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Abstract
We introduce and characterize various gluing constructions for residuated lattices that inter-
sect on a common subreduct, and which are subalgebras, or appropriate subreducts, of
the resulting structure. Starting from the 1-sum construction (also known as ordinal sum
for residuated structures), where algebras that intersect only in the top element are glued
together, we first consider the gluing on a congruence filter, and then add a lattice ideal
as well. We characterize such constructions in terms of (possibly partial) operators acting
on (possibly partial) residuated structures. As particular examples of gluing constructions,
we obtain the non-commutative version of some rotation constructions, and an interesting
variety of semilinear residuated lattices that are 2-potent. This study also serves as a first
attempt toward the study of amalgamation of non-commutative residuated lattices, by con-
structing an amalgam in the special case where the common subalgebra in the V-formation
is either a special (congruence) filter or the union of a filter and an ideal.

Keywords Residuated lattices · Amalgamation · Gluing · Ordinal sum

1 Introduction and Preliminaries

The first gluing construction in lattice theory is due to Hall and Dilworth [19], who used
it to prove the existence of a modular lattice that cannot be embedded in a complemented
modular lattice. Later on, the same construction was independently used by Wroński in [27]
and Troelstra [26] to study intermediate logics, by constructing Heyting algebras.

The idea in these constructions is to glue together lattices that intersect (up to isomor-
phism) on a sublattice that is a principal ideal of the first and a principal filter of the second.
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In particular, the construction applies to Heyting algebras: bounded lattices that are rela-
tively pseudocomplemented (i.e., for every pair of elements x, y there is a largest element
z with the property that x ∧ z ≤ y). Heyting algebras can also be equivalently defined as
bounded residuated lattices where the monoidal operation coincides with the meet in the
lattice order; in this case x → y is the largest element z such that x ∧ z ≤ y. Residuated
lattices play an important role in the study of algebraic logic, as they constitute the equiv-
alent algebraic semantics (in the sense of Blok-Pigozzi [5]) of substructural logics. These
encompass most interesting nonclassical logics: intuitionistic logic, fuzzy logics, relevance
logics, linear logic, and classical logic as a limit case. Thus, the investigation of the variety
of residuated lattices is a powerful tool in the comparative study of such logics, as explored
in [16]. The multitude of different types of residuated lattices makes the study fairly com-
plicated and at the present moment large classes of residuated lattices lack a structural
description. The study of constructions that allow us to obtain new structures from known
ones is extremely important in improving our understanding of residuated lattices, and as a
result, of substructural logics.

In the present paper we introduce different ways of gluing together residuated lattices,
where by gluing we mean obtaining a new structure from two original ones which intersect
on a common subreduct, and which are subalgebras (or appropriate subreducts) of the result-
ing structure. The starting point of our investigation is the 1-sum construction, often called
ordinal sum in residuated structures, where the algebras intersect only at the top element,
i.e. at a trivial filter. We will consider gluings over an arbitrary (nontrivial) congruence fil-
ter, and then over a lattice ideal as well. Moreover, we generalize these ideas to account for
(possibly) partial algebras. Finally, we characterize the introduced constructions abstractly,
by means of pairs of operators acting on residuated lattices.

These new constructions serve as a first attempt in the study of amalgamation of non-
commutative residuated lattices, by constructing an amalgam in the special case where the
common subalgebra in the V-formation is either a special (congruence) filter or the union
of a filter and an ideal.

As particular examples of gluing constructions, we obtain the non-commutative version
of the generalized rotation construction in [7], and an interesting variety of semilinear resid-
uated lattices that are 2-potent. We use these two cases to illustrate examples of how the
gluing construction can be used to study amalgamation. In the case of the rotation we show
how the construction preserves the amalgamation property (in a sense that will be made
precise), while in the latter case we show and characterize amalgamation failures.

We start by introducing the objects of our study. A residuated lattices is an algebra A =
(A,∨, ∧, ·, \, /, 1) of type (2, 2, 2, 2, 2, 0) such that:

(1) (A,∨,∧) is a lattice;
(2) (A, ·, 1) is a monoid;
(3) \ and / are the left and right division of ·: for all x, y, z ∈ A,

x · y ≤ z ⇔ y ≤ x\z ⇔ x ≤ z/y,

where ≤ is the lattice ordering.

Residuated lattices form a variety, denoted by RL, as residuation can be expressed equation-
ally; see [4]. When the monoidal identity is the top element of the lattice we say that the
residuated lattice is integral or an IRL; we call the corresponding variety IRL. Residuated
lattices with an additional constant 0 are called pointed. Bounded integral residuated lattices
are expansions of residuated lattice with an extra constant 0 that satisfies the identity 0 ≤ x.
The variety of bounded integral residuated lattices is called FLw, referring to the fact that it
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is the equivalent algebraic semantics of the Full Lambek calculus with the structural rule of
weakening (see [16]). As usual, we write xy for x · y.

A residuated lattice is called commutative if the monoidal operation is commutative.
In this case the two divisions coincide, and we write x → y for x\y = y/x. We write
CRL and CIRL, respectively, for the commutative subvarieties of RL and IRL, and refer to
commutative FLw-algebras as FLew-algebras, since commutativity of the monoidal operation
corresponds to the structural rule of exchange.

In a lattice A, a filter is a non-empty subset S that is closed upwards (if x ≤ y and
x ∈ S then also y ∈ S) and is closed under meet (if x, y ∈ S then x ∧ y ∈ S). In a
(bounded) integral residuated lattice A, a congruence filter F is a non-empty upset of A,
closed under products (if x, y ∈ F , then xy ∈ F ) and under conjugates, i.e. if x ∈ F ,
then yx/y, y\xy ∈ F for every y ∈ A. We will denote by Fil(A) the lattice of congruence
filters of A. It is easy to see that a filter F of a (bounded) integral residuated lattice A is
a subalgebra (or 0-free subreduct, if A is bounded) of A, hence it is an integral residuated
lattice.

Filters of residuated lattices are in one-one correspondence to congruences. In particu-
lar, in the integral case the isomorphism between Fil(A) and the congruence lattice of A,
Con(A), is given by the maps:

F �→ θF = {(x, y) ∈ A × A : x\y, y\x ∈ F } = {(x, y) : x/y, y/x ∈ F },
θ �→ Fθ = {x ∈ A : (x, 1) ∈ θ}

for all F ∈ Fil(A), θ ∈ Con(A). In what follows, given a congruence filter F , we will
write [x]F for the equivalence class [x]θF

.

2 Gluing over a Filter

As we mentioned in the introduction, the usual notion of gluing in lattice theory puts
together two lattices that intersect in a filter of the first and an ideal of the second. As we
are interested in integral residuated lattices and we want the components to be subalgebras
of the resulting structure (in particular the common identity element needs to be the top),
this approach needs to be modified. We start by describing the simple case where the ideal
is empty, and the filter is trivial.

2.1 1-Sum

The 1-sum construction in the context of residuated structures was introduced with the name
of ordinal sum by Ferreirim in [11] in the context of hoops. The latter can be defined as
commutative integral divisible (x ∧ y = x(x → y)) residuated lattices but without the
demand that joins exist; we choose to use the naming 1-sum as in [24, 25] to avoid confu-
sion. Indeed it is slightly different than the ordinal sum of two posets/lattices, as it identifies
the top elements of the two structures. The 1-sum construction has played an important role
in the study of BL-algebras and basic hoops [1]. The construction was later extended to inte-
gral residuated lattices, and even generalized to non-integral structures [14]. It is also worth
mentioning that historically, the analogue to the 1-sum has been previously introduced and
studied for semigroups [8].

1-sums represent a seminal example of gluing; unlike the case of hoops, some care is
needed to make sure that joins that were equal to the top still exist in the resulting structure.
The two structures glued together intersect only at their respective top elements. In detail,
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let B and C be integral residuated lattices, where B ∩ C = {1}, and 1 is join irreducible in
B or C has a bottom element. We extend the order of B and C to the set B ∪ C by: b < c

for b ∈ B − {1} and c ∈ C, and extend the operations of B and C by:

xy =
{

y if x ∈ C and y ∈ B \ {1}
x if x ∈ B \ {1} and y ∈ C,

x\y =
{

y if x ∈ C and y ∈ B \ {1}
1 if x ∈ B \ {1} and y ∈ C,

x/y =
{

y if x ∈ C and y ∈ B \ {1}
1 if x ∈ B \ {1} and y ∈ C.

It can be easily verified that the resulting structure B ⊕1 C is a residuated lattice, called
the 1-sum of B and C. The assumption that 1 is join irreducible in B or C has a bottom
element ensures that joins of elements of B, calculated in B ⊕1 C, exist; if these conditions
are not satisfied the resulting structure is merely a residuated meet-semilattice. Note that C
is always a subalgebra of B ⊕1 C and B is a subalgebra except possibly with respect to ∨,
in case that 1 is not join irreducible in B (see [22] for details when 1 is not join-irreducible).
Generalizations of the 1-sum construction to the non-integral case are discussed in [16].

Notice that the 1-sum construction stacks one IRL on top of another one and identi-
fies/glues their top elements; the product between elements of B and C is actually their meet
in the new order.

As it turns out, this is the only choice for defining a residuated monoidal operation when
gluing two residuated lattices together with this particular lattice order, if we want B and C
to be subalgebras of the new structure.

Proposition 2.1 Let B and C be IRLs and assume that D is an IRL with underlying set
B ∪ C, where B ∩ C = {1}, b < c for all b ∈ B − {1} and c ∈ C, C is a subalgebra, and B

is a subalgebra except possibly with respect to ∨. Then D is equal to B ⊕1 C.

Proof Given the assumptions, we only need to verify that for all b ∈ B and c ∈ C, we have
cb = bc = b. We have cb ≤ cb, so c ≤ cb/b. Since cb, b ∈ B we have that cb/b is an
element of B that is greater than some element of C. Therefore, cb/b = 1, hence b ≤ cb.
By integrality we also have cb ≤ b, so cb = b.

2.2 F-Gluings: Compatibility and Uniqueness

By relaxing the assumptions in Proposition 2.1, we will generalize the 1-sum construc-
tion to a more general type of gluing where the intersection of the two algebras may be a
congruence filter different than {1}.

More precisely, given IRLs B and C, let D be some IRL with underlying set B ∪ C,
where F := B ∩ C is a congruence filter of D, b < c < f for all b ∈ B − F , c ∈ C − F

and f ∈ F , C is a subalgebra, and B is a subalgebra except possibly with respect to ∨, in
which case F is assumed to have a bottom element. We say that D is a gluing over F , or an
F -gluing of B and C; see Fig. 1 for the anticipated structure. We will identify conditions
on B, C and F that will allow us to construct D from these constituent parts.

First we describe a compatibility condition between F and B and then we characterize
the structure of the subset B ′ := (B − F) ∪ {1}. Note that B ′ supports a residuated lattice
even when it is not a subalgebra under ∨ as those joins end up being equal to 1.
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Fig. 1 The gluing B ⊕F C of the algebras B and C over F

We say that a congruence filter F of an IRL B is compatible with B if:

(1) every element of F is strictly above every element of B − F .
(2) For all b ∈ B − F the equivalence class [b]F has a maximum and a minimum; we

define
σF (b) = min[b]F , γF (b) = max[b]F

for b ∈ B − F and σF (1) = γF (1) = 1; hence σF and γF are maps on B ′ =
(B − F) ∪ {1}.

(3) σF is absorbing: for all b ∈ B − F , bσF [B − F ] ⊆ σF [B − F ] and σF [B − F ]b ⊆
σF [B − F ].

We also say that (B, F ) form a lower-compatible pair. The following lemma shows that
F -gluings contain compatible pairs and explains that the role of σ and γ is to capture the
multiplications and divisions, respectively, by elements of C that are not in the compatible
pair. More importantly, it shows the uniqueness of the F -gluing.

Lemma 2.2 Given a gluing of IRLs B and C over F , the congruence filter F is compatible
with B. Moreover, for all b ∈ B − F, c ∈ C − F :

cb = bc = σF (b), c\b = b/c = γF (b).

Therefore, the gluing of B and C over F is unique when it exists.

Proof We first show that for all b ∈ B − F the equivalence class [b]F has a minimum. For
all b ∈ B − F and c ∈ C − F , we have cb ≤ cb, so c ≤ cb/b. By integrality we also have
cb ≤ b ∈ B − F , so cb ∈ B − F . Since cb, b ∈ B we have that cb/b is an element of B

that is greater than some element of C. Therefore, cb/b ∈ F . Also, since cb ≤ b, we get
b/cb = 1 ∈ F , hence [b]F = [cb]F . Moreover, given b′ ∈ [b]F , we have b′/b ∈ F , so
c ≤ b′/b, hence bc ≤ b′. Thus, cb (and by symmetry also bc) is the minimum of [b]F , for
all c ∈ C − F ; we denote this minimum by σF (b). Note that since F -congruence classes
are in particular lattice congruence classes, σF is monotone on B − F .

We now show that for all b ∈ B − F the equivalence class [b]F has a maximum. For
any c ∈ C − F , we cannot have c\b ∈ C, as then c′ ≤ c\b for some c′ ∈ C − F , so
c′c ≤ b and c′c ≤ c′ ∈ C − F , so c′c ∈ C − F , which would imply b ∈ F , a contradiction.
So, c\b ∈ B − F , and thus σF (c\b) = c(c\b) ≤ b and so σF (c\b) ≤ σF (b). Also, by
integrality we have b ≤ c\b, so σF (b) ≤ σF (c\b). Therefore, σF (b) = σF (c\b), hence
[b]F = [c\b]F . Also, for every b′ ∈ [b]F , we have cb′ = σF (b′) = σF (b) ≤ b, so
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b′ ≤ c\b. Therefore, for any c ∈ C − F , c\b (and by symmetry b/c) is the maximum of
[b]F ; we denote this element by γF (b).

We now prove the last property of compatibility, i.e., that σF is absorbing: for all b ∈
B − F , bσF [B − F ] ⊆ σF [B − F ] and σF [B − F ]b ⊆ σF [B − F ]. In particular, we show
bσF [B − F ] ⊆ σF [B − F ], as the proof of σF [B − F ]b ⊆ σF [B − F ] is similar. Every
element of bσF [B − F ] is of the form bσF (x) where x ∈ B − F . By the above, for any
c ∈ C − F , bσF (x) = bxc = σF (bx) ∈ σF [B − F ].

Thus we showed that the congruence filter F is compatible with B, and also that σF (b) =
cb = bc and γF (b) = c\b = b/c. It follows that the gluing over F is unique when it
exists.

2.3 Compatible Triples Inside Compatible Pairs

Our aim is to characterize abstractly the individual components of the gluing and later use
them to define a gluing construction. In particular we identify the structure of (B −F)∪{1};
as this set is not closed under divisions, we will need to make use of partially defined
operations.

Definition 2.3 By a partial IRL we understand a partially ordered partial algebra (A,≤) in
the language of residuated lattices, such that:

(1) A is integral: x ≤ 1 for all x ∈ A;
(2) the three axioms of RLs are satisfied whenever they can be applied, in the following

sense:

(a) x∨y is the least common upper bound of x and y whenever it exists, and similarly
x ∧ y is the largest lower bound whenever it exists;

(b) x1 = 1x = 1, and if xy, (xy)z, yz, x(yz) are defined then (xy)z = x(yz);
(c) if xy, z/y, and x\z are defined, then xy ≤ z if and only if x ≤ z/y if and only if

y ≤ x\z.

(3) multiplication is order preserving when defined: a ≤ b and ac, bc defined implies
ac ≤ bc, and likewise for left multiplication.

(4) whenever defined, the division operations are order-preserving in the numerator and
order-reversing in the denominator. That is: x ≤ y and z\x, z\y defined implies z\x ≤
z\y; x ≤ y and y\z, x\z defined implies y\z ≤ x\z; likewise for right division.

For example, given an F -gluing of IRLs B and C, the structure B′, whose domain is
B ′ := (B − F) ∪ {1}, is a partial IRL.

Remark 2.4 We wish to remark that, even though the definition of a partial IRL we are using
is quite general, the constructions we will define in the rest of the paper really involve partial
algebras that are much closer to being lattices: joins will always be defined, and a meet x∧y

will always be defined except if there is no common lower bound of x and y. Moreover,
the partial IRLs considered in our constructions will actually have an underlying structure
of a partial monoid in the stronger sense usually intended in the literature: the products
xy, (xy)z are defined if and only if yz, x(yz) are defined, and in such case (xy)z = x(yz).

We will now characterize abstractly triples of the form (B′, σF , γF ), where we mean that
B ′ := (B − F) ∪ {1}.
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A lower-compatible triple (K, σ, γ ) consists of

(1) a partial IRL K with all operations defined, except for x\y and y/x which are
undefined if and only if σ(x) ≤ y and x �≤ y,

(2) (σ, γ ) is a residuated pair, i.e. σ(x) ≤ y if and only if x ≤ γ (y), such that:

(a) σ is a strong conucleus, i.e, an interior operator such that for x, y �= 1, xσ(y) =
σ(xy) = σ(x)y, and σ(1) = 1.

(b) γ is a closure operator on K, and
(c) xy, yx ≤ σ(x) for all x, y ∈ K, y �= 1.

Lemma 2.5 If F is a compatible congruence filter of an IRL B, then (B′, σF , γF ) is a
lower-compatible triple.

Proof For readability, in this proof we will write σ for σF , γ for γF and θ for θF . It is clear
that B ′ = (B − F) ∪ {1} is closed under multiplication, meet and also under join except
when x∨y ∈ F −{1}; we redefine these joins to be 1 in B′. Since B is an IRL and B ′ inherits
its operations, it can be directly checked that B′ is a partial IRL in the sense of Definition
2.3. With respect to the divisions, we want to show that x\y and y/x are undefined if and
only if σ(x) ≤ y and x �≤ y. Notice that the divisions x\y and y/x are undefined in B ′ iff
they produce elements of F − {1}. From x\y ∈ F − {1} we get that x �≤ y, and moreover
f ≤ x\y for some f ∈ F − {1}. Thus by residuation xf ≤ y. Thus, since xf ∈ [x]F
(because xf ≤ x and f ≤ x\xf ), we have σ(x) = min[x]F ≤ xf ≤ y. Similarly we can
prove that if y/x is not defined in B ′ then again σ(x) ≤ y and x �≤ y. Conversely, suppose
σ(x) ≤ y and x �≤ y. Then x\σ(x) ≤ x\y and since x\σ(x) ∈ F , we get x\y ∈ F .
Moreover, since x �≤ y, we get x\y �= 1.

Note that B ′ is closed under meet as all elements of B−F are below all elements of F and
it is closed under multiplication due to integrality and order preservation of multiplication.
Also, it is closed under joins that do not produce elements of F − {1} and the ones that
do produce such elements are redefined to be 1. The resulting structure is a monoid and a
lattice. Finally, if x\By �∈ F − {1}, then residuation holds as all terms are evaluated in B ′.

We now prove that σ is a strong conucleus. Clearly, σ(x) ≤ x and σ(σ (x)) = σ(x) thus
σ is decreasing and idempotent. We now prove that σ is monotone. Suppose x ≤ y, with
x, y ∈ B ′. Since σ(x) θ x and σ(y) θ y, we have σ(x) ∧ σ(y) θ x ∧ y = x θ σ(x).
Thus σ(x) ≤ σ(x) ∧ σ(y) (since σ(x) is the smallest element in the equivalence class),
thus σ(x) ≤ σ(y). We will now use the absorbing property of σ in order to show that it is a
strong conucleus. We show that xσ(y) = σ(xy) = σ(x)y for x and y not equal to 1. Now,
xσ(y) ∈ xσ [B − F ] ⊆ σ [B − F ], thus xσ(y) = σ(z) for some z ∈ B − F . But then since
σ is idempotent σ(xσ(y)) = σ(σ (z)) = σ(z) = xσ(y). Since σ is decreasing and order
preserving, we get xσ(y) = σ(xσ(y)) ≤ σ(xy). Moreover, since x θ x and y θ σ(y), we
get xy θ xσ(y), thus σ(xy) = σ(xσ(y)) ≤ xσ(y), and this shows that σ(xy) = xσ(y).
Similarly, using σ [B − F ]x ⊆ σ [B − F ], we can show that σ(y)x = σ(xy).

We now prove that γ is a closure operator. Since γ (x) = max[x]F , it is easy to see
that it is increasing and idempotent. To show that γ is monotone, suppose x ≤ y, with
x, y ∈ B−F . Since γ (x) θ x and γ (y) θ y, we have γ (x)∨γ (y) θ x∨y = y θ γ (y). Thus
γ (x) ∨ γ (y) ≤ γ (y) (since γ (y) is the biggest in the equivalence class), thus γ (x) ≤ γ (y).

We now show that (σ, γ ) is a residuated pair. If σ(x) ≤ y then by idempotency and
monotonicity of σ we get that σ(x) = σσ(x) ≤ σ(y). Then γ (σ (x)) ≤ γ (σ (y)), and
considering that it follows from their definition that γ ◦ σ = γ , we have x ≤ γ (x) ≤ γ (y).
Similarly, if x ≤ γ (y) then γ (x) ≤ γ (y), thus applying σ we get that σ(x) ≤ σ(y) ≤ y.
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It is only left to prove that xy, yx ≤ σ(x) for all x, y ∈ B ′, y �= 1. This easily follows
from residuation, since for instance: xy ≤ σ(x) if and only if y ≤ x\σ(x), which holds
since x\σ(x) ∈ F .

We say that (B′, σF , γF ) is the compatible triple of the compatible pair (B, F ). We can
also show that every compatible triple comes from a compatible pair.

Lemma 2.6 Every lower-compatible triple (K, σ, γ ) is the compatible triple of the lower-
compatible pair (B,G), where G is the 2-element IRL and B is an IRL with operations
extending (K − {1}) ∪ G.

Proof Let B = (K −{1})∪G where G = {f, 1}. We extend the operations of K to B except
when x ∨ y = 1 in K , in which case we redefine x ∨B y = f ; moreover we stipulate that:

• f is an idempotent coatom strictly above all elements of K − {1};
• f · x = x · f = σ(x), f \x = x/f = γ (x), x\f = f/x = 1 for all x ∈ K − {1}.
• x\y = y/x = f for x, y ∈ B such that x �≤ y and σ(x) ≤ y (i.e., when x\Ky, y/Kx

are undefined).

We first show that B is a residuated lattice. It can be easily seen that (B,∧,∨, 1) is a
lattice with top 1. In order to see that (B, ·, 1) is a monoid, we need to prove associativity
of the product in triples of elements where f is involved, as in the other cases associativity
follows from the associativity in K. We will make use of the absorption of σ . For example,
if b, d ∈ K − {1} (the other cases are similar):

b(df ) = bσ(d) = σ(bd) = (bd)f,

b(f d) = bσ(d) = σ(bd) = σ(b)d = (bf )d.

For residuation, notice first that if one among x, y, z is 1 then the law clearly holds. First
we check the cases where f is involved. For b, d ∈ K − {1}, we show that:

bf ≤ d iff f ≤ b\d iff b ≤ d/f .

Indeed, bf ≤ d iff σ(b) ≤ d iff [b ≤ d or (b �≤ d and σ(b) ≤ d)] iff (b\d = 1 or b\d = f )
iff f ≤ b\d . Moreover, bf ≤ d iff σ(b) ≤ d iff b ≤ γ (d) iff b ≤ d/f , where we used that
(σ, γ ) is a residuated pair. Likewise we obtain f b ≤ d iff b ≤ f \d iff f ≤ d/b. Also,

bd ≤ f iff d ≤ b\f iff b ≤ f/d

holds as all these statements are true even for b = f and d ∈ K − {1} and also for d = f

and b ∈ K − {1}. Moreover, ff ≤ b iff f ≤ b/f iff f ≤ f \b since all inequalities are
false. Now for x, y, z ∈ K − {1}, we want to show that

xy ≤ z iff y ≤ x\z iff x ≤ z/y.

We show that xy ≤ z iff y ≤ x\z, as the other equivalence is obtained similarly. We
consider three different cases.

• If x ≤ z, then both inequalities are true, since we get xy ≤ x ≤ z and x\z = 1 thus
y ≤ x\z.

• If x �≤ z, and σ(x) ≤ z, we have to show that xy ≤ z iff y ≤ f . Notice that y ≤ f

since y �= 1. Moreover, since y �= 1 then xy ≤ σ(x) ≤ z.
• If σ(x) �≤ z, then the operations are defined in K and residuation holds.

Thus B is an integral residuated lattice.
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We want to show that (B, G) is a compatible pair. G is closed under products since f

is idempotent and it is closed under conjugates since (x · f )/x = σ(x)/x ∈ {f, 1} and
x\(f · x) = x\σ(x) ∈ {f, 1}; so G is a congruence filter of B.

We now show that σ(x) = min[x]G = σG(x) and γ (x) = max[x]G = γG(x) for all
x ∈ K − {1}. Note that σ(x) ≤ x implies σ(x)\x = 1 ∈ G; also x\σ(x) is either 1 or f ,
thus still in G. Therefore, σ(x) ∈ [x]G. Furthermore, if y ∈ [x]G, then x\y ∈ G, thus either
x\y = 1 or x\y = f . If x\y = 1 then σ(x) ≤ x ≤ y, while if x\y = f , then xf ≤ y, so
σ(x) ≤ y. Thus in any case σ(x) ≤ y, which implies that σ(x) = min[x]G = σG(x).

We now prove that γ (x) = γG(x) for all x ∈ K − {1}. Note that x ≤ γ (x) implies
x\γ (x) = 1 ∈ G; also γ (x)\x is either 1 if x = γ (x) or f otherwise, since σ(γ (x)) ≤ x

follows from the fact that σ, γ form a residuated pair. Therefore, γ (x) ∈ [x]G. Now, if
y ∈ [x]G, then y\x ∈ G, thus either y\x = 1 or y\x = f . If y\x = 1 then y ≤ x ≤ γ (x),
while if y\x = f , then yf ≤ x, so σ(y) ≤ x, if and only if y ≤ γ (x). Thus γ (x) =
max[x]G = γG(x).

To prove that σ is absorbing, we use the fact that σ is a strong conucleus. For any x

and y ∈ B − G, we have xσ(y) = σ(xy) ∈ σ [B − G], so xσ [B − G] ⊆ σ [B − G] and
similarly σ [B − G]x ⊆ σ [B − G]. Thus we proved that (B, G) is a compatible pair, and
since σ = σG, γ = γG, and K = (B − F) ∪ {1}, it follows that (K, σ, γ ) is its compatible
triple.

If 2 denotes the two-element residuated lattice, we have also shown the following.

Corollary 2.7 If (B, F ) is a lower-compatible pair, then so is (BF , 2), where BF = (B −
F) ∪ 2.

We say that an IRL F fits with a lower-compatible triple (K, σ, γ ), if (K−{1})∪F extends
to an IRL B, F is a compatible filter of B, and the compatible triple of the compatible pair
(B, F ) is (K, σ, γ ). Note that if (B, F ) is a compatible pair, then F fits with the compatible
triple (B′, σF , γF ), but Corollary 2.7 shows that the same B′ can belong to different lower-
compatible triples.

2.4 Fitting the Components Together: The Construction

Now, we define the F -gluing construction given the individual pieces we have identified,
provided that they fit together in a suitable way.

Consider a lower-compatible pair (B, F ), and an IRL C such that B ∩ C = F , with F

strictly above all other elements in C and such that if there are elements in B − F joining
to some element of F then C has a least element 0C . We will show that there is an IRL that
is the (unique) gluing of B and C over F and that it is the following structure:

B ⊕F C = (B ∪ C, ·F , \F , /F ,∧F , ∨F , 0, 1),

where the operations are defined as follows:

x ·F y =
⎧⎨
⎩

x · y if x, y ∈ B, or x, y ∈ C

σF (x) if y ∈ C − F, x ∈ B − F

σF (y) if x ∈ C − F, y ∈ B − F

x\F y =
⎧⎨
⎩

x\y if x, y ∈ B, or x, y ∈ C

γF (y) if x ∈ C − F, y ∈ B − F

1 if x ∈ B − F, y ∈ C − F

631



Order (2023) 40:623–664

x/F y =
⎧⎨
⎩

x/y if x, y ∈ B, or x, y ∈ C

γF (x) if y ∈ C − F, x ∈ B − F

1 if x ∈ C − F, y ∈ B − F

x ∧F y =
⎧⎨
⎩

x ∧ y if x, y ∈ B, or x, y ∈ C

x if x ∈ B − F, y ∈ C − F

y if y ∈ B − F, x ∈ C − F

x ∨F y =

⎧⎪⎪⎨
⎪⎪⎩

x ∨ y if x, y ∈ C, or x, y ∈ B with x ∨ y �∈ F

0C if x, y ∈ B − F, x ∨ y ∈ F

y if x ∈ B − F, y ∈ C − F

x if y ∈ B − F, x ∈ C − F

The proof of the following theorem is postponed until the next section where we further
expand the construction. More precisely, it will be a direct consequence of Theorem 3.10.

Theorem 2.8 If F is a congruence filter of an IRL C and also a compatible congruence
filter of an IRL B, then B ⊕F C is the gluing of B and C over F .

2.5 Gluing without the Filter

We now obtain a different construction, that generalizes the 1-sum construction in a different
way: it glues together two structures that intersect at the top 1 and maintains the same order
relation, but some of the divisions are redefined. With respect to the previous construction,
the intuition here is that we are removing the filter F (keeping the unit 1), and what is left
is a partial IRL.

We start from a lower compatible triple (K, σ, γ ) and a partial IRL L where some of the
divisions might not be defined. In particular, x\y is undefined if and only if all elements z

in the interval [y, 1) = {z ∈ L : y ≤ z < 1} are such that xz ≤ y but [y, 1) does not have a
top element. Similarly, y/x is undefined if and only if all elements z the interval [y, 1) are
such that zx ≤ y and [y, 1) has no top. If L has a splitting coatom cL (i.e., L = {1} ∪ ↓cL),
all divisions in L are defined. We also assume that K ∩ L = {1} and if x ∨ y = 1 in K for
some x, y ∈ K − {1}, then L has a bottom element 0L.

We set π = (σ, γ ) and we define K⊕π L to be the structure where the operations extend
those of K and L, except if x ∨ y = 1 in K then we redefine x ∨ y = 0L. Moreover:

xy =
{

σ(x) if y ∈ L − {1}, x ∈ K − {1}
σ(y) if x ∈ L − {1}, y ∈ K − {1}

x\ y =
⎧⎨
⎩

cL if x, y ∈ K,L has a splitting coatom cL, and x\Ky is undefined
γ (y) if x ∈ L − {1}, y ∈ K − {1}
1 if x ∈ K − {1}, y ∈ L

y/ x =
⎧⎨
⎩

cL if x, y ∈ K,L has a splitting coatom cL, and y/Kx is undefined
γ (y) if x ∈ L − {1}, y ∈ K − {1}
1 if x ∈ K − {1}, y ∈ L

x ∧ y = x if x ∈ K − {1}, y ∈ L .

x ∨ y = y if x ∈ K − {1}, y ∈ L .

Proposition 2.9 K ⊕π L is a partial IRL and it is total if L has a splitting coatom.
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Proof First, we notice that all operations are total except possibly the divisions. The meet
and join operation clearly define a lattice, and x ≤ 1 for every element x in the gluing.
Associativity of the product can be easily shown by the definition using the idempotency of
σ and the strong conuclearity condition. Since the operations of K ⊕π L extend the ones of
K and L, K ⊕π L has an underlying monoidal structure.

We show that residuation holds. That is, for all elements x, y, z, whenever xy, x\z, z/y
are defined:

xy ≤ z iff y ≤ x\z iff x ≤ z/y

• In the case where x, y ∈ L, z ∈ K − {1} none of the inequalities are true, as can be
seen by the definition of the order and the divisions.

• In the case where x, z ∈ L, y ∈ K − {1} all the inequalities hold as it follows from
the definition of the order and of the divisions. The situation is similar when: x ∈
K − {1}, y, z ∈ L, as well as when x, y ∈ K − {1}, z ∈ L.

• If x ∈ L − {1}, y, z, ∈ K − {1}, we need to verify:

σ(y) ≤ z iff y ≤ γ (z) iff x ≤ z/y

whenever z/y is defined. The first equivalence holds since the two maps form a residu-
ated pair. We now show σ(y) ≤ z ⇔ x ≤ z/y holds in case z/y is defined in K ⊕π L.
If y ≤ z, then σ(y) ≤ σ(z) ≤ z and x ≤ 1 = z/y, so both inequalities hold. Assume
now that y �≤ z. If σ(y) ≤ z we get that z/y is undefined in K, thus z/y is the coatom
of L (supposing z/y is defined in K ⊕π L), so x ≤ z/y holds. Conversely, if x ≤ z/y

then since x ∈ L, we get that either z/y = 1 or it is the coatom of L. Thus either
y ≤ z (which is against our assumption) or z/y is undefined in K , which means that
σ(y) ≤ z. The case: x, z ∈ K − {1}, y ∈ L − {1} is similar.

• Suppose now x, y, z ∈ K − {1}. We only show xy ≤ z ⇔ y ≤ x\z assuming that
x\z is defined in K ⊕π L; the proof of the equivalence xy ≤ z ⇔ x ≤ z/y is similar.
If x\z is defined in K , the equivalence holds by residuation in K. Also, if x ≤ z, then
xy ≤ zy ≤ z and y ≤ 1 = x\z, so both inequalities hold. Now, if x\Kz is undefined
and σ(x) ≤ z, then we get xy ≤ σ(x) ≤ z (where the first inequality is due to (2c) in
the definition of lower-compatible triple) and also that x\z is equal to the coatom of L,
so again both inequalities hold.

It is left to show that multiplication is order preserving, divisions are order preserving in
the numerator and order reversing in the denominator. The fact that the monoidal operation
is order preserving can be easily checked using the facts that by the definition of lower-
compatible triple σ is order preserving, and xy, yx ≤ σ(x) for all x, y ∈ K, y �= 1. Finally,
the order properties of divisions (when defined) can be directly checked, and follow by
residuation and the order preservation of γ .

We have shown that K ⊕π L is a partial IRL. In the case where L has a coatom, all
divisions (the only partial operations) are correctly and fully defined. Thus in that case
K ⊕π L is a (total) IRL.

We will refer to K ⊕π L as the partial upper gluing of K and L. If we take a lower-
compatible pair (B, F ) and an IRL C such that B ∩ C = F with F strictly above the other
elements in C, we can construct the partial gluing of the compatible triple (B, σF , γF ) and of
C−F , which is a partial IRL with the required properties for the partial gluing construction.
We will see interesting examples of these constructions in the final section of the paper.
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3 Gluing over a Filter and an Ideal

We can take the previous intuition even further and generalize the construction allowing the
algebras B and C to intersect on both a congruence filter F and a lattice ideal I . Let D be an
IRL with underlying set B ∪C, where B ∩C = F ∪ I , with F a congruence filter as before,
I a lattice ideal, i < b < c < f for all i ∈ I , b ∈ B− := B−(F ∪I ) c ∈ C− := C−(F ∪I )

and f ∈ F , C is a subalgebra except possibly for ∧ and B is a subalgebra except possibly
with respect to ∨. We say that D is a gluing of B and C over F and I , or F − I -gluing
of B and C. As before, we will identify conditions on B, C, F and I that will allow us to
construct D from these constituent parts. We will characterize the structure on the subset
C′ = (C − I ).

3.1 Compatibility with an Ideal

We call an element c ∈ C− a left I -divisor if there exists another c′ ∈ C− such that cc′ ∈ I ,
and a right I -divisor if instead there exists c′′ ∈ C− such that c′′c ∈ I .

We say that an ideal I of an IRL C is compatible with C if it is strictly below C′ and for
all left I -divisors c ∈ C′ and right I -divisors d ∈ C′, the sets {c\i : i ∈ I } and {i/d : i ∈ I }
have maxima. In this case we denote these elements by �I (c) and rI (d), respectively:

�I (c) = max{c\i : i ∈ I }, rI (d) = max{i/d : i ∈ I }.
We also say that (C, I ) is a upper-compatible pair.

Lemma 3.1 Given a gluing of B and C over F and I , the lattice ideal I is compatible with
C. Also, for every left I -divisor c ∈ C − I , right I -divisor d ∈ C − I , and b ∈ B − F :

c\b = �I (c), b/d = rI (d).

Proof The ideal I is strictly below all elements of C′ = C − I by definition. We now show
that the maps �I and rI are defined for all, respectively, left and right I -divisors. For a left
I -divisor c ∈ C− we consider c\b for some b ∈ B−. We claim that c\b ∈ C−. Indeed
by definition there is at least one element in C− that multiplied to the right of c gives an
element of I , thus below b, and moreover there cannot be f ∈ F such that cf ∈ I . Indeed
otherwise, we would have cf ≤ i for some i ∈ I iff (by residuation) c ≤ i/f , which yields
i/f ∈ F (since i/f ∈ B ∩C); this would imply that f ′f ≤ i for some f ′ ∈ F , so we would
get i ∈ F , a contradiction. Thus c\b = max{d ∈ C− : cd ∈ I }.

We now show that max{d ∈ C− : cd ∈ I } = max{c\i : i ∈ I }. Indeed, since c\b =
max{d ∈ C− : cd ∈ I }, there exists j ∈ I , with c(c\b) ≤ j ; thus c\b ≤ c\j . Also, for
all i ∈ I , we have c\i ≤ c\b since i < b; so c\i ≤ c\b ≤ c\j . Since j ∈ I , we get that
c\b = c\j and also c\b = max{c\i : i ∈ I }. Thus max{c\i : i ∈ I } exists for every left
I -divisor c in C′ and c\b = �I (c). Similarly, one can show that max{i/d : i ∈ I } exists for
every right I -divisor d of C′.

What we showed in the previous section about lower-compatible pairs still holds in case
there is at least one non I -divisor. Otherwise, we need consider the weaker notion of lower-
compatibility.

Definition 3.2 We say that a pair (B, F ) is a weak lower-compatible pair if it respects
all the conditions of a lower-compatible pair except that γF need not be defined, i.e. the
equivalence classes [b]F for b ∈ B − F do not need to have a maximum element.
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We can indeed prove the following analogue of Lemma 2.2.

Lemma 3.3 Given a gluing of B and C over F and I , (B, F ) is a weak lower-compatible
pair. If there exists an element of C that is not an I -divisor, then (B, F ) is a lower-compatible
pair. Moreover, for all b ∈ B − F, c ∈ C − (F ∪ I ):

cb = bc = σF (b),

c\b = γF (b) if c is not a left I -divisor,

b/c = γF (b) if c is not a right I -divisor.

Proof The proof that in any case (B, F ) is a weak lower compatible triple is the same as
the one of Lemma 2.2. If given some c ∈ C − (F ∪ I ), there is no element c′ ∈ C − (F ∪ I )

such that cc′ ∈ I , then also the proof about [b]F having a maximum can be replicated in
exactly the same way. Indeed, we get that then c\b ∈ B, [b]F = [c\b]F and b′ ≤ c\b for
all b′ ∈ [b]F .

3.2 Compatible Quadruples

Consider now a weak lower-compatible pair (B, F ), and an upper-compatible pair (C, I )

such that B ∩C = F ∪ I is a subalgebra of both B and C, with F strictly above all elements
in C − F and I strictly below all elements of C − I . We call the quadruple (B, F, C, I )

compatible if moreover:

(1) if at least an element of C − F is not an I -divisor, then (B, F ) is a lower-compatible
pair.

(2) Whenever c, d ∈ C − I and cd ∈ I , we have (cd)x = x(cd) = σF (x) for all x ∈ B−.
(3) If there are elements x, y ∈ B − F such that x ∨ y ∈ F , then C − I has a bottom

element ⊥C .
(4) If there are elements x, y ∈ C − I such that x ∧ y ∈ I , then B − F has a top element

�B .

We recall that σF (x) = min[x]F , and whenever defined γF (x) = max[x]F , �I (x) =
max{x\i : i ∈ I }, rI (x) = max{i/x : i ∈ I }.

Proposition 3.4 Given a gluing of IRLs B and C over F and I , (B, F, C, I ) is a compatible
quadruple. Moreover, the gluing of B and C over F and I is unique when it exists.

Proof The fact that (B, F ) is a weak lower compatible pair, together with conditions 1 and
2, are shown in Lemma 3.3. The fact that (C, I ) is an upper-compatible pair is shown in
Lemma 3.1. Conditions 3 and 4 are clearly properties of the lattice ordering of the gluing.

The following technical properties of a compatible quadruple will be useful in what
follows.

Lemma 3.5 If (B, F, C, I ) is a compatible quadruple, the following properties hold.

(1) For all x ∈ F, y ∈ B − F , xσF (y) = σF (xy) = σF (yx) = σF (y)x = σF (y).
(2) For every c ∈ C− and f ∈ F , we have cf, f c ∈ C−.

635



Order (2023) 40:623–664

Proof (1) Since x θ 1 and y θ y, we have xy θ y which implies σF (xy) = σF (y).
From x θ x and y θ σF (y) we get xy θ xσF (y), thus σF (xy) = σF (xσF (y)) ≤ xσF (y).

Moreover, from x θ 1 and y θ σF (y) we have xy θ σF (y), which implies σF (xy) =
σF (σF (y)) = σF (y) ≥ xσF (y); thus σF (xy) = xσF (y). The other equalities can be proven
analogously.

(2) Suppose by way of contradiction that cf = i ∈ I . Thus by residuation c ≤ i/f ,
but since i, f ∈ B ∩ C, and B ∩ C is a subalgebra of both B and C, we get i/f ∈ F , so
i ≥ (i/f )f ∈ F , hence i ∈ F , a contradiction. Similarly one can show that f c ∈ C−.

3.3 Abstracting the Upper Part

We now characterize abstractly the triples of the form (C′, �I , rI ), where we understand
C′ = (C−I ) and I is an ideal strictly below C′. A triple (L, �, r) is called upper-compatible,
if L is a partial IRL and:

(1) �, r are partial maps on L that form a Galois connection; more precisely �(y) is defined
and x ≤ �(y) if and only if r(x) is defined and y ≤ r(x).

(2) If r(y′) is defined, x ≤ r(y′) and y ≤ y′, then r(y) is defined and x ≤ r(y). Thus the
domain Dr of r is downwards closed. Also, the same holds for �.

(3) xy is undefined iff y is in the domain of r and x ≤ r(y), iff x is in the domain of �

and y ≤ �(x);
(4) x\y is undefined iff there is no z with xz ≤ y, and y/x is undefined iff there is no z

with zx ≤ y.
(5) If �(x) and r(z) are defined then: x\r(z) is defined iff �(x)/z is defined, and in such a

case x\r(z) = �(x)/z.
(6) If �(x) is undefined and r(z) is defined, then x\r(z) = r(z). If r(z) is undefined and

�(y) is defined, then �(y)/z = �(y).
(7) If �(x) is defined, then x\z is defined and �(x) ≤ x\z. Similarly, if r(x) is defined,

then w/x is defined and r(x) ≤ w/x.
(8) x ∧ y is undefined iff there is no z ≤ x, y.
(9) All other operations are defined.

Lemma 3.6 In an upper-compatible triple, if xy is defined, then: xy ≤ z iff (x\z is defined
and y ≤ x\z) iff (z/y is defined and x ≤ z/y).

Proof Suppose that xy is defined. If xy ≤ z, then x\z is defined, since there is y such that
xy ≤ z, and so residuation holds. Conversely, suppose x\z is defined and y ≤ x\z. Then
x(x\z) is defined, since otherwise we would have: x ∈ D�, x\z ≤ �(x), and since y ≤
x\z ≤ �(x), then xy would be undefined, a contradiction. Thus we get xy ≤ x(x\z) ≤ z,
by order preservation of multiplication. Similarly one can prove that xy ≤ z if and only if
z/y is defined and x ≤ z/y.

Lemma 3.7 If I is a compatible ideal of an IRL C, then (C′, �I , rI ) is an upper-compatible
triple.

Proof We show that (C′, �I , rI ) has the properties of an upper-compatible triple, recalling
that C′ = C − I . It is easy to check that C′ is a partial IRL, in particular:

(1) Integrality is clearly satisfied;
(2) The three axioms of RLs are satisfied whenever they can be applied, in particular:
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(a) with respect to the lattice operations, the joins are always defined, 1 is the largest
element, and x ∧ y is undefined iff there is no common lower bound of x and y;

(b) 1 is the unit of the product, and xy, (xy)z are defined iff they are not in I , iff
yz, x(yz) are not in I and in such case (xy)z = x/yz).

(c) residuation works by Lemma 3.6.

(3) Since C is an IRL, multiplication is order preserving when defined;
(4) For the same reason, divisions are order-preserving in the numerator and order-

reversing in the denominator whenever defined.

In the rest of this proof we will write � for �I and r for rI . We now check the properties in
the definition of an upper compatible triple.

(1) We first show that �, r form a Galois connection whenever they are defined, i.e. that
�(y) is defined and x ≤ �(y) if and only if r(x) is defined and y ≤ r(x).

If r(x) is defined and y ≤ r(x), then y ≤ i/x for some i ∈ I , which by residuation
is equivalent to yx ≤ i. So y is a left I -divisor and thus �(y) is defined and x ≤ y\i ≤
�(y). Similarly, the converse holds.

(2) We now prove that if r(y′) is defined, x ≤ r(y′) and y ≤ y′, then r(y) is defined and
x ≤ r(y). If r(y′) is defined then y′ is a right I -divisor, i.e. there is z ∈ C′ such that
zy′ ∈ I . Since y ≤ y′, we have zy ≤ zy′ ∈ I and since I is closed downwards we get
zy ∈ I , i.e., y is a right I -divisor. Moreover, it follows from the definition of r that it
is order reversing, thus r(y′) ≤ r(y). Since x ≤ r(y′), we also have that x ≤ r(y).

(3) Given x, y ∈ C′, we now prove that xy is undefined if and only if y is in the domain
of r and x ≤ r(y), the proof of the other equivalence being similar. Notice that the
product xy is undefined in C′ if and only if it is an element of I . In such a case, we
get xy ≤ i for some i ∈ I , thus y is a right I -divisor and so it is in the domain of r .
Moreover, x ≤ i/y ≤ r(y).

Conversely, if y is in the domain of r and x ≤ r(y), then x ≤ i/y for some i ∈ I .
Thus xy ∈ I and so xy is undefined in C′.

(4) We have that x\y is undefined in C′ iff it is an element of I , or equivalently, iff there
is no z ∈ C′ with xz ≤ y. Similarly, y/x is undefined iff there is no z with zx ≤ y.

(5) We need to show that, if �(x) and r(z) are defined: x\r(z) is defined iff �(x)/z is
defined and in such a case x\r(z) = �(x)/z. Suppose first that x\r(z) is defined in
C′. Then (x\r(z))z ≤ x\i ≤ �(x), for some i ∈ I , which by residuation implies
x\r(z) ≤ �(x)/z. Thus in particular �(x)/z ∈ C′.

So we also get that x(�(x)/z)z ≤ x�(x) ≤ j for some j ∈ I , which implies that
x(�(x)/z) ≤ j/z ≤ r(z), which again by residuation implies �(x)/z ≤ x\r(z); thus
the equality x\r(z) = �(x)/z is proved.

Likewise, we can show that if �(x)/z is defined in C′ then x\r(z) is defined in C′
and x\r(z) = �(x)/z.

(6) Suppose first that �(x) is undefined and r(z) is defined, then r(z) = i/z for some
i ∈ I . Thus x\(i/z) = (x\i)/z ≤ r(z), because necessarily x\i ∈ I , and since
r(z) ≤ x\r(z) we have the equality. Similarly one can show the other case.

(7) Now if �(x) = max{x\i : i ∈ I } is defined in C′, then there exists i ∈ I with x\i ∈ C′.
For every z ∈ C − I we have i < z and x\i ≤ x\z, so x\z ∈ C′, and thus it is defined
in C′, and �(x) ≤ x\z. The analogous fact for r is proven similarly.

(8) A meet x ∧ y is undefined in C′ iff x ∧ y ∈ I iff there is no z ∈ C′ with z ≤ x, y.
(9) All other operations are defined.
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We say that (C′, �I , rI ) is the upper-compatible triple of the upper-compatible pair (C, I ).

Lemma 3.8 Every upper-compatible triple (L, �, r) is the upper-compatible triple of the
upper-compatible pair (C, J ), where J = {0} is a one-element set and C is an IRL with
operations extending L ∪ {0}, with 0 as the bottom element.

Proof Let C = L ∪ {0}, with 0 an idempotent element strictly below all elements of L. The
operations of C are defined to extend the existing operations of L, and we further define:

x ∧ y = 0 if x ∧ y is undefined in L

xy = 0 if x = 0 or y = 0 or x ≤ r(y)

x\y =
⎧⎨
⎩

1 if x = 0
0 if x �= 0, y = 0 and �(x) is not defined
�(x) if x �= 0, y = 0 and �(x) is defined

y/x =
⎧⎨
⎩

1 if x = 0
0 if x �= 0, y = 0 and r(x) is not defined
r(x) if x �= 0, y = 0 and r(x) is defined

We set J = {0} and show that C is an integral residuated lattice. The order defined
clearly yields a lattice. Let us show that associativity holds, i.e. for any x, y, z ∈ C,

x · (y · z) = (x · y) · z.

We distinguish the following cases.

• If any of x, y, z is 0, both sides of the equality are 0 and thus associativity holds. The
same holds if x ≤ r(y) and y ≤ r(z).

• Assume x ≤ r(y), and r(z) is undefined or y �≤ r(z). Then (x · y) · z = 0 · z = 0.
Moreover yz is defined in L, thus yz ≤ y ≤ �(x) (since there is a Galois connection
between � and r) hence x ≤ r(yz), so x · (y · z) = 0.

Similarly we verify the case where y ≤ r(z) and x �≤ r(y) or r(y) is undefined.
• Finally, assume that r(y) is undefined or x �≤ r(y), and r(z) is undefined or y �≤ r(z).

Then the products xy, yz are defined in L, and then we get that (xy)z = 0 if xy ≤ r(z),
and (xy)z ∈ L otherwise. Similarly, x(yz) = 0 if yz ≤ �(x), and x(yz) ∈ L otherwise.

The claim is proved by showing that xy ≤ r(z) if and only if yz ≤ �(x). Indeed,
suppose r(z) is defined and xy ≤ r(z), by Lemma 3.6 we get that x\r(z) is defined
and y ≤ x\r(z). Then if �(x) is undefined, by Property 6 we get x\r(z) = r(z), thus
y ≤ r(z), a contradiction. Then also �(x) is defined, thus by Property 5 �(x)/z is
defined and y ≤ x\r(z) = �(x)/z. Since �(x)/z is defined and y ≤ �(x)/z, by Lemma
3.6 we obtain yz ≤ �(x) since yz is defined. Similarly one can show the right-to-left
direction.

We now show residuation:

xy ≤ z iff y ≤ x\z iff x ≤ z/y

• If x = 0 or y = 0 the claim is easily shown. Suppose now z = 0; we need to show
xy ≤ 0 iff y ≤ x\0. If �(x) is defined then x\0 = �(x), and we know that xy ≤ 0 iff
y ≤ �(x). If �(x) is not defined then x\0 = 0 and and xy is defined to be 0, so both
inequalities hold.

• Let x, y, z �= 0, r(y) defined, and x ≤ r(y) (or equivalently �(x) defined and y ≤
�(x)). Then xy is not defined in L, thus the first inequality becomes 0 ≤ z and is true.
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Since �(x) is defined, by Property 7 x\z is also defined and y ≤ �(x) ≤ x\z, so the
second inequality is also true. The proof that x ≤ z/y holds is similar.

• Let x, y, z �= 0, r(y) undefined or x �≤ r(y); then xy is defined in L. Residuation
follows from Lemma 3.6.

Notice that if c is a left J -divisor, �J (c) = max{c\i : i ∈ J } = c\0 = �(c), and if d is
a right J -divisor rJ (d) = max{i/d : i ∈ J } = 0\d = r(d). Thus we have shown that
(L, �, r) is the upper-compatible triple of the upper-compatible pair (C, J ).

Corollary 3.9 If (C, I ) is an upper-compatible pair, so is ((C − I ) ∪ {0}, {0}).

3.4 The Gluing over a Filter-Ideal Pair

We are now ready to introduce the gluing construction over a congruence filter and an ideal,
which is depicted in Fig. 2. To ease the notation, we write the pair of the filter F and the
ideal I as P :

P := (F, I )

We can then define the gluing of B and C over the pair P = (F, I ), or (F − I )-gluing of B
and C, as the structure B ⊕P C where the operations extend the ones of B and C as follows:

x · y =
⎧⎨
⎩

x · y if x, y ∈ B, or x, y ∈ C

σF (x) if y ∈ C−, x ∈ B−
σF (y) if x ∈ C−, y ∈ B−

x\ y =

⎧⎪⎪⎨
⎪⎪⎩

x\y if x, y ∈ B, or x, y ∈ C

γF (y) if y ∈ B− and x ∈ C− is not a left I -divisor
�I (x) if y ∈ B− and x ∈ C− is a left I -divisor
1 if x ∈ B−, y ∈ C−

x/ y =

⎧⎪⎪⎨
⎪⎪⎩

x/y if x, y ∈ B, or x, y ∈ C

γF (x) if x ∈ B− and y ∈ C− is not a right I -divisor
rI (y) if x ∈ B− and y ∈ C− is a right I -divisor
1 if x ∈ C−, y ∈ B−

x ∧ y =

⎧⎪⎪⎨
⎪⎪⎩

x ∧ y if x, y ∈ B, or x, y ∈ C with x ∧ y �∈ I

�B if x, y ∈ C−, x ∧ y ∈ I

x if x ∈ B−, y ∈ C−
y if y ∈ B−, x ∈ C−

x ∨ y =

⎧⎪⎪⎨
⎪⎪⎩

x ∨ y if x, y ∈ C, or x, y ∈ B with x ∨ y �∈ F

⊥C if x, y ∈ B−, x ∨ y ∈ F

y if x ∈ B−, y ∈ C−
x if y ∈ B−, x ∈ C−

Theorem 3.10 If (B, F, C, I ) is a compatible quadruple, then B ⊕P C is the gluing of B
and C over F and I .

Proof We show that B ⊕P C is an IRL. The fact that B ⊕P C has an underlying lattice
structure is guaranteed by the order properties of the compatible quadruple. In particular, it
follows that F is strictly above all other elements of B and C implies that if x, y ∈ B − F

(or x, y ∈ C − F ) and x ∨ y ∈ F , then F has a bottom element ⊥F and x ∨ y = ⊥F .
Also, if there are x, y ∈ B − F with x ∨B y ∈ F , then x ∨ y = ⊥C . This is not in conflict
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Fig. 2 The gluing B ⊕P C of the algebras B and C over the pair P = (F, I )

with the definition of the operations, since we can show that σF (x) = ⊥F · x = x · ⊥F

and γF (x) = ⊥F \x = x/⊥F in B. First, it is easy to see that ⊥F · x ∈ [x]F ; indeed,
(⊥F · x)\x = 1 and ⊥F ≤ x\(⊥F · x), thus both (⊥F · x)\x and x\(⊥F · x) are in F .
Moreover, (⊥F · x)\σF (x) = ⊥F \(x\σF (x)) = 1 since x\σF (x) ∈ F and thus ⊥F · x ≤
σF (x). Therefore, σF (x) = ⊥F · x and the proof for x · ⊥F is analogous.

We now show that γF (x) = ⊥F \x; the proof for x/⊥F is similar. Since x ≤ ⊥F \x, we
get x\(⊥F \x) = 1 ∈ F , and we also have (⊥F \x)\x ≥ ⊥F ∈ F ; hence ⊥F \x ∈ [x]F .
Moreover, γF (x) = max[x]F ≤ ⊥F \x, or equivalently, ⊥F γF (x) ≤ x, since ⊥F γF (x) =
min[γ (x)]F = min[x]F = σF (x) ≤ x.

Similarly, since I is strictly below all other elements of B and C, if x, y ∈ B − I (or
x, y ∈ C − I ) and x ∧ y ∈ I , then I has a top element �I and x ∧ y = �I . Thus given
x, y ∈ C − I with x ∧C y ∈ I , the meet is redefined as x ∧ y = �B . This is not in conflict
with the definition of the operations, due to Lemma 3.5 (2), and Lemma 3.3.

Also, it is clear that 1 is both the monoidal unit and the top element of the lattice.
To prove associativity, we need to show that for every x, y, z ∈ B ⊕P C, (xy)z = x(yz).

We distinguish the following cases.

• Let x ∈ F, y ∈ C−, z ∈ B−. Then (xy)z = σF (z), since xy ∈ C from Lemma 3.5(2).
Now, x(yz) = xσF (z) = σF (z), given Lemma 3.5(1). Similarly we can show the cases
where: x ∈ B−, y ∈ C−, z ∈ F ; x ∈ F, y ∈ B−, z ∈ C−; x ∈ C−, y ∈ F, z ∈ B−,
x ∈ C−, y ∈ B−, z ∈ F ; x ∈ B−, y ∈ F, z ∈ C−.

• Let x, y ∈ C−, z ∈ B−. We have that (xy)z = σF (z), if either xy ∈ C− (by definition)
or if xy ∈ I (by the compatibility condition 2 for the quadruple). On the other hand,
x(yz) = xσF (z) = σF (σF (z)) = σF (z). The proof is analogous for the case: x ∈
B−, y, z ∈ C−.

• If x ∈ C−, y, z ∈ B−, then (xy)z = σF (y)z = σF (yz), given that σF is a strong
conucleus. Also, x(yz) = σF (yz), if either yz ∈ B− (by definition) or yz ∈ I (by
Lemma 3.3). We get a similar proof for the cases: x, y ∈ B−, z ∈ C−; x ∈ B−, y ∈
C−, z ∈ I ; x ∈ I, y ∈ C−, z ∈ B−; x ∈ I, y ∈ B−, z ∈ C−; x ∈ B−, y ∈ I, z ∈ C−;
x, z ∈ B−, y ∈ C−; x, z ∈ C−, y ∈ B−.

• Since both B and C are subalgebras with respect to multiplication, the remaining cases
hold automatically.
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We now prove that for all x, y, z,

x · y ≤ z iff x ≤ z/y iff y ≤ x\z
We have the following cases:

• Let x ∈ F, y ∈ C−, z ∈ B−. Then it never happens that x · y ≤ z, by Lemma 3.5(2).
The other inequalities are also false by definition and order preservation. An analogous
case is given by x ∈ C−, y ∈ F, x ∈ B−.

• Let x ∈ F, y ∈ B−, z ∈ C−. Then all three inequalities are always true, given the
definition of the operations and order preservation. Similar cases are given by: x ∈
C−, y ∈ B−, z ∈ F ; x, z ∈ C−, y ∈ B−; x ∈ B−, y ∈ F, z ∈ C−; x ∈ B−, y ∈
C−, z ∈ F ; x ∈ B−, y, z ∈ C−; x, y ∈ B−, z ∈ C−; x ∈ B−, y ∈ I, z ∈ C−;
x ∈ I, y ∈ C−, z ∈ B−; x ∈ I, y ∈ B−, z ∈ C−; x ∈ C−, y ∈ I, z ∈ B−.

• Let x, y ∈ C−, z ∈ B−. We distinguish two cases, based on whether xy ∈ I or not. If
xy = i for some i ∈ I , then all inequalities hold. Indeed xy = i ≤ z; moreover xy = i

implies y ≤ x\i ≤ �I (x) = x\z and similarly x ≤ i/y ≤ rI (y) = z/y. If xy ∈ C−,
none of the inequalities hold. Indeed, xy �≤ z by definition of the order. Moreover, if
y ≤ x\z the only possibility by definition is that x\z = �I (x), but x�I (x) ∈ I thus we
would have xy ∈ I , a contradiction. Similarly it cannot be that x ≤ z/y.

• Let x ∈ C−, y, z ∈ B−. To show that xy = σF (y) ≤ z iff x ≤ z/y it suffices to note
that, equivalently, σF (y) ≤ z iff z/y ∈ F . Indeed since σF (y)/y ∈ F , we have that
σF (y) ≤ z implies z/y ∈ F . Conversely, if z/y ∈ F then there is f ∈ F such that
f ≤ z/y, thus fy ≤ z, and so σF (y) = σF (fy) ≤ fy ≤ z (where in the first equality
we used Lemma 3.5(1)).

We now show that x ·y = σF (y) ≤ z iff y ≤ x\z. If σF (y) ≤ z, then since σF and γF

form a Galois connection we get y ≤ γF (z) ≤ x\z, where the second inequality holds
because γF (z) = x\z or x\z ∈ C−. Conversely, assume y ≤ x\z. If x\z = �I (x), then
by definition x is a left I -divisor thus there is a c ∈ C− such that xc ∈ I , thus by the
compatibility condition (2) for the quadruple σF (y) ∈ I thus σF (y) ≤ z. Otherwise, if
x\z = γF (z) then y ≤ γF (z), so by the Galois connection we have that σF (y) ≤ z.

An analogous case is given by x, z ∈ B−, y ∈ C−.
• Let x ∈ C−, y ∈ B−, z ∈ I . The fact that xy ≤ z iff x ≤ z/y can be shown, as in the

previous case, using the fact that σF (y) ≤ z if and only if z/y ∈ F .
We now show that xy = σF (y) ≤ z iff y ≤ x\z. Since C is a subalgebra, either

x\z ∈ C− or x\z ∈ I . If x\z ∈ C− then clearly y ≤ x\z and by the compatibility
condition 2 for the quadruple, we get σF (y) = xy ≤ x(x\z) ≤ z.

Otherwise, we have x\z ∈ I , so y �≤ x\z, since y ∈ B−. Moreover, x\z = γF (z)

from Lemma 3.3. Thus since y �≤ γF (z), we get that σF (y) �≤ z, given that the two
operators are a residuated pair.

Similarly we prove residuation for the case: x ∈ B−, y ∈ C−, z ∈ I .
• Since both B and C are subalgebras for the divisions the other cases do not need to be

checked.

Thus, B ⊕P C is an integral residuated lattice.

Notice that in the case where I is empty, we get the proof of Theorem 2.8. Indeed, if I

is empty, no elements of C − F are I -divisors and thus we obtain exactly the hypothesis of
Theorem 2.8.
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Fig. 3 The partial gluing K ⊕τ L, in the case where L has a coatom cL

3.5 A Gluing of Partial Algebras

In this section, we obtain a different construction that glues together two structures that
intersect at the top 1 and keeps the same order relation, but where some of the divisions are
redefined. The underlying idea is to forget the filter F from the previous construction. See
Fig. 3 for a pictorial intuition.

We start from a lower-compatible triple (K, σ, γ ) and an upper-compatible triple
(L, �, r). Recall that in upper-compatible triples already some divisions are not defined.
Here we will allow other divisions not to be defined. Precisely, we shall say that x\y is
strongly undefined (in order to distinguish this case in the definition of the operations) if all
elements z in the interval [y, 1) = {z ∈ L : y ≤ z < 1} are such that xz ≤ y and there is
no coatom. Similarly, y/x is strongly undefined if all elements z the interval [y, 1) are such
that zx ≤ y and L has no coatom. We assume:

(A1) K has an ideal I ⊆ K with an idempotent top element �I such that σ(�I ) = �I .
(A2) If there are undefined products in L, then σ(x) = �I for all x ∈ K − I and

σ(�I y) = σ(y�I ) = σ(y) if y ∈ I .
(A3) If there exists x, y ∈ K − {1} such that x ∨ y = 1, then L has a bottom element ⊥L.
(A4) If L has undefined meets, K has a splitting coatom cK .

Moreover, we assume that K ∩ L = {1}, we set τ := (σ, γ, �, r) and we define the partial
gluing K ⊕τ L to be the structure where the operations extend the ones of K and L in the
following way, here D� and Dr denote the domains of � and r , respectively:

xy =

⎧⎪⎪⎨
⎪⎪⎩

xy if x, y ∈ K or x, y ∈ L and xy is defined
σ(x) if y ∈ L − {1}, x ∈ K − {1}
σ(y) if x ∈ L − {1}, y ∈ K − {1}
�I if x, y ∈ L and xy is undefined

x\ y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x\y if x, y ∈ K or x, y ∈ L, and x\y is defined
cL if x, y ∈ K,L has a coatom cL and x\y is undefined
�(x) if x ∈ L − {1}, y ∈ K − {I ∪ 1} and x ∈ D�, or x, y ∈ L and x\y undefined
γ (y) if x ∈ L − {1}, y ∈ I or (y ∈ K − {1} and x �∈ D�)

1 if x ∈ K − {1}, y ∈ L

undefined if x, y ∈ L, and x\y strongly undefined
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y/ x =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y/x if x, y ∈ K or x, y ∈ L, and y/x is defined
cL if x, y ∈ K,L has a coatom cL and y/x is undefined
r(x) if x ∈ L − {1}, y ∈ K − {I ∪ 1} and x ∈ Dr or x, y ∈ L and y/x undefined
γ (y) if x ∈ L − {1}, y ∈ I or (∈ K − {1} and x �∈ Dr)

1 if x ∈ K − {1}, y ∈ L

undefined if x, y ∈ L, and y/x strongly undefined

x ∧ y =

⎧⎪⎪⎨
⎪⎪⎩

x ∧ y if x, y ∈ K, or x, y ∈ L

cK if x, y ∈ L and x ∧ y undefined
y if y ∈ K − {1}, x ∈ L

x if x ∈ K − {1}, y ∈ L

x ∨ y =

⎧⎪⎪⎨
⎪⎪⎩

x ∨ y if x, y ∈ K, or x, y ∈ L

x if y ∈ K − {1}, x ∈ L

y if x ∈ K − {1}, y ∈ L

⊥L if x ∨ y = 1 in K .

Theorem 3.11 K ⊕τ L is a partial IRL, that is total if L has a coatom.

Proof Notice first that all operations are defined except possibly the divisions. It is easy to
see that the operations ∧,∨ define a lattice order, with 1 being the top. Let us now prove
associativity of multiplication.

• Suppose x, y, z ∈ L. Then by definition:

(xy)z =
{

(xy)z if xy and (xy)z are defined in L

σ(�I ) = �I otherwise

x(yz) =
{

x(yz) if yz and x(yz) are defined in L

σ(�I ) = �I otherwise

We will show that xy and (xy)z are defined if and only if yz and x(yz) are defined, or
equivalently, yz or x(yz) is undefined iff xy or (xy)z is undefined. Notice that when
(xy)z and x(yz) are defined they coincide, since in upper compatible triples the IRL
axioms hold whenever the operations involved are defined.

We show the left-to-right direction first: we assume that yz is undefined or x(yz)

is undefined; we also assume that xy is defined. If yz is undefined, then z ∈ Dr and
y ≤ r(z). Since xy ≤ y, we get xy ≤ r(z), so (xy)z is undefined. If instead yz is
defined and x(yz) is undefined, we have that yz ∈ Dr and x ≤ r(yz). Then by Property
1 of an upper compatible triple, �(x) is defined and yz ≤ �(x). Suppose r(z) is defined,
thus using Lemma 3.6 and Property 5, y ≤ �(x)/z = x\r(z) and then xy ≤ r(z);
thus (xy)z is undefined. We also show that r(z) is necessarily defined, indeed if r(z) is
undefined, �(x)/z = �(x), and y ≤ �(x) implies x ≤ r(y), thus xy undefined.

The other direction is proved in a similar way.
• For x, y ∈ L and z ∈ K − I , we show that x(yz) = σ(z). If x �≤ r(y), then (xy)z =

σ(z) holds by definition. Otherwise we get �I z = �I , since �I is idempotent; so there
is at least an undefined product in L, thus by (A2) we get σ(z) = �I . Similarly we can
show the case: y, z ∈ L, x ∈ K − I .

• For x, y ∈ L and z ∈ I , we show that x(yz) = σ(z). If x �≤ r(y), then (xy)z = σ(z)

by definition. Otherwise we get �iz = σ(z) since σ(z) = σ(�I z) implies σ(z) ≤ �I z

and �I z ≤ σ(z). Similarly we prove the case: y, z ∈ L and x ∈ I .
• For x, z ∈ L, y ∈ K , associativity follows directly from the definition of multiplication

and the idempotency of σ .
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• For x ∈ L, y, z ∈ K , associativity follows from the definition of multiplication and the
strong conuclear property. Similar cases are: x, z ∈ K, y ∈ L; x, y ∈ K, z ∈ L.

• In the remaining cases all elements belong to K .

It easily follows that the product is a monoidal operation with unit 1. We now show that
residuation holds (when the divisions are defined):

xy ≤ z iff y ≤ x\z iff x ≤ z/y

• For x, y, z ∈ L, we distinguish two cases, depending whether xy is defined in L or
not. If xy is not defined in L, then we get that all three inequalities hold since they
respectively become: �I ≤ z, y ≤ �(x), x ≤ r(y); here we used Property 3 of upper-
compatible triples.

If xy is defined in L, then we get xy ≤ z if and only if x\z is defined and y ≤ x\z,
by Lemma 3.6. Similarly, this is equivalent to z/y being defined and x ≤ z/y.

• For x, y ∈ L, z ∈ K − {I ∪ 1}, we distinguish two cases, based on whether xy is
defined in L or not. If xy is defined in L, we have xy �≤ z by the definition of the order;
also x �≤ r(y) and thus y �≤ �(x), by Property 1 (Galois connection). Moreover, x\z is
either �(x) or γ (z), and in either case y �≤ x\z, since γ (z) ∈ K − 1 and y �≤ �(x).

If xy undefined in L, then xy is equal to the top element of I , and �I ≤ z. Moreover,
y ≤ �(x) = x\z, and x ≤ r(y) = z/y, using again Property 1 and 3.

• For x, y ∈ L, z ∈ I , we distinguish two cases, whether x ≤ r(y) or not. If x �≤ r(y), the
proof is the same as in the previous case. If x ≤ r(y) we distinguish whether z = �I or
not. If z < �I , then xy = �I �≤ z, y �≤ γ (z) = x\z and x �≤ γ (z) = z/y. If z = �I ,
then xy = �I implies x ≤ �I /y = r(y) iff y ≤ �(x) = x\�I .

• If x, z ∈ L, y ∈ K − {1}, it follows directly from the definition of the operations
that all inequalities hold, whenever the divisions are defined. Similarly for the cases:
x ∈ L, y ∈ I, z ∈ K − {I }; x ∈ K, y, z ∈ L; x, y ∈ K, z ∈ I .

• For x ∈ L, y, z,∈ K − {I }, it follows directly from the definition of the operations
that xy = σ(y) ≤ z iff x ≤ z/y whenever the division is defined. Indeed z/y is either
z/Ky iff σ(y) �≤ z and it is either undefined or cL if σ(y) ≤ z. Now we show that
xy = σ(y) ≤ z iff y ≤ x\z. If x ∈ D� then there are undefined products in L, thus
σ(y) = �I ≤ z and x\z = �(x) thus y ≤ x\z. Otherwise, if x �∈ D�, σ(y) ≤ z

iff y ≤ γ (z) = x\z since σ, γ form a residuated pair. The following cases are proven
similarly: x ∈ L, y ∈ K, z ∈ I ; x, z ∈ K − {I }, y ∈ L; x ∈ K − {I }, y ∈ L, z ∈ I .

• For x, y, z ∈ K , we show that xy ≤ z iff y ≤ x\z, as the proof the equivalence
xy ≤ z ⇔ x ≤ z/y is analogous. If x\Kz is defined then residuation holds since K is a
partial IRL. If x\Kz is undefined, then σ(x) ≤ z, and xy ≤ σ(x) ≤ z holds. Moreover
x\z is either still undefined or if there is a coatom x\z = cL, thus y ≤ cL.

We now show that multiplication is order preserving: if x ≤ y, then xz ≤ yz and zx ≤ zy

(notice again that all products are defined in the gluing).

• The cases where x, y ∈ L and z ∈ K − {1} follow directly from the definition of the
operations.

• The cases where x, y ∈ K − {1} follow from the order preservation of σ .
• If x, z ∈ K − {1}, y ∈ L, then we get xz, zx ≤ σ(z), which is a property of σ in a

lower compatible triple.
• Let now x ∈ K −{1}, y, z ∈ L. If yz (equiv. zy) is defined in L, clearly xz ≤ yz (equiv.

zx ≤ zy). If yz (or zy) is undefined in L, the inequalities becomes σ(x) ≤ �I , which
holds by condition (A2).
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• Finally, let x, y, z ∈ L. We show order preservation of right multiplication, the proof
for left multiplication being analogous. If xz, yz are defined in L, then order preser-
vation holds since L is a partial IRL. If yz is undefined, by the definition of an upper
compatible triple, z ≤ �(y), and since x ≤ y, and the domain of � is closed downwards,
by property (2) of the definition we also get that z ≤ �(x) and thus xz is undefined
in L. Therefore, xz = �I = yz. Suppose now that yz is defined and xz is undefined,
then the inequality becomes �I ≤ yz ∈ L, which holds by definition of the order
in the gluing.

The fact that (when defined) divisions are order preserving in the numerator and order
reversing in the denominator follows from residuation and the order preservation of multi-
plication (which is always defined in K ⊕τ L). Thus, K ⊕τ L is a partial IRL. We note that
in the case where L has a coatom no operation is undefined.

If we take a compatible quadruple (B, F, C, I ) where I has a top element satisfying
assumptions (A1), (A2), we can then consider the lower compatible triple (B′, σF , γF )

(where B ′ = B −F ) and the upper compatible triple (C′, �I , rI ) (where C′ = C − (F ∪ I ))
and construct the partial gluing B′ ⊕τ C′, where τ = (σF , γF , �I , rI ).

More generally, starting from any compatible quadruple (B, F, C, I ), we can always
construct a partial gluing. Indeed either there are no I -divisors in C, in which case the
assumptions (A1), (A2) are vacuously true, or otherwise we replace I with I ′ := {i ∈
I : i �= cd, for c, d ∈ C − I } ∪ �I , where �I a new element satisfying (A1), (A2).
Conditions (A3), (A4) are implied by the last two compatibility conditions in the definition
of a compatible quadruple. We can then construct the partial gluing B′ ⊕τ C′, where B ′ =
B − F , C′ = C − (F ∪ I ′), τ = (σF , γF , �I , rI ).

4 Variations of the Constructions

First, notice that the gluing constructions presented that involve a non-empty ideal I work
for both bounded and unbounded integral residuated lattices. In the case where the ideal is
empty (and thus the construction is gluing over a congruence filter) one still obtains a new
structure starting from FLw-algebras, but one of the two algebras is not a subalgebra with
respect to 0 anymore.

Importantly, note again that as a special case of the gluing construction, where the filter
is trivially the top element {1} and the ideal is empty, we get the 1-sum construction. This
also means that given any pair of integral residuated lattices B and C (with C having a lower
bound or 1 being join irreducible in B) we can always glue them. We will call a gluing
trivial if it is a 1-sum, and non-trivial otherwise.

4.1 The Congruence Filter has a Bottom Element

We first observe that if F has a bottom element, then σF and γF have a very transparent
definition: also the bottom element of F multiplies and divides as the elements in C − F in
the gluing.

Lemma 4.1 Let (B, F ) be a lower-compatible triple where F has a bottom element ⊥F .
Then given any x ∈ B − F , σF (x) = ⊥F · x = x · ⊥F and γF (x) = ⊥F \x = x/⊥F .
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Proof The proof can be directly extracted from the first paragraphs of the proof of
Theorem 3.10.

It turns out that assuming that F has a bottom element is not a substantial restriction.
Given a lower compatible triple (B, F ), where F may or may not have a bottom element,
and a new element ⊥F , we define the residuated lattice B⊥, where for all b ∈ B −F, f ∈ F

• b < ⊥F < f ,
• ⊥F · ⊥F = ⊥F · f = f · ⊥F = ⊥F and ⊥F · b = b · ⊥F = σF (b),
• ⊥F \b = b/⊥F = γF (b), ⊥F \f = f/⊥F = 1,
• b\⊥F = ⊥F /b = 1, and f \⊥F = ⊥F /f = ⊥F .

The following result is easy to prove and shows that every lower compatible triple can
be embedded into one where the congruence filter has a bottom element.

Proposition 4.2 If (B, F ) is a lower compatible pair, then (B⊥, F ∪ {⊥F }) is also a lower
compatible pair and B is a subalgebra of B⊥, except possibly for join if F has a bottom
element.

4.2 Non-linear Order

We are now going to study whether the order conditions for the congruence filter F and the
ideal I can be weakened. We previously required F to be strictly above all elements of B
and I to be strictly below all elements of C. This ensures that the product is well-defined
and respect the join operation. Notice that, in particular, asking F to be strictly above all
other elements implies that if there are elements x, y ∈ B − F such that x ∨ y ∈ F , then F

has a bottom element ⊥F and x ∨ y = ⊥F . Lemma 4.1 shows that the product defined in
Theorem 3.10 preserves this particular kind of join.

We define a non-strict lower-compatible pair a pair (B, F ) that is lower-compatible
except that F is not strictly above all elements in F , but whenever x, y ∈ B − F are such
that x ∨ y = z ∈ F , the element z is such that zb = bz = σF (b) and z\b = b/z = γF (b)

for all b ∈ B − F .
Similarly, if z,w ∈ C − I are such that z ∧ w ∈ I , then we required I to have a top

element �I and z ∧ w = �I ; this does not create issues with respect to the operations,
given Lemma 3.5. We can then extend the construction to also include lattice ideals that
are not strictly below all other elements. In particular, we call a non-strict upper-compatible
pair a pair (C, I ) that is upper-compatible except that I is not strictly below all other
elements in C.

Let us call a non-strict compatible quadruple a compatible quadruple (B, F, C, I ) where
the upper and lower-compatible pairs may be non-strict, by redefining all joins of elements
x, y ∈ B − F such that x ∨B y ∈ F to be the bottom element of C, x ∨ y = ⊥C , and all
meets of elements z,w ∈ C − I such that x ∧C w ∈ I to be the top element of B − F ,
x ∧ w = �B .

Proposition 4.3 If (B, F, C, I ) is a non-strict compatible quadruple, then B ⊕P C is the
gluing of B and C over F and I .

Proof The proof of Theorem 3.10 can be adapted to this case.
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5 Preservation

In this section we will investigate the interaction of the (F − I )-gluing construction with
class operators and equations that are preserved.

5.1 Preservation of Identities

We identify equations that are preserved by the (F − I )-gluing. It is worth noticing that
the gluing construction preserves commutativity. Moreover, we identify the cases when
divisibility and semilinearity are preserved; linearity is obviously always preserved.

Semilinear integral residuated lattices (i.e., subdirect products of totally ordered integral
residuated lattices) constitute a variety, axiomatized by the equation:

[u\(y\x)u] ∨ [v(x\y)/v] = 1. (sl)

This equation characterizes semilinearity also in FLw-algebras. In commutative subvarieties
of IRL and FLw semilinearity is characterized by the simpler prelinearity identity, obtained
from (sl) by taking u = v = 1:

(y\x) ∨ (x\y) = 1. (prel)

Commutative prelinear FLw-algebras are called MTL-algebras since are the equiva-
lent algebraic semantics of Esteva and Godo’s Monoidal t-norm based logic, the logic of
left-continuous t-norms [10]. A residuated lattice A is called divisible if the lattice order
coincides with the inverse divisibility order:

a ≤ b if and only if there are c, d ∈ A with a = bc and a = db.

Divisibility is characterized equationally by:

x ∧ y = x(x\(x ∧ y)) = ((x ∧ y)/x)x (div)

The latter in integral structures reduces to: x ∧ y = x(x\y) = (y/x)x. Semilinear, commu-
tative and divisible FLew-algebras are called BL-algebras and we denote their variety by BL;
semilinear and divisible CIRLs are called basic hoops, and we refer to their variety by BH.
BL-algebras are the equivalent algebraic semantics of Hájek’s Basic Logic [18].

Proposition 5.1 If B ⊕P C is the P -gluing of the IRLs B and C, where P = (F, I ), then:

(1) B ⊕P C is commutative iff both B and C are commutative.
(2) B ⊕P C is divisible iff both B and C are divisible, C has no I -divisors, and B =

((B − F) ∪ {1}) ⊕1 F .
(3) If F �= {1}, then B ⊕P C is semilinear iff both B and C are semilinear. If F = {1} and

C− �= ∅, then B ⊕P C is semilinear iff B is linear and C is semilinear. (If F = {1}
and C− = ∅, then B ⊕P C = B.)

Proof Recall that B− = B − (F ∪ I ) and C− = C − (F ∪ I ). For readability we write σ

for σF , γ for γF , � for �I and r for rI .

(1) B and C are closed under multiplication. Also, bc = σ(b) = cb for b ∈ B−, c ∈ C−;
thus the construction preserves commutativity.

(2) Recall that in integral structures divisibility states that for all x, y,

x ∧ y = x(x\y) = (y/x)x.
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Since B and C are closed under ∧, ·, \, /, the divisibility of B and C is a necessary
condition for the gluing to be divisible. Note that if x ∈ B−, and y ∈ C−, then
x(x\y) = x1 = x = x ∧ y, and similarly (y/x)x = x = x ∧ y, so divisibility holds
in this case.

If x ∈ C− and y ∈ B−, then x ∧ y = y, while x(x\y) and (y/x)x depend on
whether x is an I -divisor or not. Notice that if x is a left I -divisor, then x�(x) �= y

since C is a subalgebra, therefore

x(x\y) = x�(x) �= y = x ∧ y.

Similarly, if x is a right I -divisor

(y/x)x = r(x)x �= y = x ∧ y

Thus for the gluing to be divisible, C must have no I -divisors. Now, if x is not an
I -divisor, we get:

x(x\y) = xγ (y) = σ(γ (y)) = σ(y)

and similarly,
(y/x)x = γ (y)x = σ(γ (y)) = σ(y).

Thus for the gluing to be divisible, we need that for all y ∈ B−, σ(y) = y.
Notice that the same holds for x ∈ C−, y ∈ I , by Lemma 3.3. Consequently, for

all f ∈ F , y = σ(y) ≤ fy ≤ y and also y = σ(y) ≤ yf ≤ y, thus have that
fy = yf = y. This implies that B is the 1-sum B = (B − F) ⊕1 F (including the
trivial case where F = {1}).

Now we show that if B and C are divisible, C has no I -divisors and B = (B −
F) ⊕1 F , then divisibility holds in the gluing. We only need to check the case where
x ∈ C−, y ∈ B−, where we get x ∧ y = yand

x(x\y) = xγ (y) = σ(y) = (y/x)x

since x is not an I -divisor. Now, if B = (B −F)⊕1 F , all products between elements
f ∈ F and x ∈ B − F are such that f x = xf = x. Thus, for x ∈ B− with x θF y,
we have x\y, y\x ∈ F . So x = x(x\y) ≤ y and y = y(y\x) ≤ x, hence x = y.
Therefore, σ(y) = min[y]F = y and divisibility holds in the gluing.

(3) If B ⊕P C is semilinear, then C is semilinear, since it is a subalgebra except pos-
sibly for the meet. Also, in verifying semilinearity in B, if x, y, u, v ∈ B, then
[u\(y\x)u], [v(x\y)/v] ∈ B and [u\(y\x)u] ∨ [v(x\y)/v] = 1 in B ⊕P C. Since
[u\(y\x)u] ∨ [v(x\y)/v] ∈ B, it follows that [u\(y\x)u] ∨ [v(x\y)/v] = 1 in B;
hence semilinearity holds in B.

Moreover, in the particular case where F = {1}, let a, b ∈ B be incomparable.
Therefore, a �≤ b and b �≤ a, so 1 �= a\b and 1 �= b\a; hence a\b, b\a ∈ B − F , so
(a\b) ∨ (b\a) ≤ c for every c ∈ C−. Since C− �= ∅ we have c < 1 for some c ∈ C−,
so (a\b)∨ (b\a) ≤ c < 1. By the semilinearity of B⊕P C, we get (a\b)∨ (b\a) = 1,
a contradiction.

For the converse direction, suppose both B and C are semilinear. We check whether
in B ⊕P C we have (sl):

[u\(y\x)u] ∨ [v(x\y)/v] = 1.

If all elements belong to C, the equation follows from the semilinearity of C. If x

and y are comparable, then y ≤ x or x ≤ y, so y\x = 1 or x\y = 1; hence for all
u, v, u\(y\x)u = 1 or v(x\y)/v = 1 and so (sl) holds.
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If x ∈ B−, y ∈ C− or vice versa, then x, y are comparable, so (sl) holds. It remains
to verify (sl) for x, y ∈ B−.

If F = {1} and B is linear, then x, y are comparable, so (sl) holds.
We now assume that F �= {1}. For x, y ∈ B−, if they are comparable, (sl) holds.

If they are incomparable, then y\x �= 1 and x\y �= 1 and y\x, x\y ∈ B. The
semilinearity of B yields

(y\x) ∨ (x\y) = 1.

Note that if b1, b2 ∈ B, b1 �= 1, b2 �= 1 and b1 ∨ b2 = 1, then b1, b2 ∈ F . (If, say,
b1 �∈ F and b2 ∈ F , then since B − F is strictly below F , we get b1 ∨ b2 = b2 �= 1.
If b1, b2 �∈ F , then since B − F is strictly below F �= {1}, there is f ∈ F − {1} such
that b1 ∨ b2 ≤ f < 1.) The same holds for elements c1, c2 ∈ C.

Therefore, y\x, x\y ∈ F . If u ∈ B (or u ∈ C), since B (respectively, C) is
semilinear, we can apply Lemma 6.5 in [4] and obtain that

[u\(y\x)u] ∨ (x\y) = 1.

If [u\(y\x)u] = 1, then (sl) holds. If not, then [u\(y\x)u] and (x\y) are non-
identity elements of B (C, respectively) that join to 1, so by above fact they are both
in F . Given the semilinearity of B (respectively, C), we can apply Lemma 6.5 in [4],
which states that whenever semilinearity holds, if a ∨ b = 1, also γ1(a) ∨ γ2(b) = 1,
for any iterated conjugates γ1, γ2. With v ∈ B (or v ∈ C), this yields precisely (sl).

Since the components of the gluing are subalgebras (except in the mentioned cases for
the lattice operations), most one-variable equations are preserved.

Proposition 5.2 The P -gluing B ⊕P C, where P = (F, I ), of two IRLs preserves all one-
variable equations not involving the lattice operations. Whenever B − F is closed under
joins, and C − I is closed under meets, all one-variable equations satisfied by both B and
C are preserved.

Proof Follows directly from the definition of the operations.

Thus, for example, the gluing construction preserves n-potency, xn = xn+1, for every
n ≥ 1. In fact, the gluing also preserves all monoidal equations, given the idempotency and
the absorbing properties of the conucleus σ .

Proposition 5.3 The P -gluing B ⊕P C, with P = (F, I ), preserves all monoid equations
valid in both B and C.

Proof If the equation has a variable that appears in only one side, then setting all the other
variables equal to 1, we obtain a consequence of the form xn = 1, for some n �= 1, and the
only model of that equation is the trivial algebra. Therefore, we consider equations where
all variables appear on both sides.

Since B and C are closed under multiplication, if an equation holds in the gluing then it
also holds in B and in C. We now assume that some equation holds in B and in C. If under
some evaluation all variables are chosen from B or all variables are chosen from C, then
the equation holds true. Now suppose that at least one variable is assigned to an element of
C− and one variable is assigned to an element B−. Assume that X, is the set of variables in
the equation, v is the evaluation, and that XC = {x ∈ X : v(x) ∈ C−} corresponds to the
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variables that are mapped to elements of C−; Xc
C denotes the complement of XC . We focus

on the position of values v(x), where x ∈ XC , inside the equation; we group together the
elements in between these v(x) as follows. Given that B is closed under multiplication, the
evaluation of each side of the equation takes the form

b′
1c1b

′
2c2 · · · b′

n,

where each ci is of the form v(x), for some x ∈ XC and each b′
i is a product of elements of

the form v(x), for certain x ∈ Xc
C , so v(x) ∈ B; hence ci ∈ C− and b′

i ∈ B.
By focusing on the elements adjacent to the ci’s and using that cb = bc = σ(b) ∈ B−F ,

for c ∈ C− and b ∈ B − F , and that f c, cf ∈ C− for c ∈ C− and f ∈ F , the evaluation
of the equation is reduced to a form that does not contain any elements of C− (recall that
at least one variable is assigned to an element of C− and at least one variable is assigned to
an element of B−). Then, we use that b1σ(b2) = σ(b1b2) = σ(b1)b2, for b1, b2 ∈ B − F ,
and that f σ(b) = σ(b)f = σ(b), for b ∈ B − F and f ∈ F , and the idempotency of σ . In
the end, the evaluation of the equation takes the form σ(b1b2 · · · bn) = σ(bn+1bn+2 · · · bm),
where the bi’s are exactly the elements of the form v(x), for x ∈ Xc

C , in the exact order
they appear in the equation. Therefore, by substituting 1 for all x with x ∈ XC , and the
appropriate value bi for the other variables, the original equation (which is valid in B), yields
b1b2 · · · bn = bn+1bn+2 · · · bm, so σ(b1b2 · · · bn) = σ(bn+1bn+2 · · · bm) is also valid.

5.2 HSPU

Constructions as the one presented in this paper are particularly interesting when they help
us better understand and describe the structure theory of the algebras. In what follows, we
will just call “gluing” a gluing over a filter and an ideal. In this section we characterize
when a gluing is subdirectly irreducible. We will also study the subalgebras, homomorphic
images and ultrapowers of a gluing. We recall that Fil(A) denotes the lattice of congruence
filters of A.

Proposition 5.4 Consider the P -gluing B⊕P C, with P = (F, I ), of two integral residuated
lattices B and C. We distinguish two cases:

(1) If C−I is a congruence filter of C, then Fil(B⊕P C) is isomorphic to Fil(B)⊕Fil(C−
I ), the poset ordinal sum of the two lattices.

(2) Otherwise, Fil(B ⊕P C) ∼= Fil(C).

Proof The first claim follows from the definition of the order and operations in the gluing
construction, see Fig. 2. Now, if C − I is not a congruence filter, then the congruence filter
generated by C − I has non-empty intersection with I , i.e., either some conjugate or some
product of elements in C− are in I . Since C is closed under multiplication and divisions,
this is also true in the gluing B ⊕P C. Thus the congruence filter 〈C − I 〉 generated by
C − I in the gluing also has nonempty-intersection with the ideal I . Since filters are closed
upwards, B− is contained in 〈C − I 〉 and the second claim follows.

Corollary 5.5 For P = (F, I ), if F �= {1}, then B ⊕P C is subdirectly irreducible iff F
is subdirectly irreducible iff B is subdirectly irreducible iff C is subdirectly irreducible. If
F = {1}, then B ⊕P C is subdirectly irreducible iff C is subdirectly irreducible.
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Proof Assume first that F is not trivial. By Proposition 5.4 and standard universal algebraic
results (see Theorem 8.4 in [6]), B ⊕P C is subdirectly irreducible iff F is subdirectly irre-
ducible as an IRL, thus the claim follows since F is a congruence filter of both B and C,
(strictly) above all their other elements. For F = {1}, it follows from the definition of the
operations and order of the gluing (see also Fig. 2) that B ⊕P C is subdirectly irreducible
iff C is subdirectly irreducible.

We can now describe the homomorphic images of a gluing.

Proposition 5.6 Let h be a homomorphism having as domain a gluing B ⊕P C and H

the associated congruence filter (the preimage of 1). If B/H, C/H,F/H, I/H denote the
images under h, we have that the homomorphic image of B ⊕P C via h is isomorphic to

(1) C/H , if H ∩ I �= ∅.
(2) B/H , if H ∩ I = ∅ and H ∩ B− �= ∅.
(3) B/H ⊕P/H C/H , where P/H = (F/H, I/H), if H ∩ B− = ∅.

Proof The fact that the homomorphic image through h is given by the gluing B/H ⊕P/H

C/H follows from Proposition 5.4. Moreover, notice that (1) and (2) are particular cases
of (3).

We call a subalgebra S of C divisor-special if whenever it contains an element c that is a
left I -divisor, it also contains �I (c), and similarly if d ∈ S where d is a right I -divisor, then
also r(d) ∈ S. We call a subalgebra T of B σ -special if for all b ∈ T − F , also σ(b) ∈ T ,
and (σ, γ )-special if also γ (b) ∈ T .

Proposition 5.7 Let B ⊕P C, with P = (F, I ), be the P -gluing of IRLs B and C. Then a
subalgebra S of B ⊕P C is one of the following:

(1) S is a subalgebra of C that does not include elements whose meet is the top element of
B − F .

(2) S is a subalgebra of B that does not include elements whose join is the bottom element
of C − I .

(3) A gluing B1 ⊕P1 C1, with P1 = (F1, I1), where:

• F1 ⊆ F, I1 ⊆ I and F1 ∪ I1 is a subalgebra of F ∪ I ;
• C1 is a divisor-special subalgebra of C containing at least an element that is not

an I -divisor;
• B1 is a (nonempty) special (σ, γ )-subalgebra of B.

(4) A gluing B2 ⊕P2 C2, with P2 = (F2, I2), where:

• F2 ⊆ F, I2 ⊆ I and F2 ∪ I2 is a subalgebra of F ∪ I ;
• C2 is a divisor-special subalgebra of C containing only I -divisors;
• B2 is a (nonempty) σ -special subalgebra of B.

Proof The first two claims follow from the fact that B and C are subalgebras except possibly
for those joins and meets. The other two claims follow from the definition of the operations.
For example, whenever a subalgebra S of B ⊕P C contains both an element b ∈ B− and an
element c ∈ C− that is not an I -divisor, then both the minimal, σ(bF ), and the maximal,
γF (b), element of the equivalence class [b]F also belong to S, since bc = cb = σ(b) and
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c\b = b/c = γ (b). Moreover, if in the subalgebra S there is at least an element b ∈ B−,
and c ∈ C− is a left I -divisor, then c\b = �(b) and similarly if d ∈ C− is a right I -divisor
then b/d = r(d), thus such elements need to be in S.

We are now going to show that an ultrapower of a gluing B ⊕P C is a gluing of
ultrapowers of B and C.

Proposition 5.8 PU(B ⊕P C) ⊆ PU(B) ⊕(PU (F ),PU (I)) PU (C)

Proof We sketch the proof. Let A = ∏
j∈J B ⊕P C, and let U be an ultrafilter on J . For

x = (xj )j∈J ∈ A and j ∈ J , we distinguish cases according to whether xj is in B−, C−,
F or I , and partition J in the sets:

JB(x) = {j ∈ J : xj ∈ B−}, JC(x) = {j ∈ J : xj ∈ C−},
JF (x) = {j ∈ J : xj ∈ F }, JI (x) = {j ∈ J : xj ∈ I }.

Since U is an ultrafilter, for each x ∈ A only one of these sets belongs to U ; also if [x]U =
[y]U , then the corresponding sets are both in U or neither in U . This allows us to define
the sets

BU = {[x]U : JB(x) ∈ U}, CU = {[x]U : JC(x) ∈ U},
FU = {[x]U : JF (x) ∈ U}, IU = {[x]U : JI (x) ∈ U}.

It is easy to see that BU ∪FU ∪IU and CU ∪FU ∪IU are IRLs with the inherited operations,
that (BU∪FU∪IU , FU ,CU∪FU∪IU , IU ) is a compatible quadruple and that BU∪FU∪IU ∈
PU(B) and CU ∪ FU ∪ IU ∈ PU(C). Finally, it can also be shown that A/U is isomorphic
to the gluing (BU ∪ FU ∪ IU )/U ⊕(FU ,IU ) (CU ∪ FU ∪ IU )/U (see Proposition 3.3 in [1]
for a similar instance).

6 Amalgamation Property

The gluing construction can be seen as a way of finding a (strong) amalgam of two algebras
B and C in the particular case where the common subalgebra A corresponds to the union of
a congruence filter and an ideal of both B and C.

Let us be more precise. Let K be a class of algebras of the same signature. A V-formation
in K is a tuple (A, B, C, i, j) where A, B, C ∈ K and i, j are embeddings of A into B, C,
respectively. Given two classes of algebras K and K′ of the same signature and a V-formation
(A, B, C, i, j) in K, (D, h, k) is said to be an amalgam of (A, B, C, i, j) in K′ if D ∈ K′ and
h, k are embeddings of B, C, respectively, into D such that the compositions h ◦ i and k ◦ j

coincide. In particular, (D, h, k) is a strong amalgam if h ◦ i[A] = k ◦ j [A] = h[B] ∩ k[C].

A

B

C

D

i h

j k

K has the amalgamation property with respect to K′ if each V-formation in K has an
amalgam in K′. In particular, K has the amalgamation property (AP) if each V-formation in
K has an amalgam in K.
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Now, let (B, F, C, I ) be a compatible quadruple, and let us call P the subalgebra of B
(equivalently, C) with domain F ∪ I . Clearly P embeds into both B and C; let us name the
embeddings with iB, jC respectively. Similarly, by construction both B and C embed in the
gluing B ⊕P C. Let us denote these embeddings by hB, kC , respectively.

Then the following can be directly checked.

Proposition 6.1 Let (B, F, C, I ) be a compatible quadruple as above. Then (B ⊕P

C, hB, kC) is a strong amalgam of (P, B, C, iB, jC).

In this section we present two applications of the gluing and partial gluing constructions,
respectively, where the gluing constructions shed some light on when amalgamation holds
in classes of (bounded) IRLs.

P

B

C

B ⊕P C

iB hB

jC kC

6.1 Generalized Rotations

We observe that the generalized n-rotation construction introduced in [7] is actually an
example of gluing and we generalize this construction to the non-commutative case, using
the gluing perspective.

The generalized n-rotation, for n ≥ 3, defined in [7] is itself inspired by ideas in
Wroński’s reflection construction for BCK-algebras [28] and generalizes in this context the
(dis)connected rotation construction developed by Jenei [20, 21] for ordered semigroups. In
these constructions given a CIRL, and also more generally in [17] given a topped residuated
lattice (not necessarily commutative or integral), a bounded involutive structure is produced,
obtained by attaching below the original CIRL a rotated copy of it. On the other hand, the
generalized rotation takes an CIRL and generates a bounded CIRL, which is not necessarily
involutive, by attaching below it a rotated (possibly proper) nuclear image of the original.
The generalized n-rotation, for n ≥ 3, further adds a Łukasiewicz chain of n elements, n−2
of which are between the original structure and its rotated nuclear image (see Fig. 4 for a
sketch).

We introduce the non-commutative version of the generalized n-rotation, building on the
construction in [17], and we apply it to IRLs.

We first recall from [17] that the disconnected rotation of an IRL A is the FLew-algebra
A∗ whose lattice reduct is given by the union of A and its disjoint copy A′ = {a′ : a ∈ A}
with dualized order, placed below A: for all a, b ∈ A,

a′ < b, and a′ ≤ b′ iff b ≤ a.

In particular, the top element of A∗ is the top 1 of A and the bottom element of A∗ is the
copy 0 := 1′ of the top 1. A is a subalgebra, the products in A′ are all defined to be the
bottom element 0 = 1′, and furthermore, for all a, b ∈ A,

a · b′ = (b/a)′, b′ · a = (a\b)′;

a\b′ = a′/b = (b · a)′, a′\b′ = a/b, b′/a′ = b\a.
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Fig. 4 The gluing of the disconnected rotation of an IRL A with its 8-lifting: A∗ ⊕P (Ł8 ⊕1 A), where
P = (A, 0)

A nucleus on a residuated lattice A = (A,∧,∨, ·, \, 1) is a closure operator δ on
A that satisfies δ(x)δ(y) ≤ δ(xy), for all x, y ∈ A. It is known that then Aδ =
(δ[A], ∧,∨δ, ·δ, \, δ(1)) is a residuated lattice, where x∨δ y = δ(x∨y) and x ·δ y = δ(xy).

The generalized disconnected rotation Aδ of a IRL A with respect to a nucleus δ on A
serves as a non-commutative version of the construction given in [2] (which in turn was
inspired by [9]). It differs from the disconnected rotation above in that it replaces A′ with
δ[A]′ = {δ(a)′ : a ∈ A}, where δ(a)′ is short for (δ(a))′. It is easy to see that then with
respect to the above order we have δ(a)′ ∧ δ(b)′ = δ(δ(a)∨ δ(b))′. Moreover, for all a ∈ A,
b ∈ δ[A],

a\b′ = (δ(ba))′ and b′/a = (δ(ab))′.
The proof that Aδ is a residuated lattice is a very small variation of the analogous proof

for A∗, given in Section 6 of [17]. In particular, the product is well-defined given the fact that
a\b′ = a′/b = (δ(b · a))′. For an in-depth analysis of this and other rotation constructions,
see [15].

Clearly, the disconnected rotation is the special case of a generalized disconnected rota-
tion where the nucleus is the identity map. Now, the generalized n-rotation Aδ

n of an IRL
A with respect to a nucleus δ and n ≥ 3 is defined on the disjoint union of Aδ and
{�i : 0 < i < n−1}. We also set �0 = 0 and �n−1 = 1, the bounds of Aδ . The order extends
the order of Aδ by

b < �1 < . . . < �n−2 < a,

for all a ∈ A and b ∈ δ[A]; see the rightmost structure of Fig. 4. The operations extend
those of Aδ , of the n-element Łukasiewicz chain Łn, where 0 = �0 < �1 < . . . < �n−2 <

�n−1 = 1, and for 0 < i < n − 1:

a�i = �i = �ia, b′�i = 0 = �ib
′.

The proof that the resulting structure is an FLew-algebra is an easy combination of the proofs
of [17] and [7], but it also follows from Proposition 6.2 below. We mention that in [7] the
generalized n-rotation is defined with respect to nuclei that preserve the lattice operations,
thus the construction we propose here is more general also in the commutative case. The
subvariety MVRn of FLew generated by the generalized n-rotations of CIRLs where the
nuclei preserve the lattice operations is axiomatized in [7]. This class of algebras contains
as subvarieties, among others, the varieties of: Gödel algebras, product algebras, the variety
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generated by perfect MV-algebras, nilpotent minimum algebras, n-contractive BL-algebras,
and Stonean residuated lattices.

We now show that the generalized n-rotation is a special case of a gluing. We refer to 1-
sums of the kind Łn⊕1 A as n-liftings of an IRL A. Then generalized n-rotations are gluings
of disconnected rotations and n-liftings.

Proposition 6.2 The generalized n-rotation Aδ
n of an IRL A with respect to a nucleus δ for

n ≥ 3 is isomorphic to the gluing Aδ ⊕(A,{0}) (Łn ⊕1 A) of the generalized disconnected
rotation Aδ and the 1-sum Łn ⊕1 A over A, {0}.

Proof First we show that the conditions of the gluing are satisfied. Note that A is a congru-
ence filter strictly above all other elements of Aδ and Łn ⊕1 A, and {0} is a shared lattice
ideal. For all x ∈ Aδ − A = δ[A]′, there is y ∈ A with x = δ(y)′, so x\0 = (δ(y))′\1′ =
δ(y)/1 = δ(y) ∈ A; also 0\x = 1 ∈ A. Therefore, x θA 0 and σA(x) = min[x]A = 0.
Furthermore, since all elements in (Łn ⊕1 A) − (A ∪ {0}) are 0-divisors, γ does not need
to be defined. Moreover, since σA(x) = 0, for all x ∈ Aδ − A, σ is clearly absorbing. Thus
(Aδ, A) is a weak lower-compatible pair.

To show that (Łn ⊕1 A, {0}) is an upper-compatible pair, first note that {0} is a lattice
ideal strictly below all other elements. Moreover, since being an I -divisor here means being
a 0-divisor, we have �(x) = x\0 and r(x) = 0/x, for all x ∈ (Łn ⊕1 A) − (A ∪ {0}) =
Łn − {0, 1}.

Now we prove that (Aδ, A, Łn ⊕1 A, {0}) is a compatible quadruple:

(1) All elements of Łn − {1} are 0-divisors, thus the first condition is satisfied.
(2) If c, d ∈ Łn − {0}, with cd = 0, then 0x = x0 = 0 = σA(x) for all x ∈ δ[A]′ − {0}.
(3) δ[A]′ is closed under join, so this condition is vacuously true.
(4) (Łn ⊕1 A) − {0} has a least element �1, so this condition is also vacuously true.

It is clear that Aδ and Łn ⊕1 A are subalgebras of the gluing and also of the generalized
n-rotation and they are ordered the same way in both of these structures. Finally, for �i ∈
Łn − {1, 0}, 1 < i < n − 1 and δ(a)′ ∈ δ[A]′, we have �iδ(a)′ = 0 in both the generalized
n-rotation and in the gluing.

In [3, Theorem 3.11], it is shown that a variety V of semilinear CIRLs has the AP if
and only if the variety generated by generalized n-rotations of chains in V with respect to a
nucleus definable by a term in the language of residuated lattices, has the AP. This allows
to transfer known results about the AP in relatively tame varieties of CIRLs, to varieties of
FLew-algebras that are more complicated to study. For instance, since basic hoops, Wajsberg
hoops, cancellative hoops, Gödel hoops, all have the AP, so do the varieties generated by
their generalized n-rotations ([3], Corollary 3.12).

We show that one can go in the same direction also in the non-commutative case, with
the following bridge result.

Proposition 6.3 Let δ be a term-defined nucleus for a class K of IRLs, and let n ≥ 3. The
following are equivalent:

(1) K has the amalgamation property;
(2) the class of generalized n-rotations {Aδ

n : A ∈ K} has the amalgamation property.
(3) the class {Aδ

m : A ∈ K,m − 1 divides n − 1} has the amalgamation property.
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Proof In this proof, let us denote with Kδ
n the class of the generalized n-rotations via δ

of algebras in K. We first show (1) ⇔ (2). The key idea here is that homomorphisms of
generalized n-rotations are uniquely determined by their restriction to the upper-compatible
triple in the gluing: i.e., the IRL and the Łn chain. This is due to the fact that the lower-
compatible triple is a rotation whose domain is A∪ δ[A]′ for some IRL A, and the elements
δ(a)′ ∈ A are such that δ(a)′ = a\0, thus their homomorphic images are determined by
those on A.

More precisely, any homomorphism h : A → B, for A, B IRLs, extends to a homomor-
phism h̄ : Aδ

n → Bδ
n in the following way:

h̄(a) = h(a), h̄(δ(a)′) = δ(h(a))′ h̄(li ) = li for all i : 1 . . . n − 1

And vice versa, given any homomorphism k : Aδ
n → Bδ

n the restriction kA to A is a
homomorphism from A to B. Indeed, given a ∈ A, suppose k(a) ∈ Bδ

n − B. Then k(an)

= k(a)n = 0Bδ
n
, but an ∈ A, since A is a congruence filter of the disconnected rotation.

This leads to a contradiction, since ¬(an) = an\0 = δ(an)′, thus (¬(an))2 = 0, but

k((¬(an))2) = (¬(k(an)))2 = (¬0)2 = 12 = 1 �= k(0) = 0.

So, a ∈ A implies k(a) ∈ B. Moreover, h is an embedding iff h̄ is an embedding, and if k

is an embedding then clearly kA is an embedding.
Thus, suppose that K has the amalgamation property, and consider a V-formation in Kδ

n:
Aδ

n, Bδ
n, Cδ

n with embeddings i : Aδ
n → Bδ

n, j : Aδ
n → Cδ

n. Then one can consider the
restrictions of i and j to A, and obtain a V-formation in K, given by A, B, C and the embed-
dings iA, jA. This has an amalgam, say D with embeddings f : B → D, g : C → D such
that f ◦ i = g ◦ j . Thus it follows from what was shown before that Dδ

n is going to be an
amalgam for the V-formation in Kδ

n, with embeddings f̄ , ḡ.
Similarly, supposing that Kδ

n has the amalgamation property, we consider a V-formation
in K: A, B, C ∈ K and embeddings k : A → B, l : A → C. We take the corresponding V-
formation in Kδ

n: Aδ
n, Bδ

n, Cδ
n with embeddings k̄, l̄. The amalgam in Kδ

n is going to be some
Dδ

n, with D an IRL, and embeddings s : Bδ
n → Dδ

n, t : Cδ
n → Dδ

n. Thus D with embeddings
sB, tC are an amalgam for the V-formation in K. Therefore, (1) and (2) are equivalent.

While (3) clearly implies (2), (2) ⇒ (3) can be shown again via the fact that homo-
morphisms of generalized n-rotations are uniquely determined by their restriction to the
upper-compatible triple in the gluing. In particular, consider a V-formation Aδ

j , Bδ
k, Cδ

l , with

Aδ
j embedding in the other two. If the amalgam in K of A, B, C is D, then it is routine to

check that the desired amalgam is given by Dδ
lcm{k,l}.

6.2 A 2-potent Variety of FLew-Algebras

We are now going to study a variety in which the subdirectly irreducible members can be
characterized as partial gluings of a class of algebras. More precisely, as partial gluings
of simple 2-potent (i.e., satisfying x2 = x3) CIRL-chains. Let us consider totally ordered
FLew-algebras that are 2-potent, and such that for every x, y

x = 1 or x · (x ∧ y) ≤ (x ∧ y)2.

Equivalently, for y ≤ x < 1, we have xy = y2. The above is a positive universal first-order
formula, thus by results in [13] these structures generate a variety of MTL-algebras that
satisfy x2 = x3 and

x ∨ ((x · (x ∧ y))\(x ∧ y)2) = 1.
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Fig. 5 A subdirectly irreducible algebra in GL2

We will call this variety of FLew-algebras GL2. One can easily see that the finite chains in
this variety are of the form shown in Fig. 5.

More in detail, we will show that any GL2-chain consists of subintervals made of sim-
ple 2-potent CIRL-chains, and it can be characterized as partial gluings of such chains.
Using this representation, we will show that the amalgamation property fails for the class of
GL2-chains. In particular, using their representation as partial gluings will allow us to fully
characterize their subalgebras and determine exactly which V-formations have an amalgam.

First, let us show how we can iterate the partial gluing construction in this case. For
example, we consider three simple 2-potent CIRL-chains S1, S2 and S3, as in Fig. 6.

Consider the triple (S1, σ1, γ1) where the implication in S1 is redefined to be: x → y = 1
iff x ≤ y, and undefined otherwise, and furthermore for all a with x2 ≤ a ≤ x, we have

σ1(a) = y2, γ1(a) = y, σ1(1) = γ1(1) = 1.

Moreover, consider the triple (S2, �2, r2) where the maps �2, r2 have empty domain.

Lemma 6.4 (S1, σ1, γ1) is a lower-compatible triple and (S2, �2, r2) is an upper-
compatible triple.

Proof For all a, b ∈ S1 − {1}, we have σ(a) ≤ b ≤ γ (a), which implies that the two
operators form a residuated pair. In a lower-compatible triple the implication x → y is
defined iff σ(x) ≤ y and x �≤ y, and we can show that this holds in (S1, σ1, γ1). Indeed,
notice that for all x, y such that y2 ≤ x, we have σ1(x) ≤ y and by definition x → y is
undefined if and only if x �≤ y. Also, it follows from direct computation that σ1 is a strong
conucleus, γ1 is a closure operator, and cd = dc ≤ σ1(c) for all c, d ∈ S1, d �= 1. Thus
(S1, σ1, γ1) is a lower-compatible triple.

(S2, �2, r2) is an upper-compatible triple since all the products are defined and all other
properties are vacuously true.

Moreover, we can consider the ideal I = {0} with �I = 0, where 0 is the bottom element
of the chain, and both assumptions A1, A2 are satisfied. Also, conditions A3, A4 are triv-
ially satisfied since the algebras considered are chains. Thus, letting τ2 = (σ1, γ1, �2, r2),
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Fig. 6 The iterated partial gluing of three simple 2-potent chains

we can define the partial gluing S1 ⊕τ2 S2, that is a total IRL since S2 has a coatom (see
Theorem 3.11).

Similarly, we consider the upper-compatible triple (S3, �3, r3) where again �, r have
empty domain. Now, we also consider S1 ⊕τ2 S2 where x → y is defined and equal to 1 iff
x ≤ y, and where for all a : x2 ≤ a ≤ x, and b : y2 ≤ b ≤ y we have

σ(a) = x2, γ (a) = x, σ (b) = y2, γ (b) = y, σ (1) = γ (1) = 1.

Building on the same line of reasoning as Lemma 6.2, (S1⊕τ2 S2, σ, γ ) is a lower compatible
triple, and we can define the partial gluing (S1 ⊕τ2 S2) ⊕τ3 S3 where τ3 = (σ, γ, �, r). This
process can be iterated, and provides a way of constructing a partial gluing of a finite family
of simple chains, indexed by a totally ordered set of indexes. Let us now give a more general
definition, in order to be able to construct a partial gluing of a family of algebras, indexed
by an arbitrary totally ordered chain with a largest element.

We consider a family of algebras {Ai}i∈I, where: each Ai is a simple 2-potent CIRL-
chain with a coatom ci and a bottom 0i ; Ai ∩Aj = {1} for all i, j ∈ I ; I = (I,≤) is a totally
ordered index set with largest element i0. We will now define the iterated partial gluing of
{Ai}i∈I , and denote it with

⊕
I Ai , as follows. The domain of

⊕
I Ai is given by

⋃
i∈I Ai .

The order is defined by x ≤ y iff either:

(1) x, y ∈ Ai for some i ∈ I and x ≤Ai
y; or

(2) x ∈ Ai, y ∈ Aj and i < j ,
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For each Ai , and for all x �= 1, let σi(x) = 0i , γi(x) = ci , and σi(1) = γi(1) = 1. The
product and implication are as follows:

x · y =
⎧⎨
⎩

x ·Ai
y if x, y ∈ Ai for some i ∈ I

σi(x) if x ∈ Ai, y ∈ Aj and i < j

σj (y) if x ∈ Ai, y ∈ Aj and j < i

x → y =
⎧⎨
⎩

ci0 if x, y ∈ Ai for some i ∈ I and x �≤ y

γj (y) if x ∈ Ai, y ∈ Aj and j < i

1 if x ≤ y

Proposition 6.5 Let {Ai}i∈I be a family of simple 2-potent CIRL-chains Ai , each with a
coatom ci and a bottom 0i , such that Ai ∩ Aj = {1} for all i, j ∈ I , and I = (I,≤) a
totally ordered index set with a largest element i0. Then the iterated partial gluing

⊕
I Ai

is a CIRL.

Proof The order is a lattice order (since it is total), with 1 being the top. Let us now notice
that for each Ai , the operators σi, γi are a residuated pair that respects the conditions of
a lower compatible triple, that is, σi is a strong conucleus, γi is a closure operator on Ai ,
and xy, yx ≤ σ(x) for all x, y �= 1. Moreover, each Ai can also be given the structure
of an upper compatible triple where �, r have empty domain. This intuition allows us to
adapt most of the proof from the corresponding one for the partial gluing in Theorem 3.11.
Indeed, suppose that one restricts to checking two components at a time, say Ai , Aj with
i < j . Then the operations involving their elements are defined in the same way as if
it were a partial gluing between: the lower component seen as a lower compatible triple
(Ai , σi, γi) (where the implication is redefined to be x → y = 1 iff x ≤ y, and undefined
otherwise, we consider the ideal I = {0i} and �I = 0i), and the upper component seen
as an upper compatible triple (Aj , �, r) with �, r with empty domain, with the only caveat
that the coatom ci0 is the one of the whole structure. With this in mind, we proceed to check
associativity and residuation.

Let us start with the associativity of the product, we distinguish the following cases.
We want to show that for all elements x, y, z ∈ ⊕

I Ai , (xy)z = x(yz). If we consider
x, y, z belonging to up to two different components, the proof is as the one in Theorem
3.11 because of the above observation, considering that all products here are defined. We
now need to check the cases where x ∈ Ai, y ∈ Aj , z ∈ Ak for some distinct i, j, k ∈
Ai . Suppose without loss of generality that i is the smallest index in the order. Then it
follows by the definition of the operations that all products involving the three elements
((xy)z, x(yz), (yx)z, y(xz), etc.) have value σi(x) = 0i . Associativity follows. Thus, the
product is a commutative monoidal operation with unit 1.

It is left to show that residuation holds, that is, for all x, y, z ∈ ⊕
I Ai , xy ≤ z iff y ≤

x → z. If the elements x, y, z belong to up to two different components, the proof is
a simplified version of the one in Theorem 3.11, as observed above. Let us then check
the cases where the elements x, y, z belong to three distinct components. Without loss of
generality, let us consider x ∈ Ai , y ∈ Aj , z ∈ Ak and i < j < k. Then we have the
following cases:

• The inequalities xy = 0i ≤ z and y ≤ x → z = 1 both hold.
• Similarly, xz = 0i ≤ y and z ≤ x → y = 1 both hold.
• Finally, both inequalities yz = 0j ≤ x and z ≤ y → x = γi(x) fail.

This completes the proof.
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Moreover, if I is a totally ordered finite set of indexes, the above definition of iterated
partial gluing corresponds to iterating the partial gluing construction as in the above example
with the algebras S1, S2, S3. Indeed:

Lemma 6.6 Let {Ai}i∈I be a family of simple 2-potent CIRL-chains Ai , each with a coatom
ci and a bottom 0i , such that Ai ∩ Aj = {1} for all i, j ∈ I . Let I be a totally ordered set
with largest element i0 such that I − {i0} has a largest element i1. Then:
(1) (

⊕
I−{i0} Ai , σ, γ ) is a lower compatible triple, where: the implication is redefined to

be x → y = 1 iff x ≤ y, and undefined otherwise; if x ∈ Ai − {1}, σ(x) = σi(x) =
0i , γ (x) = γi(x) = ci , σ(1) = γ (1) = 1.

(2) (Ai0 , �, r) is an upper-compatible triple where �, r have empty domain.
(3)

⊕
I Ai

∼= (
⊕

I−{i0} Ai ) ⊕τ Ai0 , with τ = (σ, γ, �, r) and I = {0} with �I = 0.

Proof (1) can be shown similarly to Lemma 6.2. (2) is clear, since all conditions are trivially
satisfied. For (3), the partial gluing can be defined since the conditions (A1) − (A4) are
vacuously satisfied. The fact that the two IRLs are isomorphic can be checked directly using
the definitions.

We will now show how to characterize GL2-chains with iterated partial gluings. For a
GL2-chain A and a ∈ A, let us now define A(a) = {x ∈ A : x2 = a2}.

Lemma 6.7 Let A be a GL2-chain and a, b ∈ A. Then:

(1) If a ≤ b < 1, then ab = min A(a).
(2) If a ≤ b, then a → b = 1.
(3) If a < b < 1 and A(a) = A(b), then A has a coatom c and b → a = c.
(4) If a < b < 1 and A(a) �= A(b), then b → a = max A(a).

Moreover, if A has no coatom, then it is a Gödel algebra.

Proof For (1), note that if a ≤ b < 1, then using the defining property for GL2, we get
a2 ≤ ab ≤ (a ∧ b)2 = a2 so ab = a2 = min A(a). (2) always holds in CIRLs.

Let us prove (3). If a < b < 1 and A(a) = A(b), then for every non-identity element c

of A, we have bc ≤ b2 = a2 ≤ a, and so c ≤ b → a; therefore A has a coatom, which is
equal to b → a, for all a < b �= 1 with A(a) = A(b). If A(c) is a singleton for all c ∈ A

(i.e. A is a Gödel algebra), then A may have no coatom, but if there is at least one non-trivial
A(c), then A has a coatom.

For (4) suppose a < b < 1 and A(a) �= A(b), then for every c ∈ A(a), we have
bc = a2 ≤ a, but for d > a with A(d) �= A(a), we have bd ≥ (b∧d)2 �= a2, so bd �∈ A(a),
hence bd �≤ a. Therefore, A(a) has a maximum element and b → a = max A(a), for all
non-identity b > a with A(a) �= A(b).

If A has no coatom, then A(a) = {a} for each a ∈ A by (3), thus every element of A is
idempotent. Therefore, A is a Gödel algebra.

We are now ready to characterize GL2-chains as iterated partial gluings of simple chains.

Proposition 6.8 The chains in GL2 are exactly the iterated partial gluings of simple
bounded CIRL-chains with a coatom over a totally ordered index set with both a bottom and
a top element.
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Proof For a chain A in GL2 we denote by A2 = {a2 : a ∈ A} = {a : a = a2} the set of
idempotent elements of A (equivalently all squares of A). Note that for a, b ∈ A we have
A(a) = A(b) iff a2 = b2; also for every a ∈ A we have A(a) = A(a2). Moreover, if
A(a) �= A(b), then a < b iff for all x ∈ A(a) and y ∈ A(b) we have x < y. Therefore,
the collection {A(a) : a ∈ A} is equal to the collection {A(s) : s ∈ A2}, it partitions A into
equivalence classes, which are intervals, and these intervals are linearly ordered in A; also
A(1) = {1}. So, A is the order-theoretic ordinal sum of the chains A(s) along A2.

Moreover, we have seen in the proof of Lemma 6.7 that for all a ∈ A, A(a) has a
maximum element whenever there is a b < 1 strictly larger that a. Notice now that if such a
b does not exist, then A(a) is the biggest interval below 1, which necessarily has a maximum
element by the preceding paragraph (the coatom of A), unless A is a Gödel algebra. But
even if A is a Gödel algebra, then A(a) = {a}, so A(a) has a maximum element.

We define I := {max A(a) : a ∈ A − {1}}, the set of all these maximal elements, and
note that {A(i) : i ∈ I } = {A(a) : a ∈ A−{1}}. For i ∈ I we define the set Ai := A(i)∪{1}
and note that it supports the structure of a simple 2-potent integral residuated chain Ai ;
the order and the multiplication are inherited by A and all interesting divisions produce the
coatom of Ai . We mention that the structure of each A(i), for i ∈ I , is that of an arbitrary
bounded chain.

We now claim that A is the iterated gluing of the algebras {Ai}i∈I, where for x ∈ A(i),
σ(x) = min A(i) and γi(x) = max A(i)(= i). Indeed it follows from the definition that the
domain and the order coincide. The monoidal operation inside each Ai coincides with the
one inherited from in A: for z, w ∈ A(i) we have zw = z2 = w2. Also, for x ∈ Ai, y ∈ Aj

with j < i, we have xy = y2 = σ(y). For the implications x → y with y < x, we have that
if A(x) = A(y), then x → y = c, the coatom of the chain A, and if A(y) = A(i) �= A(x)

where i = max A(y) ∈ I , then x → y = max A(y) = γi(y).
We now show that given any family {Ai}i∈I of simple 2-potent chains (with a coatom),

their iterated partial gluing belongs to GL2. Indeed if x, y ∈ Ai − {1}, then x · (x ∧ y) =
x2 = y2 = (x ∧ y)2. Also, if x ∈ Ai − {1}, y ∈ Aj − {1}, j < i, then x · (x ∧ y) = x · y =
σ(y) = y2 = (x ∧ y)2, and x · (x ∧ y) = x · x = (x ∧ y)2. As residuated lattices are
determined by their order and multiplication reducts, the result follows.

We are now going to show that GL2 is generated by its finite members, that is, it has the
finite model property (or FMP). First we need the following technical lemma.

Lemma 6.9 Let A be a chain in GL2, X a subset of A and 〈X〉 the subalgebra of A
generated by X.

(1) If X consists solely of idempotents, and for all x ∈ X, A(x) is a singleton except
possibly for A(m) in case X − {1} has a maximum element m, then 〈X〉 = {1} ∪ X.

(2) Otherwise, if either X contains a non-idempotent element or if A(x) is not a singleton
for some non-maximal element x of X − {1}, then A has a coatom c and

〈X〉 = X ∪ {min A(x) : x ∈ X} ∪ {max A(x) : x ∈ X} ∪ {1, c, min A(c)}.

Proof Clearly, 1 needs to be in 〈X〉. Also, closure under the lattice operations does not
increase the original set. From Lemma 6.7, x2 = min A(x). Also, the only other elements
that are generated are: (i) the coatom c, when there is an A(x) such that A(x) ∩ X is not
a singleton (i.e., X does not consist solely of idempotents) and (ii) max A(x), when there
is a block A(y) ∩ X strictly between A(x) ∩ X and A(1), as well as the ones obtained by
interactions of (i) and (ii).
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1. In the first case, X is closed under multiplication, as for x, y ∈ X − {1}, we have
xy = (x ∧ y)2 ∈ {x2, y2} = {x, y}. Also, for x, y ∈ X − {1} with x < y, the set A(x) is a
singleton {x} and so A(x) �= A(y), hence y → x = max A(x) = x.

2. In the second case, either X has a non-idempotent element, which also is present in
〈X〉, or every element in X is idempotent and there is some non-maximal element x of
X − {1} such A(x) is not a singleton, in which case there also exists a y > x in X − {1}
(as x is non-maximal there) and A(y) �= A(x) as x, y are distinct idempotents; hence y →
x = max A(x), where max A(x) �= x, as A(x) is not a singleton, hence z is not idempotent
in 〈X〉. In any case, 〈X〉 contains a non-idempotent element w. Then A has a coatom c,
which is equal to w → w2 and which is in 〈X〉. Closure under multiplication is equivalent
to closure under squares, which is equivalent to containing the bottom of the block of an
element (since a2 = min A(a), for all a ∈ A.) We need to consider only implications of the
form a → b, for b < a �= 1. If A(a) = A(b), then a → b = c, and if A(a) �= A(b) then
a → b = max A(b). Conversely, if b ∈ 〈X〉 − {1, c}, max A(b) = c → b ∈ 〈X〉, since
c ∈ 〈X〉; the special case of b = c also works as c = max A(c).

We are now ready to show the following.

Proposition 6.10 The variety GL2 is locally finite, hence it has the FMP.

Proof By Lemma 6.9, if X is finite of size n, then 〈X〉 is also finite of size at most 3n+3.

We now use the previous results to show that the AP fails in the class of chains in GL2.

Theorem 6.11 The amalgamation property fails for the class of GL2-chains.

Proof Let A be the 3-element Gödel algebra where A = {0 < a < 1}, and also let B and C
be the GL2-chains specified by the following ordered blockings B = {{0} < {a < b} < {1}}
and C = {{0} < {a} < {c} < {1}}; so b2 = a, and the other elements are idempotent.
Note that A is a common subalgebra of B and C, even though A does not contain the top of
B(a) = {a < b}, which is b. Let D be a GL2-chain that is an amalgam of this V -formation.
Since a < c in C, the same is true in D. Since D is a GL2-chain, we have that c → a is the
top of D(a). However, since b2 = a, we have b ∈ D(a), hence b ≤ c → a in D. Since
c → a = a in C, this yields b ≤ a, a contradiction.

Interestingly, we can characterize exactly when the AP fails for GL2-chains.

Proposition 6.12 A V -formation A, B, C of GL2-chains (WLOG we assume thatA ⊆ B,C)
fails to have a GL2-chain amalgam iff A is a Gödel algebra and there is a ∈ A such that
B(a) is not singleton, C(a) is a singleton, and C(a) is not the maximum nontrivial block of
C (or the same with B and C swapped).

Proof The right-to-left direction follows from the same argument in the proof of Theo-
rem 6.11.

We prove the other direction. In case A has some non-idempotent element, then it has a
coatom and hence so do B and C, and the coatom of A coincides with his copy in B and
also in C. Also, if {Ai}i∈I , {Bj }j∈J , and {Ck}k∈K are the associated decompositions, then
I ⊆ J,K and for a ∈ A, the chains A(a), B(a), C(a) share the same top and bottom. We
may assume that I = J ∩K , and we take J ∪K as the index set for D; the order on J ∪K is
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any amalgam of the chain V -formation given by I, J,K . Then for i ∈ I , we take D(i) to be
any amalgam of the bounded chain V -formation given by A(i), B(i), C(i); for j ∈ J − I

we take D(j) = B(j) and for k ∈ K − I we take D(k) = C(k).
Now assume that A is a Gödel algebra. For each a ∈ A, we define D(a) = B(a) ∪ C(a)

and the rest of D is defined as above, except for one case. If both B and C have coatoms
cB, cC not in A, B(c) and C(c) are merged in the obvious way. It is easy to see that B and
C are subalgebras of D with respect to multiplication. Implication could create a problem
by producing the top of B(a) and of C(a), as they could be different elements. This can
happen only when one of them is a singleton, say C(a), and the other is not, say B(a). Also,
this can happen only of the implication is of the form d → x, where x ∈ D(a), x < d < 1,
d �∈ C and D(x) �= D(d). But this is impossible by the assumption.

Using the work in [12], we can actually prove that the AP fails for the variety GL2.
According to the authors a class of algebras K is said to have the one-sided amalgamation
property, or the 1AP, if every V-formation (A, B, C, i : A → B, j : A → C) in K has a
1-amalgam (D, h : B → D, k : C → D) in K, i.e., D ∈ K, k is an embedding, h is a
homomorphism, and h◦ i = k ◦j . Notice that if h is an embedding we have the usual notion
of amalgam. Given a variety V, let VFSI the class of finitely subdirectly irreducible members
of V. In [12, Theorem 3.4], the authors show that if a variety V has the congruence extension
property and VFSI is closed under subalgebras, then V has the AP if and only if VFSI has
the 1AP. Since GL2 is congruence distributive, and the finitely subdirectly irreducibles are
exactly the nontrivial chains (which are clearly closed under subalgebras), we can apply the
mentioned result.

Proposition 6.13 The amalgamation property fails for GL2.

Proof Consider again the V-formation (A, B, C, i, j) in the proof of Theorem 6.11, where
i, j are the inclusion maps and note that all three algebras are FSI. We show that every 1-
amalgam for it is an actual amalgam. Since we have shown that it has no amalgams, via
[12, Theorem 3.4] this concludes the proof.

In particular, we prove that if (D, h : B → D, k : C → D) is a 1-amalgam, then h is
necessarily injective. Notice that the composition h ◦ i = k ◦ j is injective, since both j

and k are injective. Thus, no elements of A are collapsed by h ◦ i. In particular, h does not
collapse i(1) and i(a), i.e., i(a) /∈ ker(h). Therefore, also i(b) /∈ ker(h), since otherwise
i(b)2 = i(b2) = i(a) would be in the kernel as well, and it is not. We conclude that the
kernel of h is trivial, and hence, h is injective.

We remark that if we modify GL2-algebras to be expansions of IRLs with a new constant
c, and be such that for the finitely subdirectly irreducible members they satisfy x = 1 or
x ≤ c, then the subalgebras will also contain c and amalgamation will hold for all such
GL2-chains. Then by Theorem 49 in [23], which allows one to extend the amalgamation
property from the FSI members to the whole variety, the amalgamation property extends to
the variety of all modified GL2-algebras.
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