) For the case of pomset metric, Theorem 4.3 reduces to ρ̃(C) ≤ ρ̃(Ĉ) ≤ ρ̃(C) + ⌊m2
⌋

which has been appeared in [22].

4.4 Construction 4

Let L be a poset with underlying set [s] and let π be a labeling map of the poset L such that
s∑

i=1
π(i) = n. Let T ⊆ [s] be any set of t blocks. Let C be an

[
n, K , dw,(L,π)(C)

]
code over

Fq . Puncturing C on T gives a code over Fq of length n−∑
i∈T

π(i), called the punctured code

of C and denoted by CT .
In this section, we fix T = {i} for some i ∈ [s]. For u = (u1, . . . , us) ∈ F

n
q , define

u∗ = (u1, . . . , ui−1, ui+1, . . . , us).

The punctured code C∗ is given by

C∗ = {u∗ : u ∈ C} .

Considering the puncturing poset L− of L by deleting i from [s] and the labeling map
π− : [s] \ {i} → N of L− such that π−( j) = π( j) for j ∈ [s] \ {i}, we get the following
result.

Proposition 4.3 The punctured code C∗ ⊆
(
F
n−π(i)
q , dw,(L−,π−)

)
is a (L−, π−, w)-code

such that
dw,(L−,π−)(C∗) ≤ dw,(L,π)(C).

Proof Let u∗, v∗ ∈ C∗ whose corresponding vectors are u, v ∈ C respectively. It follows
from the definition of puncturing poset that

i ∈ ML
u−v i ∈ ILu−v \ ML

u−v i /∈ ILu−v

IL
−

u∗−v∗ ILu−v \ {i} ILu−v \ {i} ILu−v

ML−
u∗−v∗ ML

u−v \ {i} ML
u−v ML

u−v .
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Thus

dw,(P−,π−)

(
u∗, v∗) = ωw,(L−,π−)

(
u∗ − v∗) =

∑

j∈ML−
u∗−v∗

WL−
i

(
u∗ − v∗)

+
∣
∣
∣IL

−
u∗−v∗ \ ML−

u∗−v∗
∣
∣
∣Mw

=

⎧
⎪⎪⎨

⎪⎪⎩

ωw,(L,π)(u − v) − WL
i (u − v) if i ∈ ML

u−v;
ωw,(L,π)(u − v) − Mw if i ∈ ILu−v \ ML

u−v;
ωw,(L,π)(u − v) if i /∈ ILu−v .

Hence dw,(L−,π−)(C∗) ≤ dw,(L,π)(C). ��
Remark 4.5 From the above proof, we have that

ωw,(L,π)(u) − Mw ≤ ωw,(L−,π−)(u
∗) ≤ ωw,(L,π)(u)

for any u ∈ F
n
q such that u∗ is the punctured vector of u on i-th block.

Theorem 4.4 Let C be a linear (L, π,w)-code over Fq . The punctured code C∗ of C satisfies
ρ̃(C) − Mw ≤ ρ̃(C∗) ≤ ρ̃(C).

Proof Let v ∈ F
n
q . Then there exist u ∈ C and α ∈ F

n
q a coset leader of C such that v = α+u.

It follows from Remark 4.5 that

dw,(L−,π−)

(
v∗, u∗) = ωw,(L−,π−)

(
v∗ − u∗) ≤ ωw,(L,π)(v − u) = ωw,(L,π)(α) ≤ ρ̃(C).

Since v ∈ F
n
q is arbitrary, we have ρ̃(C∗) ≤ ρ̃(C). On the other hand,

dw,(L−,π−)

(
v∗, u∗) = ωw,(L−,π−)

(
v∗ − u∗) ≥ ωw,(L,π)(v − u) − Mw = ρ̃(C) − Mw.

��
Remark 4.6 (1) For the case of Hamming metric, Theorem 4.4 reduces to ρ̃(C) − 1 ≤

ρ̃(C∗) ≤ ρ̃(C), that is, ρ̃(C∗) = ρ̃(C) − 1 or ρ̃(C∗) = ρ̃(C) which has been appeared in
[10].

(2) For the case of pomsetmetric, Theorem4.4 reduces to ρ̃(C∗) ≤ ρ̃(C), which has appeared
in [22].

4.5 Construction 5

Let P and Q be two posets with underlining sets [s] and [t] respectively. Let π1 : [s] → N

be a labeling map of P such that
∑

i∈[s]
π1(i) = n1 and let π2 : [t] → N be a labeling map of

Q such that
∑

i∈[t]
π2(i) = n2. Suppose thatL = P⊗Q (orL = P�Q). ThenL is a poset with

underlying set [s]× [t] = {(i, j) : i ∈ [s], j ∈ [ j]} and cardinality st . Denote by π1(i) = αi

and π2(i) = βi in the remainder of this section.
Define the direct product of labeling map π1 and π2 as π = π1 ⊗ π2 : [s] × [t] → N

such that
π((i, j)) = αiβ j

for (i, j) ∈ [s] × [t]. Then π is a labeling map of L such that
∑

(i, j)∈L
π((i, j)) = n1n2.
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Let u = (u1, . . . , us) ∈ (Fn1
q , dw,(P,π1)

)
where ui ∈ F

αi
q and v = (v1, . . . , vt ) ∈

(
F
n2
q , dw,(Q,π2)

)
where vi ∈ F

βi
q . Define u ⊗ v as

{
ui jvrl : i ∈ [s], j ∈ [αi ], r ∈ [t], l ∈ [βl ]

} ∈ F
n1n2
q .

We write it in the form of a block matrix as following:

u ⊗ v =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Guv
1,1 Guv

1,2 · · · Guv
1,t

Guv
2,1 Guv

2,2 · · · Guv
2,t

...
...

...

Guv
s,1 Guv

s,2 · · · Guv
s,t

⎤

⎥
⎥
⎥
⎥
⎥
⎦

where Guv
i, j is an αi × β j matrix for i ∈ [s] and j ∈ [t], that is:

Guv
i, j =

⎡

⎢
⎢
⎢
⎢
⎣

ui1v j1 ui1v j2 · · · ui1v jβ j

ui2v j1 ui2v j2 · · · ui2v jβ j

...
...

...

uiαi v j1 uiαi v j2 · · · uiαi v jβ j

⎤

⎥
⎥
⎥
⎥
⎦

.

Now we have given a partition of u ⊗ v whose (i, j)-th block is Guv
i, j corresponding to

the element (i, j) of the poset L. Set
W uv

i j = max
{
w(uiςv jμ) : 1 ≤ ς ≤ αi , 1 ≤ μ ≤ β j

}
.

For any u ∈ F
n1n2
q with st blocks, the (L, π,w)-weight of u is

ωw,(L,π)(u) =
∑

(i, j)∈ML
u

W u⊗1
i j +

∑

(i, j)∈ILu \ML
u

Mw =
∑

(i, j)∈ML
u

W u⊗1
i j +∣∣(i, j) ∈ ILu \ ML

u

∣
∣Mw.

Let C1 ⊆ (Fn1
q , dw,(P,π1)

)
be a (P, π1, w)-code and let C2 ⊆ (Fn2

q , dw,(Q,π2)

)
be a

(Q, π2, w)-code. The tensor product of C1 and C2, denoted by C = C1
⊗

C2, is given by

C1

⊗
C2 = {u ⊗ v : u ∈ C1, v ∈ C2} .

Proposition 4.4 Let C1 be a linear (P, π1, w)-code and let C2 be a linear (Q, π2, w)-code.
Let L = P ⊗ Q and let π = π1 ⊗ π2. Then the following results hold:

(1) Suppose that P is a chain with order relation 1 < 2 < · · · < s and Q is an antichain.
Then

d(Q,π2)(C2)
(
d(P,π1)(C1) − 1

)
Mw + dw,(Q,π2)(C2) ≤ dw,(L,π)(C) ≤ d(P,π1)(C1)d(Q,π2)(C2)Mw.

(2) Suppose that P and Q are both antichains. Then

d(P,π1)(C1)d(Q,π2)(C2)mw ≤ dw,(L,π)(C) ≤ d(P,π1)(C1)d(Q,π2)(C2)Mw.

(3) Suppose that P is a chain with order relation 1 < 2 < · · · < s and Q is a chain with
order relation 1 < 2 < · · · < t . Then
(
d(P,π1)(C1)d(Q,π2)(C2) − 1

)
Mw + mw ≤ dw,(L,π)(C) ≤ d(P,π1)(C1)d(Q,π2)(C2)Mw.

Proof Let u ⊗ v ∈ C.
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(1) If P is a chain and Q is an antichain, then (i, j) ≤ (i ′, j ′) ∈ L if and only if i ≤ i ′ and
j = j ′. Assume that d(P,π1)(u) = λ and I Qv = {η1, η2, . . . , ηr }. Then

u ⊗ v =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

O · · · Guv
1,η1

· · · Guv
1,η2

· · · Guv
1,ηr

· · · O
O · · · Guv

2,η1
· · · Guv

2,η2
· · · Guv

2,ηr
· · · O

...
...

...
...

...

O · · · Guv
λ,η1

· · · Guv
λ,η2

· · · Guv
λ,ηr

· · · O
O · · · O · · · O · · · O · · · O
...

...
...

...
...

O · · · O · · · O · · · O · · · O

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

satisfies Guv
λ,ηl

�= O for 1 ≤ l ≤ r is an αλ × βηl matrix. Then

ωw,(L,π)(u ⊗ v) =
∑

(i, j)=(λ,ηl ),
1≤l≤r

W uv
i j + (λ − 1)ηr Mw

=
∑

(i, j)=(λ,ηl ),
1≤l≤r

W uv
i j + (d(P,π1)(u) − 1

)
d(Q,π2)(v)Mw.

Note that

ωw,(Q,π2)(v) =
∑

j=ηl ,1≤l≤r

W Q
j (v) =

∑

j=ηl ,1≤l≤r

max
{
w(v jμ) : 1 ≤ μ ≤ β j

}
.

Therefore
∑

(i, j)=(λ,ηl ),
1≤l≤r

W uv
i j =

∑

(i, j)=(λ,ηl ),
1≤l≤r

max
{
w(uiςv jμ) : 1 ≤ ς ≤ αi , 1 ≤ μ ≤ β j

}

=
∑

j=ηl ,1≤l≤r

max
{
w(uλςv jμ) : 1 ≤ ς ≤ αλ, 1 ≤ μ ≤ β j

}

≥
∑

j=ηl ,1≤l≤r

max
{
w(uλςv jμ) : 1 ≤ μ ≤ β j

}

= ωw,(Q,π2)(uλςv).

Therefore

dw,(L,π)(C) ≥ d(Q,π2)(C2)
(
d(P,π1)(C1) − 1

)
Mw + dw,(Q,π2)(C2).

On the other hand, let u ∈ C1 such that d(P,π1)(u) = λ = d(P,π1)(C1) and let v ∈ C2

such that d(Q,π2)(v) = r = d(Q,π2)(C2). From above discussion, we conclude that

ωw,(L,π)(u ⊗ v) ≤ λrMw.

The result then follows.
(2) If P and Q are antichains, then L is an antichain. Therefore

ωw,(L,π)(u ⊗ v) =
∑

(i, j)∈ILu⊗v

W uv
i j .

The result immediately follows.
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(3) If P and Q are both chains, then (i, j) ≤ (i ′, j ′) ∈ L if and only if i ≤ i ′ and j ≤ j ′.
Assume that d(P,π1)(u) = λ and d(Q,π2)(v) = δ. Then

u ⊗ v =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Guv
1,1 · · · Guv

1,δ O · · · O
...

...
...

...

Guv
λ,1 · · · Guv

λ,δ O · · · O

O · · · O O · · · O
...

...
...

...

O · · · O O · · · O

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

satisfies Guv
λ,δ �= O is an αλ × βδ matrix. Then

ωw,(L,π)(u ⊗ v) = W uv
λδ + (λδ − 1)Mw.

Hence
(λδ − 1)Mw + mw ≤ ωw,(L,π)(u ⊗ v) ≤ λδMw.

The result then follows.

��
Remark 4.7 The case for Q being a chain and P being an antichain is symmetric with the
case P being a chain and Q being an antichain.

Remark 4.8 Let P and Q be two chains and let π1 and π2 be labeling maps of P and Q
respectively. When π1(i) = 1 for all i ∈ [s] and π2( j) = 1 for all j ∈ [t], we have that

dw,(L,π)(C) = (d(P,π1)(C1)d(Q,π2)(C2) − 1
)
Mw + mw

= (dw,(P,π1)(C1) − mw

)
d(Q,π2)(C2) + dw,(Q,π2)(C2)

= (dw,(Q,π2)(C2) − mw

)
d(P,π1)(C1) + dw,(P,π1)(C1).

The following corollary, which has been shown in [22], is a special case of Proposition
4.4 .

Corollary 4.1 Let C1 be a linear (P, π1, w)-code and let C2 be a linear (Q, π2, w)-code.
Let L = P ⊗ Q and let π = π1 ⊗π2. For w being the Lee weight over Zm where m is prime
(that is, Zm is a field) and πi is trivial, the following results hold:

(1) If P and Q are antichains, then

d(P,π1)(C1)d(Q,π2)(C2) ≤ dw,(L,π)(C) ≤ d(P,π1)(C1)d(Q,π2)(C2)
⌊m

2

⌋
.

(2) If P is a chain and Q is an antichain, then

d(Q,π2)(C2)
(
d(P,π1)(C1) − 1

) ⌊m

2

⌋
dw,(Q,π2)(C2) ≤ dw,(L,π)(C) ≤ d(P,π1)(C1)d(Q,π2)(C2)

⌊m

2

⌋
.

(3) If P and Q are two chains, then

dw,(L,π)(C) = (dw,(P,π1)(C1) − 1
)
d(Q,π2)(C2) + dw,(Q,π2)(C2)

= (dw,(Q,π2)(C2) − 1
)
d(P,π1)(C1) + dw,(P,π1)(C1).
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Proposition 4.5 Let C1 be a linear (P, π1, w)-code and let C2 be a linear (Q, π2, w)-code.
Let L = P�Q and let π = π1 ⊗ π2. Then the following results hold:

(1) Suppose that P is a chain such that 1 < 2 < · · · < s and Q is an antichain. Then
(
d(P,π1)(C1) − 1

)
tMw + dw,(Q,π2)(C2) ≤ dw,(L,π)(C) ≤ (d(P,π1)(C1) − 1

)

tMw + d(Q,π2)(C2)Mw.

(2) Suppose that P is a chain with order relation 1 < 2 < · · · < s and Q is a chain with
order relation 1 < 2 < · · · < t . Then

mw + (d(P,π1)(C1) − 1
)
tMw + (d(Q,π2)(C2) − 1

)
Mw ≤ dw,(L,π)(C)

≤ (d(P,π1)(C1) − 1
)
tMw + d(Q,π2)(C2)Mw.

(3) Suppose that P and Q are both antichains. Then

d(P,π1)(C1)d(Q,π2)(C2)mw ≤ dw,(L,π)(C) ≤ d(P,π1)(C1)d(Q,π2)(C2)Mw.

(4) Suppose that Q is a chain such that 1 < 2 < · · · < t and P is an antichain. Then

dw,(P,π1)(C1)+ d(P,π1)(C1)
(
d(Q,π2)(C2) − 1

)
Mw ≤ dw,(L,π)(C)

≤ d(P,π1)(C1)d(Q,π2)(C2)Mw.

Proof (3) and (4) are straightforward from Proposition 4.4. Let u ⊗ v ∈ C.
(1) If P is a chain and Q is an antichain, then (i, j) ≤ (i ′, j ′) ∈ L if and only if i < i ′ or

(i, j) = (i ′, j ′). Suppose that d(P,π1)(u) = λ and I Qv = {η1, η2, . . . , ηr }. The similar
discussion as Proposition 4.4, we have

ωw,(L,π)(u ⊗ v) =
∑

(i, j)=(λ,ηl ),
1≤l≤r

W uv
i j + (λ − 1)tMw

=
∑

(i, j)=(λ,ηl ),
1≤l≤r

W uv
i j + (d(P,π1)(u) − 1

)
tMw

≥ dw,(Q,π2)(C2) + (d(P,π1)(C1) − 1
)
tMw.

(2) Suppose that P and Q are chains. Then L is a chain such that (i, j) ≤ (i ′, j ′) if and
only if i < i ′ or i = i ′ and j ≤ j ′. Assume that d(P,π1)(u) = λ and d(Q,π2)(v) = δ.
Considering the matrix (1) in the proof of Proposition 4.4 (3), we have

ωw,(L,π)(u ⊗ v) = W uv
λδ + (λ − 1)tMw + (δ − 1)Mw ≥ mw

+ (d(P,π1)(C1) − 1
)
tMw + (d(Q,π2)(C2) − 1

)
Mw.

On the other hand, if λ = d(P,π1)(C1) and δ = d(Q,π2)(C2), we conclude that

ωw,(L,π)(u ⊗ v) ≤ (d(P,π1)(C1) − 1
)
tMw + d(Q,π2)(C2)Mw.

��
Remark 4.9 Let P be a chain with order relation 1 < 2 < · · · < s and let Q be an antichain.
Let π1 and π2 be labeling maps of P and Q respectively. When π1(i) = 1 for all i ∈ [s] and
π2( j) = 1 for all j ∈ [t], we have that

dw,(L,π)(C) = (d(P,π1)(C1) − 1
)
tMw + dw,(Q,π2)(C2)

= (dw,(P,π1)(C1) − mw

)
t + dw,(Q,π2)(C2).
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Remark 4.10 Let P be a chain with order relation 1 < · · · < s and let Q be a chain with
order relation 1 < · · · < t . Letπ1, π2 be labelingmaps of P, Q respectively.Whenπ1(i) = 1
for all i ∈ [s] and π2( j) = 1 for all j ∈ [t], we have that

dw,(L,π)(C) = mw + (d(P,π1)(C1) − 1
)
tMw + (d(Q,π2)(C2) − 1

)
Mw

= (dw,(P,π1)(C1) − mw

)
t + dw,(Q,π2)(C2).

Let P be a chain with order relation 1 < · · · < s. Set

D(P,π1)(C1) = max
{
d(P,π)(u) : u ∈ C1

}
.

Similarly D(Q,π2)(C2) can be defined.
Denote by R1 and R2 the covering radius of C1 and C2 respectively when w is taken to

be Hamming weight.

Remark 4.11 Let C1 be a linear (P, π1, w)-code. When P is a chain such that 1 < · · · < s,
we have that

(R1 − 1)Mw < ρ̃(C1) ≤ R1Mw.

Theorem 4.5 Let C1 be a linear (P, π1, w)-code and let C2 be a linear (Q, π2, w)-code.
Suppose that L = P ⊗ Q and let π = π1 ⊗ π2. Then

ρ̃(C) ≥ max {sρ̃(C2), t ρ̃(C1)} .

Moreover,

(1) Suppose that P is a chain with order relation 1 < 2 < · · · < s and Q is an antichain.
Then

(a) ρ̃(C) = stMw if D(P,π1)(C1) < s.
(b) ρ̃(C) ≥ R2(s − 1)Mw + R2mw .
(c) ρ̃(C) ≤ (s − 1)tMw + ρ̃(C2) if D(P,π1)(C1) = s and αs = 1.

(2) Suppose that P and Q are both chains with order relations 1 < 2 < · · · < s and
1 < 2 < · · · < t respectively. Then

(a) ρ̃(C) = stMw if D(P,π1)(C1) < s or D(Q,π2)(C2) < t .
(b) ρ̃(C) ≤ (s − 1)tMw + ρ̃(C2) if D(P,π1)(C1) = s, D(Q,π2)(C2) = t and αs = 1.
(c) ρ̃(C) ≤ (t − 1)sMw + ρ̃(C1) if D(P,π1)(C1) = s, D(Q,π2)(C2) = t and βt = 1.
(d) ρ̃(C) ≤ min{(s − 1)tMw + ρ̃(C2), (t − 1)sMw + ρ̃(C1)} if D(P,π1)(C1) = s,

D(Q,π2)(C2) = t and αs = βt = 1.
(e) ρ̃(C) ≥ max{(sR2 − 1)Mw + mw, (t R1 − 1)Mw + mw}.

Proof Let ζ ∈ Fq satisfies w(ζ ) = Mw. Let h̃ ∈ F
n2
q be a coset leader of C2 satisfing that

ωw,(Q,π2)(h̃) = ρ̃(C2). Take h = (h̃, . . . , h̃)T1×n1
∈ F

n1n2
q . Let u ⊗ v ∈ C. Suppose that

u = (u11, . . . , u1α1 , . . . , us1, . . . , usαs ). Then

u ⊗ v = (u11v, . . . , u1α1v, . . . , us1v, . . . , usαsv)T1×n1

and hence

dw,(L,π)(h, u ⊗ v) = ωw,(L,π)(h, u ⊗ v) ≥
s∑

i=1

ωw,(Q,π2)(h̃ − uiαi v)

≥
s∑

i=1

ωw,(Q,π2)(h̃) = sρ̃(C2).

123



Order

Therefore ρ̃(C) ≥ sρ̃(C2). We can prove ρ̃(C) ≥ t ρ̃(C1) in the same way.

(1) Suppose that P is a chain and Q is an antichain.

• (a): Suppose that D(P,π1)(C1) < s. Then g ∈ C has the form
⎡

⎢
⎢
⎢
⎣

G1,1 · · · G1,t
...

...

Gs−1,1 · · · Gs−1,t

O · · · O

⎤

⎥
⎥
⎥
⎦

(2)

where Gi, j is a αi × β j matrix. Take h ∈ F
n1n2
q of the form

⎡

⎢
⎢
⎢
⎣

H1,1 · · · H1,t
...

...

Hs−1,1 · · · Hs−1,t

Hs,1 · · · Hs,t

⎤

⎥
⎥
⎥
⎦

(3)

where Hs,r is a αs × βr such that ζ is an element of Hs,r for 1 ≤ r ≤ t . Then for
any c ∈ C, we have ωw,(L,π)(h− c) = stMw and hence min

c∈C dw,(L,π)(h, c) = stMw

which implies that ρ̃(C) = stMw.
• (b): Let h ∈ F

n1n2
q have the form (3). Write

[Hs,1 · · · Hs,t ] =

⎡

⎢
⎢
⎣

h11 · · · h1n2
...

...

hαs1 · · · hαsn2

⎤

⎥
⎥
⎦ . (4)

Suppose that h1 = (h11, . . . , h1n2) ∈ F
n2
q such that min

c∈C2
d(Q,π2)(h1, c) = R2. Then

ωw,(L,π)(h − u ⊗ v) ≥ (s − 1)R2Mw + R2mw.

• (c): Suppose that D(P,π1)(C1) = s and αs = 1. Let h ∈ F
n1n2
q .

– If ωw,(L,π)(h) ≤ (s − 1)tMw, then min
c∈C dw,(L,π)(v, c) ≤ (s − 1)tMw since

0 ∈ C.
– If ωw,(L,π)(h) > (s − 1)tMw , then v has the form (3) such that not all Hsr are

O for 1 ≤ r ≤ t . Write

[Hs1 · · · Hst ] = (h1, . . . , hβ1 , . . . , hβ1+···+βt−1+1, . . . , hn2) = hs ∈ F
n2
q .

For hs ∈ F
n2
q , there exists v ∈ C2 such that dw,(Q,π2)(hs, v) ≤ ρ̃(C2). Con-

sidering 0 �= u ⊗ v ∈ C with u = (u1, . . . , uα1 , . . . , uα1+···+αs−1 , 1) ∈ C1,
then

u ⊗ v = (u1v, . . . , uα1v, . . . , uα1+···+αs−1v, v)T .

Therefore
ωw,(L,π)(h − u ⊗ v) ≤ (s − 1)tMw + ρ̃(C2).

To sum up, we conclude that

ρ̃(C) ≤ (s − 1)tMw + ρ̃(C2).

(2) The proof is similar to (1) and hence we omit it.
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Remark 4.12 For the case of pomset metric, Theorem 4.5 reduces to the following:
Let C1 be a linear (P, π1, w)-code and let C2 be a linear (Q, π2, w)-code. Suppose that

L = P ⊗ Q and let π = π1 ⊗ π2.

(1) Suppose that P is a chain with order relation 1 < 2 < · · · < s and Q is an antichain.
Then

(a) ρ̃(C) = st
⌊m
2

⌋
if D(P,π1)(C1) < s.

(b) ρ̃(C) ≥ R2(s − 1)
⌊m
2

⌋+ R2.
(c) ρ̃(C) ≤ (s − 1)t

⌊m
2

⌋+ ρ̃(C2) if D(P,π1)(C1) = s and αs = 1.

(2) Suppose that P and Q are both chains with order relations 1 < 2 < · · · < s and
1 < 2 < · · · < t respectively. Then

(a) ρ̃(C) = st
⌊m
2

⌋
if D(P,π1)(C1) < s or D(Q,π2)(C2) < t .

(b) ρ̃(C) ≤ (s − 1)t
⌊m
2

⌋+ ρ̃(C2) if D(P,π1)(C1) = s, D(Q,π2)(C2) = t and αs = 1.
(c) ρ̃(C) ≤ (t − 1)s

⌊m
2

⌋+ ρ̃(C1) if D(P,π1)(C1) = s, D(Q,π2)(C2) = t and βt = 1.
(d) ρ̃(C) ≤ min{(s − 1)t

⌊m
2

⌋ + ρ̃(C2), (t − 1)s
⌊m
2

⌋ + ρ̃(C1)} if D(P,π1)(C1) = s,
D(Q,π2)(C2) = t and αs = βt = 1.

(e) ρ̃(C) ≥ max{(sR2 − 1)
⌊m
2

⌋+ 1, (t R1 − 1)
⌊m
2

⌋+ 1}.
Part of these results can be seen in [22].

Theorem 4.6 Let C1 be a linear (P, π1, w)-code and let C2 be a linear (Q, π2, w)-code.
Suppose that L = P�Q and π = π1 ⊗ π2. Then

ρ̃(C) ≥ max {sρ̃(C2), t ρ̃(C1)} .

Moreover,

(1) If P is a chain such that 1 < 2 < · · · < s, then

(a) ρ̃(C) = stMw if D(P,π1)(C1) < s.
Especially when Q is a chain, we have ρ̃(C) = stMw if D(P,π1)(C1) < s or
D(Q,π2)(C2) < t .

(b) ρ̃(C) ≤ (s − 1)tMw + ρ̃(C2) if D(P,π1)(C1) = s, D(Q,π2)(C2) = t and αs = 1.
(c) ρ̃(C) ≥ max {(s − 1)tMw + ρ̃(C2), t ρ̃(C1)} .

(2) If P is an antichain and Q is a chain with order relation 1 < 2 < · · · < t , then

(a) ρ̃(C) = stMw if D(Q,π2)(C2) < t .
(b) ρ̃(C) ≤ (t − 1)sMw + ρ̃(C1) if D(Q,π2)(C2) = t and βt = 1.

Proof Let P be a chain and let Q be an antichain. Let h̃ ∈ F
n2
q be a coset leader of C2

satisfing that ωw,(Q,π2)(h̃) = ρ̃(C2). Take h = (h̃, . . . , h̃)T1×n1
. Then dw,(L,π)(h, 0) =

(s − 1)tMw + ρ̃(C2). Let 0 �= u ⊗ v ∈ C. Suppose that ω(P,π1)(u) = λ. Then

dw,(L,π)(h, u ⊗ v) ≥ (s − 1)tMw + ρ̃(C2).

The rest of the proof is on similar lines to Theorem 4.5 and hence we omit it. ��

5 Conclusion

Now we show that our results lead to several previous results.
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(1) When all blocks are trivial and w is taken to be the Lee weight over Fq , the results
coincide with the results under pomset metric as seen in [22].

(2) When w is taken to be the Hamming weight over Fq , our results coincide with the poset
block metric case. In particular, when all block are trivial, the results coincide with the
poset metric case.

(3) In case both conditions occur (all blocks are trivial, w is the Hamming weight and P is
the antichain order), the results coincide with the result under classical Hamming metric
as seen in [10].
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