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Abstract
A vector topology on a vector space over a topological field is a (not necessarily Hausdorff)
topology by which the addition and the scalar multiplication are continuous. We prove that,
if an isomorphism between the lattices of topologies of two vector spaces preserves vector
topologies, then the isomorphism is induced by a translation, a semilinear isomorphism and
the complement map. As a consequence, if such an isomorphism exists, the coefficient fields
are isomorphic as topological fields and these vector spaces have the same dimension. We
also prove a similar rigidity result for an isomorphism between the lattice of vector topologies
which preserves Hausdorff vector topologies. To obtain these results, we construct a Galois
connection between a lattice of vector topologies and a lattice of subspaces and use the
fundamental theorems of affine and projective geometries.
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1 Introduction

1.1 Motivation andMain Results

One of the interesting phenomenon in general topology is that a space we consider may have
many different topologies respecting the structure of the space. To compare two topologies, it
is natural to consider which topology has more open subsets of the space than the other. The
main object of this paper is the lattice of topologies, which is the set �(X) of all topologies
on an arbitrary set X endowed with the partial order by the inclusion order⊂. It is known that
every pair of two elements of this partially ordered set has a unique supremum and a unique
infimum, called lattice structure, and it was already studied by G. Birkhoff [3]. We focus on
lattice isomorphisms between �(X) and �(Y ), and on the group of lattice automorphisms
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denoted by Aut(�(X)), motivated by a question to what extent the lattice structure of �(X)

determines X .
Let us give two basic examples of lattice automorphisms between lattice of topologies. The

first example is the induced map θ∗ : �(X) → �(X) by an arbitrary bijection θ : X → X
defined by

θ∗(T ) = {V ⊂ X | θ−1(V ) ∈ T }, T ∈ �(X).

If the set X is a finite set, the other example is the complement map C : �(X) → �(X)

defined by

C(T ) = {X \U | U ∈ T }, T ∈ �(X).

J. Hartmanis showed in [6], that every lattice automorphism is θ∗ or the composition C ◦ θ∗:

Theorem 1.1 ([6, Theorem 4]) For the lattice of topologies �(X), we have

• if the cardinality |X | of X is 1,2 or infinite, then the group Aut(�(X)) is isomorphic to
the symmetric group of X, and

• if |X | is finite and more than 2, then the group Aut(�(X)) is isomorphic to the direct
product of the symmetric group of X and 2-element group.

Slight modifications of the proof in [6] of the above theorem shows that a lattice isomor-
phism between the lattice of topologies of two possibly different sets must be given by a
bijection and the complement map:

Lemma A (Lemma 3.3) Let X and Y be sets. Suppose that � : �(X) → �(Y ) is a lattice
isomorphism between the lattices of topologies. Then, there exists a unique bijection θ :
X → Y such that

• if |X | is 1, 2 or infinite, then � is equal to θ∗, and
• if |X | is finite and more than 2, then � is equal to θ∗ or C ◦ θ∗.

An easy consequence of this lemma is that the lattice structure of �(X) determines the
cardinality of X (Corollary 3.4).

One of the results of this paper is analogous to the above theorem in the linear algebraic
setting: Let X be a vector space over a topological field K . The dimension dimK X of X
may be infinite. We denote by τK (X), the set of all topologies on X such that X becomes
a topological vector space. This is the set of topologies on X by which the addition and the
scalarmultiplication are continuous.We call an element of τK (X) vector topology (Definition
2.4). Note that the poset τK (X) with the inclusion is also a lattice. In this setting, let X and Y
be two vector spaces over topological fields K and L , respectively, with the dimension of X
more than 1. The main theorem asserts that a lattice isomorphism between �(X) and �(Y )

which preserves the sets of vector topologies is induced by some composition of a semilinear
isomorphism, a translation and C . Here, a semilinear isomorphism is a linear isomorphism
which is allowed to twist the scalar multiplication by a fixed field isomorphism (Definition
2.5).

Theorem A (Theorem 3.1) Let X and Y be vector spaces over K and L, respectively, with
dimK X ≥ 2. Suppose that � : �(X) → �(Y ) is a lattice isomorphism with �(τK (X)) =
τL(Y ). Then, there exist a unique triple (ψ, φ, y0) consisting of an isomorphismψ : K → L
between the topological fields,ψ-semilinear isomorphismφ : X → Y and an element y0 ∈ Y
such that
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• if |X | is infinite, then � = (φ + y0)∗, and
• if |X | is finite, then � = (φ + y0)∗ or � = C ◦ (φ + y0)∗.
TheoremA is reminiscent of the following two classical fundamental theorems of geome-

tries, that is, the fundamental theorem of affine geometry and that of projective geometry.

Theorem 1.2 (The fundamental theorem of affine geometry) Let K , L be fields, X be a vector
space over K with dimK X ≥ 2, and Y be a vector space over L. If a bijection φ : X → Y
sends every two parallel lines of X to parallel lines of Y , then φ is a semiaffine map. Namely,
φ is a composition of semilinear isomorphism and a translation.

Theorem 1.3 (The fundamental theorem of projective geometry) Let K , L be fields, X be
a vector space over K with dimK X ≥ 3, and Y be a vector space over L. Let � be an
isomorphism between lattices of all vector subspaces of X and Y . Then, there exists a field
isomorphism ψ : K → L and ψ-semilinear isomorphism φ : X → Y such that � coincides
with the induced map φ∗ : S �→ φ(S) for all subspaces S of X.

We use the fundamental theorem of affine geometry in our proof of TheoremA. Similarly,
to prove Theorem C stated below, we apply the fundamental theorem of projective geometry.
For these purposes, we connect a lattice of vector topologies and a lattice of subspaces by a
Galois connection S,T (see Definitions 2.10 and 2.11).

Let us discuss two easy consequences of Theorem A. First, we obtain that the distribution
of vector topologies τK (X) in the lattice of topologies �(X) determines the structures of the
coefficient field K and the linear structure of X (Corollary 3.2).
To state the other consequence of TheoremA, we introduce a subgroup of the group of lattice
automorphisms Aut(�(X)) defined by

Aut(�(X), τK (X)) = {� ∈ Aut(�(X)) | �(τK (X)) = τK (X)}.
We denote by 	Lh(X), the group of all semilinear transformations on X whose adjoint field
automorphisms of K are also homeomorphisms of K . Now we can state the next theorem,
implied by Theorem A.

Theorem B (Theorem 3.6) Let X be a vector space over K with dimK X ≥ 2. For the group
Aut(�(X), τK (X)), we have the following:

• if |X | is finite, then Aut(�(X), τK (X)) is isomorphic to (X � 	Lh(X)) × Z/2Z, and
• if |X | is infinite, then Aut(�(X), τK (X)) is isomorphic to X � 	Lh(X),

where the product (x1, φ1) · (x2, φ2) is defined by (x1 + φ1(x2), φ1 ◦ φ2) ∈ X � 	Lh(X).

Next, because the restriction of � in Theorem A to the lattice of vector topologies τK (X)

is a lattice isomorphism between τK (X) and τL(Y ), it is natural to consider whether or not
the same result holds when the assumption is only the existence of a lattice isomorphism
between vector topologies. Although the same result does not hold in general (Example 4.2),
if the lattice isomorphism preserves Hausdorff vector topologies, we can prove a similar
result by using the fundamental theorem of projective geometry. We denote by τ H

K (X) and
τ H
L (Y ), the sets of all Hausdorff vector topologies on X and Y , respectively.

Theorem C (Theorem 4.3) Let K , L be topological fields, and let X and Y be vector spaces
over K and L, respectively, with dimK (X) ≥ 3. If there exists a lattice isomorphism � :
τK (X) → τL(Y ) such that �(τ H

K (X)) = τ H
L (Y ), then fields K and L are algebraically

isomorphic, and the vector spaces X and Y have the same dimension.

We give an example (Example 4.4) to show that the field isomorphism between K and L
in Theorem C is not necessarily continuous.
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1.2 Structure of this Paper

In Section 2, as a preparation, we recall some definitions related to lattices and vector topolo-
gies. Next, we see the fundamental theorems of geometries and construct a Galois connection
between a lattice of vector topologies and a lattice of subspaces. In Section 3, we give a proof
of slightly modified version of the result of J. Hartmanis to prove Theorem A. Then we
prove Theorem A and obtain two applications: one is stating that the distribution of vector
topologies determines its coefficient field and dimension. The other is on the group structure
of lattice automorphisms which preserve vector topologies (Theorem B). In Section 4, we
end the paper by proving Theorem C and giving an example.

2 Preliminaries

2.1 Preliminaries on Lattices

A partially ordered set (abbreviated to poset) (P,≤) is a lattice if every pair of two elements
of P has a supremum (least upper bound) and an infimum (greatest lower bound) with respect
to the order≤. By the antisymmetric law, the supremum and the infimum are unique for each
pair. We denote the supremum and the infimum of x, y ∈ P by x ∨ y and x ∧ y, and they are
called the join and the meet of x, y, respectively.
A lattice (P,≤) is said to be complete if every subset S of P has a supremum and an infimum.
We denote by

∨
S and

∧
S, the supremum and the infimum of S, respectively. In particular,

since S = ∅ ⊂ P has a supremum and an infimum for a complete lattice P, it has a bottom
element and a top element.
A map � between two lattices P and Q is a lattice homomorphism if � preserves their
joins and meets. By definition, the order is characterized by the join or the meet, and thus
every lattice homomorphism is an order preserving map. However, the converse is not true in
general. When a lattice homomorphism � : P → Q has the inverse lattice homomorphism
�−1 : Q → P, the map� is called lattice isomorphism. It is easy to see that a map is a lattice
isomorphism if and only if it is an order preserving bijection and that a lattice isomorphism
between complete lattices P and Q preserves the supremum and the infimum of every subset
of P. Two lattices are isomorphic if there exists a lattice isomorphism between them. A
subset S of a lattice P is a sublattice if S is a lattice and the inclusion map S ↪→ P is a lattice
homomorphism.

Example 2.1 For a vector space, the poset of all vector subspaces with the inclusion order
is a lattice. Here, the join S1 ∨ S2 is S1 + S2, and the meet S1 ∧ S2 is S1 ∩ S2 for subspaces
S1, S2.

Definition 2.2 Let X be a vector space over a field K . We denote by σK (X), the lattice of
K -vector subspaces with the inclusion order ⊂.

2.2 Lattices of Topologies andVector Topologies

In this subsection, we recall the lattice of topologies.
Let X be a non-empty set. We denote by �(X), the poset consisting of all topologies on
X endowed with the order ⊂. In this paper, we treat a topology T ∈ �(X) as a family of
open subsets of X . For a family of topologies {Tλ}λ∈ on X , the intersection

⋂
λ∈ Tλ and

123



Order

topology generated by
⋃

λ∈ Tλ are the infimum and the supremum of the family {Tλ}λ∈,
respectively, where we consider the intersection

⋂
λ∈ Tλ as the discrete topology if  is

empty. Thus, the poset (�(X),⊂) is a complete lattice.
For a map f : X → Y between two sets, we can define induced maps f∗ : �(X) → �(Y )

and f ∗ : �(Y ) → �(X) by

f∗(T ) = {V ⊂ Y | f −1(V ) ∈ T }, T ∈ �(X),

f ∗(T ′) = { f −1(V ) ⊂ X | V ∈ T ′}, T ′ ∈ �(Y ).

Definition 2.3 Let K be a field endowed with a Hausdorff topology. The field K is a topo-
logical field if the three operators of K

• additive operator: K × K � (x, y) �→ x + y ∈ K,
• multiple operator: K × K � (x, y) �→ xy ∈ K,
• inverse operator: K \ {0} � x �→ x−1 ∈ K \ {0}

are continuous, where K ×K and K \{0} are endowed with the product topology and relative
topology of K , respectively.

Here, if we consider a non-Hausdorff topology as a topological field K , the topological
field K only has the trivial indiscrete topology {∅, K }.
Definition 2.4 A vector space X endowed with a (possibly non-Hausdorff) topology over a
topological field K is called topological vector space if the two operators

• additive operator: X × X � (x, y) �→ x + y ∈ X,
• scalar multiple operator: K × X � (α, x) �→ α · x ∈ X

are continuous, where X × X and K × X are endowed with the product topologies. We call
the topology on the topological vector space X vector topology.
We denote by τK (X), the poset of all vector topologies on X with inclusion ⊂ and denote by
τ H
K (X), the subset of τK (X) consisting of Hausdorff vector topologies.

It is known that the set τK (X) is a complete lattice. Thus τK (X) has a top element
(the strongest topology), which we denote by Tmax

X . We show in the next subsection, that
Tmax
X ∈ τ H

K (X). Although τK (X) is a subposet of �(X), the lattice τK (X) is not a sublattice
of �(X) in general. Namely, the meet of τK (X) does not coincide with that of �(X).

2.3 Semilinear Isomorphisms

We recall semilinear isomorphisms in this subsection.

Definition 2.5 Let X and Y be vector spaces over fields K and L, respectively. For a field
isomorphism ψ : K → L, a bijection φ : X → Y is a ψ-semilinear isomorphism if φ

satisfies

φ(x1 + x2) = φ(x1) + φ(x2) for x1, x2 ∈ X , and

φ(α · x) = ψ(α) · φ(x) for α ∈ K , x ∈ X .

We simply call φ a semilinear isomorphism if φ is aψ-semilinear isomorphism for some field
isomorphism ψ .
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If ψ : K → L is a field isomorphism and also a homeomorphism, a ψ-semilinear map
φ : X → Y induces maps between τK (X) and τL (Y ) by restricting φ∗ and φ∗. In the case
when K = L and φ : X → Y is a linear map, the same holds for φ∗ even without the
injectivity of φ. Also, the linear map φ induces a map φ∗ between τL(Y ) and τK (X) even
without the injectivity and the surjectivity of φ. By using this fact, we see that Tmax

X is a
Hausdorff topology, that is, Tmax

X ∈ τ H
K (X). Let x1, x2 be two different elements of X . We

denote by 〈x1 − x2〉, a 1-dimensional subspace generated by x1 − x2 and decompose X into
a direct sum X = X ′ ⊕ 〈x1 − x2〉 for a subspace X ′. We define a map φ : X → K by

φ : X ′ ⊕ 〈x1 − x2〉 � x ′ + α(x1 − x2) �→ α ∈ K .

It is clear that K is itself a Hausdorff topological vector space, and thus a vector topology
on X that is an image of the topology of K by φ∗ has disjoint neighborhoods U and V of
0 and x1 − x2, respectively. Since Tmax

X is the top topology, U and V belong to Tmax
X , and

U + x2, V + x2 are disjoint neighborhoods of x2 and x1 with respect to Tmax
X . Thus, we

obtain:

Proposition 2.6 Tmax
X is a Hausdorff vector topology.

Lastly, we note that a semilinear isomorphism φ preserves the linearly independence.
Thus X and Y have the same dimension if a semilinear isomorphism exists.

2.4 The Fundamental Theorems of Affine and Projective Geometries

The fundamental theorems of affine and projective geometries are stated and generalized in
various ways. In this subsection, we recall one of them needed later.

Recall that two subsets A1, A2 of a vector space X are called parallel lines if there are
two elements x1, x2 ∈ X and one-dimensional subspace l ⊂ X such that A1 = x1 + l and
A2 = x2 + l holds. Then the fundamental theorem of affine geometry is stated as follows:

Theorem 2.7 (The fundamental theorem of affine geometry) Let K and L be fields, and let X
and Y be vector spaces over K and L, respectively, with dimK X ≥ 2. Then, every bijection
φ : X → Y which maps parallel lines of X to those of Y is a semiaffine map.

For a proof of Theorem 2.7, see p. 12 of The fundamental theorem of affine and projective
geometries, preprint arXiv:math/2204.10594v2 (2022) by Sancho de Salas, Juan B. or [7].
Although, the paper [7] treats the case when K = L and X = Y , the proof also works for
Theorem 2.7.

Theorem 2.8 (The fundamental theorem of projective geometry) Let K and L be fields, and
let X and Y be vector spaces over K and L, respectively, with dimK X ≥ 3. Then, every lattice
isomorphism � : σK (X) → σL(Y ) is induced by a ψ-semilinear isomorphism φ : X → Y ,
where ψ : K → L is a field isomorphism.

Remark 2.9 The proof of Theorem 2.8 in [2, pp. 44–50] is still valid for a lattice isomorphism
between the sublattices of σK (X), σL(Y ) consisting of finite-dimensional subspaces; it is also
induced by a semilinear isomorphism between X and Y .
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2.5 Galois Connections

Definition 2.10 Let (X , T ) be a topological vector space. We define a subsetSX (T ) of X by

SX (T ) =
⋂

0∈U∈T
U .

We see that SX (T ) is a vector subspace of X . By definition, 0 belongs to SX (T ). For
two elements x, y from SX (T ) and an open neighborhood U of zero, by the continuity
of the addition at (0, 0) ∈ X × X , there exists an open neighborhood V of zero such that
V + V ⊂ U holds. Since x, y belong to V by definition of SX (T ), the sum x + y belongs
to U . Thus, SX (T ) is closed under the addition. For α ∈ K and x ∈ SX (T ), let U be an
arbitrary neighborhood of zero. By the continuity of scalar multiple at (α, 0) ∈ K × X , there
exists a neighborhood V of zero such that α · V ⊂ U . By definition of SX (T ), the element
x belongs to V , which implies α · x ∈ U . Thus, SX (T ) is closed under the scalar multiple.
Therefore, the subset SX (T ) is a K -vector subspace for any T ∈ τK (X), and SX is a map
from τK (X) to σK (X).

Definition 2.11 Let S be a vector subspace of a vector space X. We define a topology TX (S)

by
TX (S) = {U + S | U ∈ Tmax

X },
where the topology Tmax

X is the top element (the strongest topology) in (τK (X),⊂).

The topology TX (S) coincides with the topology defined by πS
∗ ◦ πS∗(Tmax

X ), and this
is a vector topology, where πS : X → X/S is the natural quotient map. Therefore, TX is a
map from σK (X) to τK (X).

Lemma 2.12 The following (1), (2) and (3) hold true.

(1) The composition SX ◦ TX is the identity map on the lattice σK (X) of subspaces.
(2) For every T ∈ τK (X), we have T ⊂ TX ◦ SX (T ).
(3) For T ∈ τK (X), the subspace SX (T ) is 0-dimensional if and only if T is a Hausdorff

topology.

Proof (1) Let S be a subspace of X . We show that
⋂

0∈V∈Tmax
X

(V + S) =
⋂

0∈U+S, U∈Tmax
X

(U + S) = SX ◦ TX (S).

The second equality follows from definitions of SX and TX . For the first equality,
since 0 belongs to S, the set V + S contains 0 for every 0 ∈ V ∈ Tmax

X , which
implies that

⋂
0∈V∈Tmax

X
(V + S) ⊃ ⋂

0∈U+S, U∈Tmax
X

(U + S). For the other inclusion, let

U + S = ⋃
x∈S U + x (U ∈ Tmax

X ) be an open neighborhood of zero with respect to Tmax
X .

By the continuity of the addition at (0, 0) ∈ X × X , there exists an open neighborhood
V ∈ Tmax

X of zero such that V ⊂ U + S. Since S is a subspace, V + S is also included in
U + S. Therefore, we have

⋂
0∈V∈Tmax

X
(V + S) = SX ◦ TX (S).

By definition,
⋂

0∈V∈Tmax
X

V + S contains S, which implies S ⊂ SX ◦ TX (S). Before we
prove the other inclusion, we show that π∗(Tmax

X ) = Tmax
X/S , where π : X → X/S is the

quotient map. Since π∗ and π∗ send vector topologies to vector topologies, by definition of
the top elements, π∗(Tmax

X ) ⊂ Tmax
X/S and π∗(Tmax

X/S ) ⊂ Tmax
X holds. From the latter inclusion,
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π−1(V ) ∈ Tmax
X holds for every V ∈ Tmax

X/S , which implies that Tmax
X/S ⊂ π∗(Tmax

X ) holds.
Now, assume that we can take a point x from SX ◦ TX (S) \ S. Since (X/S, Tmax

X/S ) is a
Hausdorff space, there are disjoint open neighborhoods V1, V2 ∈ Tmax

X/S = π∗(Tmax
X ) of π(x)

and π(0), respectively. Since Ker π = S, we have π−1(V2) + S = π−1(V2) ∈ Tmax
X , which

implies that the set π−1(V2) is an open neighborhood of zero in TX (S). Thus, x belongs
to SX ◦ TX (S) ⊂ π−1(V2) and π−1(V1). This contradicts that π−1(V1) and π−1(V2) are
disjoint.

(2) We denote by S, the subspace SX (T ). For an open subset V ∈ T , we show that
V + S = V holds. Since S contains zero, V + S ⊃ V is clear. For the other inclusion, we
take v + s, v ∈ V , s ∈ S from V + S. By the continuity of the addition at (v, 0) ∈ X × X
with respect to T , there are two open subsets U1 � v, U2 � 0 such that U1 + U2 ⊂ V . By
definition ofSX (T ), the element s belongs to U2, and thus v + s ∈ V . Since Tmax

X contains
T , the set V = V + S belongs to TX ◦ SX (T ).

(3) Assume that SX (T ) is 0-dimensional. Let x1, x2 be two different elements of X .
Since x1 − x2 �= 0 does not belong toSX (T ), we have an open neighborhoodU of zero with
x1 − x2 /∈ U . By the continuity of the map X × X � (x, x ′) �→ x − x ′ ∈ X , there is an open
neighborhood V ∈ T of zero such that V − V ⊂ U . Then, x1 + V and x2 + V are disjoint
open neighborhoods of x1 and x2, respectively.
Assume that (X , T ) is a Hausdorff space. Then, for every non-zero element x ∈ X , there is
an open neighborhood U of zero with x /∈ U . By definition, U contains SX (T ), and thus
x /∈ SX (T ). ��
Remark 2.13 By definition, SX : τK (X) → σK (X) and TX : σK (X) → τK (X) reverse the
inclusion. Combining with the result of Lemma 2.12, the pair (SX ,TX ) is an antitone Galois
connection.
Here, an antitone Galois connection is a pair ( f , g) of two maps f : P → Q and g : Q → P

between two posets (P,≤P) and (Q,≤Q) such that

• f and g reverse the orders, and
• q ≤Q f (p) if and only if p ≤P g(q) for p ∈ P and q ∈ Q

hold.

3 Lattice of Topologies and Lattice of Vector Topologies

In this section, we prove the following main theorem.

Theorem 3.1 Let K , L be topological fields and X , Y be vector spaces over K and L, respec-
tively, with dimK X ≥ 2. Suppose that � : �(X) → �(Y ) is a lattice isomorphism such
that �(τK (X)) coincides with τL(Y ). Then, there exists a unique triple (ψ, φ, y0) such that

• if the cardinality of X is infinite, then the map � is equal to (φ + y0)∗, and
• if the cardinality of X is finite, then the map � is equal to (φ + y0)∗ or C ◦ (φ + y0)∗,

where ψ : K → L is an isomorphism between topological fields, φ : X → Y is a ψ-
semilinear isomorphism and y0 is an element of Y .

We have the following immediate corollary of Theorem 3.1.

Corollary 3.2 If �(X) is isomorphic to �(Y ) by a lattice isomorphism whose restriction to
τK (X) is a lattice isomorphism between τK (X) and τL(Y ), then two topological fields K , L
are isomorphic, and X , Y are semilinear isomorphic. In particular, the dimension of X over
K and that of Y over L are equal.
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3.1 A Result of J. Hartmanis

In our proof of Theorem 3.1, we need the following lemma, which is essentially due to
J. Hartmanis [6, Theorem 4]. Although the original statement is on the group of lattice
automorphisms of �(X), the proof is valid for the case of lattice isomorphisms between
different sets.

Lemma 3.3 Let X , Y be non-empty sets. Suppose that � : �(X) → �(Y ) is a lattice
isomorphism between the lattices of topologies. Then, there exists a unique bijection θ :
X → Y such that

• if the cardinality of X is one, two or infinite, then the map � is equal to θ∗, and
• if the cardinality of X is finite and bigger than two, then the map � is equal to θ∗ or

C ◦ θ∗.

Since it is clear that a bijection between two sets X and Y induces a lattice isomorphism
between �(X) and �(Y ), we obtain an immediate corollary of Lemma 3.3:

Corollary 3.4 Two lattices �(X) and �(Y ) are isomorphic if and only if X and Y have the
same cardinality.

We present now a proof of Lemma 3.3 according to [6, Theorem 4]. Before starting it, we
recall some notions and their properties. An element a of a lattice L with the bottom element
0 is called an atom if a is not 0 and there are no elements between them. Namely, a is the next
weakest element to 0. Given a set X with |X | ≥ 2, every atom of the lattice of topologies
can be written as

AX (D) = {∅, D, X},
where D is a subset ∅ � D � X . We denote by pX , the set of all atoms of �(X). We
abbreviate AX (D) and pX to A(D) and p, respectively, if the underlying set X is clear. For
a point x ∈ X , we denote atoms A({x}) and A(X \ {x}) by A(x) and A(xc), respectively.
Recall that a complete lattice is said to be atomic if every element can be written as a
supremum of a set of atoms. Now, let T be an arbitrary topology on X . Then, we define a
topology T ′ as a supremum of a set of atoms by

T ′ =
∨

D∈T ,∅�D�X

A(D).

It is clear that every A(D) is weaker than T and that T ′ contains all open subsets of T .
Thus, two topologies T and T ′ coincide. Therefore, the lattice of topologies �(X) is atomic,
including the case when |X | = 1.
When the cardinality of X is more than 2, we decompose p into three disjoint subsets n,m
and l defined by

n = {A(x) | x ∈ X},
m = {A(xc) | x ∈ X},
l = p \ (n ∪ m).

Now, we recall that a function t : p × p → N, called type in [6] is defined by the number of
atoms weaker than or equal to the join p ∨ q for a pair of atoms (p, q). Let p = A(Dp) and
q = A(Dq) be two atoms. Then, the join p ∨ q can be written explicitly as

{∅, Dp ∩ Dq , Dp, Dq , Dp ∪ Dq , X}.
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Thus, the type function takes values at most 4. We see more precisely what values the type
takes with respect to the decomposition p = n � m � l. Let p, q ∈ n be two different atoms,
and let xp, xq ∈ X be two points such that A(xp) = p, A(xq) = q . The join p ∨ q is
{∅, {xp}, {xq}, {xp, xq}, X}, which is stronger than three atoms A(xp), A(xq), A({xp, xq}).
Thus, the type t(p, q) is 3 in this case. By continuing similar arguments, we obtain the
following Table 1.

Moreover, when |X | ≥ 4, for every p = A(D) ∈ l, there is an atom q = A(D′) ∈ l such
that t(p, q) is actually 4 by taking D′ = {x1, x2}, x1 ∈ D, x2 ∈ X \ D.

Proof of Lemma 3.3 Since atoms are characterized by the order, the restriction of the order
preserving isomorphism � to the set of atoms pX induces a bijection between pX and pY .
In particular, pX and pY have the same cardinality. The set of atoms pX is a finite set if
and only if X is finite. Moreover, |pX | is equal to |P(X)| − 2 if X is finite, where P(X)

denotes the set of all subsets of X . Thus, when X is a finite set, Y is also a finite set, and
their cardinalities are equal. In particular, if the cardinality of X is 1, then that of Y is 1. In
this case, the claim of this lemma obviously holds. If |X | is 2, let x1, x2 and y1, y2 be two
points of X and Y , respectively. Then, the sets of atoms of the lattices �(X) and �(Y ) are
pX = {AX (xi ) | i = 1, 2} and pY = {AY (yi ) | i = 1, 2}, respectively. Since the restriction
of � induces a bijection between pX and pY , we can define a bijection θ : X → Y so that
�(AX (xi )) = AY (θ(xi )), which induces the map θ∗ = �. The uniqueness of the map θ is
trivial.

For the rest of this proof, we assume that |X | is more than two. Now, we show that either
�(nX ) = nY , �(mX ) = mY or �(nX ) = mY , �(mX ) = nY holds. Assume that � sends
an element p of nX ∪ mX to lY . Since lY = ∅ when |Y | = 3, this assumption may happen
when |Y | ≥ 4. Therefore, there exists �(q) ∈ lY such that t(�(p),�(q)) = 4. It is clear
that the lattice isomorphism � preserves the type t , and thus t(p, q) is 4, which contradicts
the type t(p, q) is at most 3 for p ∈ nX ∪mX and any q (see Table 1). Therefore, we obtain
�(nX ∪mX ) ⊂ nY ∪mY , and the same argument for�−1 shows that this inclusion is equality.
Next, assume that two distinct elements p, q ∈ nX satisfy �(p) ∈ nY ,�(q) ∈ mY . Then,
the type t(�(p),�(q)) = 2 by Table 1. On the other hands, t(p, q) = 3 since both p, q
belong to nX . This is a contradiction since � preserves the type. Thus either �(nX ) ⊂ nY or
�(nX ) ⊂ mY holds.A similar argument also shows that either�(mX ) ⊂ mY or�(mX ) ⊂ nY
holds. Combining the above three arguments, we conclude that either of the following holds.
(1) �(nX ) = nY and �(mX ) = mY ,

or
(2) �(nX ) = mY and �(mX ) = nY .
First, we consider the case of (1). Since �(nX ) = nY , we can define a bijection θ : X → Y
so that �(A(x)) = A(θ(x)) holds for every x ∈ X . Now let D and D′ be proper subsets
of X and Y , respectively such that �(A(D)) = A(D′) holds. Since the lattice isomorphism
� preserves the inequality A(D) ⊂ ∨

x∈D A(x), we have A(D′) ⊂ ∨
x∈D A(θ(x)). The

supremum
∨

x∈D A(θ(x)) is P(θ(D)) ∪ {Y }, which implies that the subset θ(D) contains
D′. Combining with the same argument for �−1 and θ−1, we obtain D′ = θ(D). Therefore,

Table 1 Values of t(p, q) with
p �= q

p ∈ n p ∈ m p ∈ l

q ∈ n 3 2 2 or 3

q ∈ m 2 3 2 or 3

q ∈ l 2 or 3 2 or 3 2 or 3 or 4
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the two maps � and θ∗ coincide when they are restricted to the atoms pX , which implies
� = θ∗ since �(X) is an atomic lattice.
Next, for the case of (2), the map � sends the topology

∨
nX to

∨
mY . When the cardinality

of Y is infinite, these supremums are
∨

nX = P(X), and
∨

mY = {Y ,∅} ∪ {Y \ F, F : finite},
and thus the case (2) does not happen. When |Y | = |X | is finite, the map C : P(P(Y )) →
P(P(Y )) is a lattice isomorphismwhenwe restrictC to�(Y ). Then,we haveC◦�(nX ) = nY
and C ◦ �(mX ) = mY . Thus, by applying the argument of (1) for the composition C ◦ �,
we obtain the map θ which satisfies the claim of this lemma.

Lastly, we show the uniqueness of θ . Let θ1, θ2 : X → Y be bijections satisfying the
condition of the lemma. By definition, every induced map θ∗ by a bijection θ sends AX (D)

to AY (θ(D)). Thus, we have |D| = |θ(D)|. This implies that θ∗ sends every topology of nX to
that of nY , and the induced map does not coincide withC since |Y | is more than 2. Therefore,
we have θ1∗ = � = θ2∗ or θ1∗ = C ◦ � = θ2∗. Therefore, for every x ∈ X , the equality
A(θ1(x)) = θ1∗(A(x)) = θ2∗(A(x)) = A(θ2(x)) holds, which implies θ1(x) = θ2(x). ��

3.2 Proof of Theorem 3.1 and Corollaries

Proof of Theorem 3.1 By Lemma 3.3, there exists a bijection φ0 : X → Y such that � is φ0∗
or C ◦ φ0∗.

We first consider the case of φ0∗ = �. We set y0 = φ0(0) and φ = φ0 − y0 so that
φ(0) = 0. It suffices to show that φ is induced by a ψ-semilinear map, where ψ : K → L
is an isomorphism between the topological fields. The translation map y �→ y + y0 is a
homeomorphism from (Y , T ) to itself for every T ∈ τL(Y ). Thus, the image of τK (X) by
the induced map φ∗ : �(X) → �(Y ) is τL(Y ).
We show that the image of a subspace S of X by φ is a subspace of Y . By (1) of Lemma 2.12
andDefinition 2.10, the imageφ(S) = φ(SX ◦TX (S)) is the intersection

⋂
0∈U∈TX (S) φ(U ).

Since φ(0) = 0, this set is equal to
⋂

0∈V∈φ∗(TX (S))

V = SY (φ∗(TX (S))),

which implies that φ(S) is a subspace of Y . By the same argument for φ−1, we conclude that
φ induces an isomorphism between the lattices of subspaces σK (X) and σL(Y ).
For an element a of X and a subspace S of X , we show that φ(a + S) ⊂ φ(a) + φ(S) by a
contradiction. Assume that there exists an element x ∈ S such that y = φ(a + x) ∈ φ(a + S)

does not belong to φ(a) + φ(S). Since φ(S) = SY (φ∗(TX (S))) holds and the translation
map y �→ y + φ(a) is a homeomorphism, we have

φ(a) + φ(S) =
⋂

φ(a)∈V∈φ∗(TX (S))

V =
⋂

a∈U∈TX (S)

φ(U ).

Thus, there exists an open neighborhood U ∈ TX (S) of a such that a + x /∈ U . On the
other hand, the open set U is S-invariant, that is, U = U + S holds, which implies that
U is an open neighborhood of a + x , and this is a contradiction. Therefore, we obtain
φ(a + S) ⊂ φ(a) + φ(S). By combining the same argument for φ−1, we conclude that
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φ(a + S) = φ(a) + φ(S) holds for every a ∈ X and S ∈ σK (X). In particular, the bijection
φ sends parallel lines of X to those of Y . By applying the fundamental theorem of affine
geometry (Theorem 2.7) for φ, we deduce that φ : X → Y is a semiaffinemap. Namely, there
exists a field isomorphismψ : K → L , and φ is a composition ofψ-semilinear isomorphism
and a translation. Since we define φ so that φ(0) = 0, the translation is trivial, and φ is a
ψ-semilinear isomorphism.
To see that ψ : K → L is a homeomorphism, we fix a non-zero element x0 ∈ X . Since
φ∗(Tmax

X ) = Tmax
Y , the map φ : (X , Tmax

X ) → (Y , Tmax
Y ) is a homeomorphism. Thus, the

restriction of φ to the subspace 〈x0〉 is a homeomorphism between 〈x0〉 and 〈φ(x0)〉, where
〈x0〉 and 〈φ(x0)〉 are 1-dimensional subspaces generated by x0 and φ(x0), respectively. By
the identifications K � α �→ α · x0 ∈ 〈x0〉 and L � β �→ β · φ(x0) ∈ 〈φ(x0)〉, the subspaces
〈x0〉 and 〈φ(x0)〉 are homeomorphic to K and L , respectively, and the restriction coincides
with ψ . Therefore, the map ψ is an isomorphism between topological fields K and L .

Next, we consider the case when� isC ◦φ0∗, that is,C ◦� is φ0∗. In this case, by Lemma
3.3, this case happens when the cardinality of Y is finite. Thus Y is finite-dimensional, and the
coefficient field L is a finite discrete topological field since we assume that L is a Hausdorff
space. Moreover, since L is a discrete topological field and Y is a finite set, the discrete
topology is the only Hausdorff vector topology on Y .
Now, it is known that if Y admits only one Hausdorff vector topology, the lattice τL(Y ) of
vector topologies is isomorphic to the lattice σL(Y ) of L-subspaces of Y with the reverse
order bySY and TY (see [1, Lemma 2.9]). Thus, for an arbitrary element T of τL(Y ), there
exists a unique subspace S such that T = {U + S | U ∈ Tmax

Y } holds. Moreover, since
Tmax
Y is a discrete topology, T is generated by a base {y + S | y ∈ Y }, which implies that

C(T ) = T . Therefore, the map C preserves the set τL (Y ), and the map �′ : �(X) → �(Y )

defined by C ◦ � also satisfies the condition of �. Namely, �′ : �(X) → �(Y ) is a lattice
isomorphism and �′(τK (X)) = τL(Y ). Thus the same argument in the first part of this
proof for �′ and φ0 shows that there exists the required triple (ψ, φ, y0), which also satisfies
(φ + y0)∗ = �′ = C ◦ �, that is, � = C ◦ (φ + y0)∗.

We complete the proof by showing the uniqueness of the triple (ψ, φ, y0). Let (ψ1, φ1, y1)
and (ψ2, φ2, y2) be two triples satisfying the condition. By the same argument in the last part
of the proof of Lemma 3.3, we have (φ1 + y1) = (φ2 + y2). By substituting 0, we obtain
y1 = y2 and φ1 = φ2. Since ψ1 and ψ2 satisfy ψi (α)φi (x) = φi (α · x), i = 1, 2 for every
α ∈ K , x ∈ X , the equality φ1 = φ2 implies ψ1 = ψ2. ��

By using Theorem 3.1, we study the group of lattice automorphisms which preserves the
lattice of vector topologies. We introduce notations:

Definition 3.5 Let X be a vector space over a topological field K with dimK X ≥ 2. We
denote by Aut(�(X), τK (X)), the subgroup of the group of lattice automorphisms on �(X)

preserving τK (X):

Aut(�(X), τK (X)) = {� ∈ Aut(�(X)) | �(τK (X)) = τK (X)}.
We also denoted by 	Lh(X), the subgroup of the group of semilinear automorphisms on X
defined by

	Lh(X) = {φ : X → X | ψ-semilinear for a homeomorphic isomorphismψ : K → K }.
As a consequence of Theorem 3.1, we obtain the following theorem:
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Theorem 3.6 Let X be a vector space over a topological field with dimK X ≥ 2. If the
cardinality of X is finite, then the groupAut(�(X), τK (X)) is isomorphic to (X�	Lh(X))×
Z/2Z by

F : (X � 	Lh(X)) × Z/2Z � ((x, φ), ε) �→ Cε ◦ (φ + x)∗ ∈ Aut(�(X), τK (X)),

where C0 = id�(X), C1 = C and the group operation of X � 	Lh(X) is defined by
(x1, φ1) · (x2, φ2) = (x1 + φ1(x2), φ1 ◦ φ2).
If the cardinality of X is infinite, then Aut(�(X), τK (X)) is isomorphic to X � 	Lh(X) by

G : X � 	Lh(X) � (x, φ) �→ (φ + x)∗ ∈ Aut(�(X), τK (X)).

Proof Since every element of 	Lh(X) is a ψ-semilinear map for a homeomorphism ψ :
K → K , the restriction φ∗ �τK (X) is a map from τK (X) to itself. Also, translations X � x �→
x + a ∈ X are homeomorphisms with respect to every vector topology. Thus the image of
τK (X) by (φ + x)∗ is again τK (X). Moreover, in the proof of Theorem 3.1, the complement
map C is an identity map on τK (X) when X is a finite set. Thus F(x, φ, ε) and G(x, φ) are
elements of Aut(�(X), τK (X)).
For (x1, φ1), (x2, φ2) ∈ X � 	Lh(X), since φ1 preserves addition, we have

(φ1 + x1)∗ ◦ (φ2 + x2)∗ = {(φ1 + x1) ◦ (φ2 + x2)}∗
= {φ1 ◦ φ2 + x1 + φ1(x2)}∗.

Moreover, if X is a finite set, the inducedmap f∗ : �(X) → �(X) by a bijection f : X → X
commutes with C by the following equalities:

f∗ ◦ C(T ) = f∗({X \U | U ∈ T })
= { f (X \U ) | U ∈ T }
= {X \ f (U ) | U ∈ T }
= C ◦ f∗(T ).

Therefore, F and G are group homomorphisms. Lastly, by Theorem 3.1, we obtain that the
maps F,G are bijections. ��

4 Lattice of Vector Topologies and Hausdorff Vector Topologies

Next, we consider the lattice�1(X) of all T1-topologies on X as an analogy of Corollary 3.2.
Namely, let X , Y be vector spaces over topological fields K , L , respectively. Then is it true
that if there exists an isomorphism � : �1(X) → �1(Y ) between lattices of T1-topologies
such that the image of τK (X) ∩ �1(X) is τL(Y ) ∩ �1(Y ), then K and L are isomorphic, and
X and Y have the same dimension?
In [6, Theorem 5] and [5], it is shown that the group of lattice automorphisms of �1(X) on
an infinite set X is isomorphic to the symmetric group of X . However, the above question is
negatively answered by the following example.

Example 4.1 Let X be the R-vector space R
4 and Y be the C-vector space C

2. It is clear that
R and C are not isomorphic, and X and Y have different dimensions. However, it is known
that T1-vector topologies are Hausdorff and that every finite-dimensional vector space over
a non-trivial complete valued field admits only one Hausdorff vector topology (see [4, §2,
No.3, Theorem 2]). Thus, τK (X) ∩ �1(X) and τL(Y ) ∩ �1(Y ) consist of only one elements:
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the Euclidean topologies. Therefore, any homeomorphism φ between X and Y with respect
to the Euclidean topologies induces the map φ∗ : �1(X) → �1(Y ) such that the image of
τK (X) ∩ �1(X) is τL(Y ) ∩ �1(Y ).

Another question arises from the fact that the restriction of � in Theorem 3.1 to τK (X) is
a lattice isomorphism between τK (X) and τL(Y ). Thus, it is natural to consider whether the
existence of a lattice isomorphism between the lattices of vector topologies implies K ∼= L
and X ∼= Y or not. The following example shows that this is not true in general.

Example 4.2 Let K be the field of real numbers R with the standard absolute value | · | and L
be the field of rational numbersQwith the restriction of | · |. We fix a natural number n. Let X
beR

n and Y beQ
n. It is shown in [1, Theorem 3.3], that the lattice of vector topologies ofQn

is isomorphic to that of Rn, which is also isomorphic to (σR(Rn),⊃). Thus, τK (X) ∼= τL(Y )

does not imply K ∼= L.

However, if we consider an isomorphism between lattices of vector topologies which
preserves Hausdorff vector topologies, we recover algebraic aspects of Corollary 3.2.

Theorem 4.3 Let K and L be topological fields, and let X and Y be vector spaces over K
and L, respectively, with dimK (X) ≥ 3. Suppose that there exists a lattice isomorphism
� : τK (X) → τL(Y ) such that �(τ H

K (X)) = τ H
L (Y ). Then, K is isomorphic to L as fields

(not necessarily as topological fields), and X and Y have the same dimension.

Proof For a non-negative integer d , we denote by σ d
K (X) and σ d

L (Y ), the set of d-dimensional
subspaces of X and Y , respectively. We also denote by σ<∞

K (X) and σ<∞
L (Y ), the sublattice

of σK (X) and σL(Y ) consisting of finite-dimensional subspaces of X and Y , respectively.
By the fundamental theorem of projective geometry (Theorem 2.8) and Remark 2.9, it is
enough to construct a lattice isomorphism between σ<∞

K (X) and σ<∞
L (Y ). We define two

maps F : σK (X) → σL(Y ) and G : σL(Y ) → σK (X) as the following compositions:

F : σK (X)
TX−−→ τK (X)

�−→ τL (Y )
SY−−→ σL(Y ),

G : σL(Y )
TY−→ τL(Y )

�−1−−→ τK (X)
SX−−→ σK (X).

By definition,TX ,TY ,SX ,SY invert the inclusion⊂. Thus, F and G preserve the inclusion
order. By (2) of Lemma 2.12, the topology � ◦ TX (S) is included in TY ◦SY ◦ � ◦ TX (S).
Thus, we have

G ◦ F(S) = SX ◦ �−1 ◦ TY ◦ SY ◦ � ◦ TX (S)

⊂ SX ◦ �−1 ◦ � ◦ TX (S)

= SX ◦ TX (S).

By (1) of Lemma 2.12, we have SX ◦ TX (S) = S, and we obtain G ◦ F(S) ⊂ S. The same
argument shows that F ◦ G(S) ⊂ S holds. Now, we show by induction on the non-negative
integer d , that the restrictions of F and G to σ d

K (X) and σ d
L (Y ) are bijections.

(The base case) For the case of d = 0, the 0-dimensional subspace is mapped to Tmax
X by

TX . Since Tmax
X is the top element, � sends Tmax

X to Tmax
Y , and Hausdorff topology Tmax

Y is
mapped to 0-dimensional subspace of Y by (3) of Lemma 2.12. Thus, the restriction of F to
σ 0
K (X) is a bijection between σ 0

K (X) and σ 0
L(Y ).

We show that the case of d = 1 also holds. First, assume that two different 1-dimensional
subspaces S1, S2 of X are mapped to the same subspace S′ = F(S1) = F(S2). Then,
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G ◦ F(S1) = G ◦ F(S2) is included in S1 ∩ S2 = {0}, which implies that �−1 ◦ TY (S′) is a
Hausdorff topology by (3) of Lemma 2.12. Since � preserves Hausdorff vector topologies,
TY (S′) is also a Hausdorff topology. Thus, by (3) of Lemma 2.12, S′ is 0-dimensional, but
this contradicts that S1 is mapped to a non-Hausdorff topology by � ◦ TX . Hence F �σ 1

K (X)

is an injection, and the same argument shows that G �σ 1
L (Y ) is also an injection. Next, assume

that dimK F(S) ≥ 2 for S ∈ σ 1
K (X). Then, we have two different subspaces S′

1, S
′
2 ∈ σ 1

L(Y )

which are subspaces of F(S). Since G preserves the inclusion and G ◦ F(S) ⊂ S, we
have G(S′

1) and G(S′
2) are subspaces of S. Since � preserves Hausdorff vector topologies,

G(S′
1) and G(S′

2) are not 0-dimensional, and thus they coincide with S. This contradicts that
G �σ 1

L (Y ) is injective. Thus, the restriction of F is a map from σ 1
K (X) to σ 1

L(Y ). Also, the same

argument shows that G �σ 1
L (Y ): σ 1

L(Y ) → σ 1
K (X). This implies that G ◦ F(S) and F ◦G(S′)

is 1-dimensional subspaces of S and S′, respectively for S ∈ σ 1
K (X), S′ ∈ σ 1

L(Y ). Thus,
G ◦ F and F ◦ G are identity maps when they are restricted to 1-dimensional subspaces.

(The inductive step) We assume that the statement holds for d = 0, 1, · · · , d ′ and show
that the case of d ′ + 1(≥ 2) also holds.
First,we note that F andG do not send a (d ′+1)-dimensional subspace to a lower dimensional
subspace. Otherwise, if S ∈ σ d ′+1

K (X) is sent to a subspace whose dimension is lower than
d ′ + 1, we have two different d ′-dimensional subspaces of S. They are sent to the same
subspace F(S) since F preserves the inclusion. This contradicts the induction hypothesis.
Next, we show that F �

σ d′+1
K (X)

is injective. Assume that two different elements S1, S2 ∈
σ d ′+1
K (X) are mapped to the same subspace S′ = F(S1) = F(S2). Then, we take two

different d ′-dimensional subspaces S′
1 and S′

2 of S′ since dimL(S′) ≥ d ′ + 1 holds. Then,
G(S′

1),G(S′
2) are subspaces of G ◦ F(S1) and G ◦ F(S2). Moreover, they are subspaces of

S1 ∩ S2, whose dimension is not greater than d ′. Thus, G(S′
1) and G(S′

2) coincide, which
contradicts the assumption of the induction. Combining with the same argument forG shows
that F �

σ d′+1
K (X)

and G �
σ d′+1
L (Y )

are injective.

Lastly, we show that dimL F(S) is equal to d ′ + 1 for S ∈ σ d ′+1
K (X). We have already

proved that dimL F(S) is not less than d ′ + 1. Thus, we assume that dimL F(S) is greater
than d ′ + 1. Then, we have two different (d ′ + 1)-dimensional subspaces S′

1, S
′
2 of F(S).

They are mapped to subspaces of S by G, and their dimensions are d ′ + 1 since G does not
decrease dimensions. Thus, G(S′

1) and G(S′
2) coincide with S, which is a contradiction since

G �
σ d′+1
L (Y )

is injective. Therefore, F �
σ d′+1
K (X)

is a map from σ d ′+1
K (X) to σ d ′+1

L (Y ), and by

the same argument, we have G �
σ d′+1
L

: σ d ′+1
L (Y ) → σ d ′+1

K (X). Thus, the restriction of F ◦G
and G ◦ F to (d ′ + 1)-dimensional subspaces are identity maps, which shows that the case
of d = d ′ + 1 also holds. ��

We end the paper by giving an example, which shows that the map ψ : K → L in
Theorem 4.3 may not be continuous.

Example 4.4 We fix a prime number p. We denote by Cp, the completion of the algebraic
closure Qp of the field of p-adic numbers Qp. The valuation | · |p of Qp extends to Cp, and
(Cp, |·|p) is a non-trivial complete valued field.Now, let K beCp and L be the complex fieldC

with the standard absolute value. Let X , Y be 3-dimensional vector spaces defined by K 3, L3,
respectively. It is known that the lattice of vector topologies on a finite-dimensional vector
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space over a non-trivial complete valued field is isomorphic to the lattice of its subspaces
(See [1, 8]). Thus, we obtain two isomorphisms:

τK (X) ∼= σK (X), τL(Y ) ∼= σL(Y ).

Moreover, it is known that Cp and C are isomorphic as fields. Thus, the lattices of subspaces
are isomorphic:

σK (X) ∼= σL(Y ).

Therefore, we obtain a lattice isomorphism τK (X) ∼= τL(Y ) denoted by �. It is shown in [4,
§2, No.3, Theorem 2], that two subsets τ H

K (X) and τ H
L (Y ) are one point sets {Tmax

X }, {Tmax
Y }

for non-trivial complete valued fields K , L. Thus, the image of τ H
K (X) by � coincides with

τ H
L (Y ). However, the fields K and L are not homeomorphic by any field isomorphisms since
the sequence {pn}∞n=1 converges in Cp but does not in C.
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