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Abstract
In the paper we study choice functions on posets satisfying the conditions of heredity and
outcast. For every well-ordered sequence of elements of a poset, we define the correspond-
ing ‘elementary’ choice function. Every such choice function satisfies the conditions of
heredity and outcast. Inversely, every choice function satisfying the conditions of heredity
and outcast can be represented as a union of several elementary choice functions. This result
generalizes the Aizerman-Malishevski theorem about the structure of path-independent
choice functions.
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1 Introduction

The study of choice functions is an important part of the theory of rational decision-making.
The class of choice functions introduced by Plott [10] under the name “path-independent”
turned out to be particularly interesting. A comprehensive description of such choice func-
tions was given by Aizerman and Malishevsky in [1]. Later it turned out that these choice
functions appear naturally in the theory of nonmonotonic logic [9] and the stable contract
theory [2, 6, 7]. In the latter theory, the choice functions were used to describe preferences of
agents, and choice functions proposed by Plott were the most appropriate for this situation.

In the theory of contracts, it was revealed the need for generalization and transfer of
the concept of such choice functions to partially ordered sets (posets). For example, the
papers [2–4, 6, 8] considered contracts with some intensity between 0 and 1. To ensure the
existence of stable systems of contracts, the authors had to transfer the concept of path-
independent choice functions to sets equipped with partial order. In what follows we call
such choice functions conservative. In [6], the existence and good properties of stable sys-
tems of contracts under the assumption of conservativeness of choice functions of the agents
were proved.
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However, some important questions remained open: the order of magnitude of the
number of such choice functions, how to construct them, or the structure on the set of con-
servative choice functions. For instance, the authors of [2] limited themselves to giving two
large classes of conservative choice functions; in [6] two particular examples were consid-
ered. But these examples did not exhaust the set of all conservative choice functions. In this
paper, we answer these questions. Namely, for each sequence of elements of a poset P , we
construct the corresponding ‘elementary’ conservative choice function on P . We show that
an arbitrary conservative choice function is represented as the union of several elementary
choice functions. This result generalizes the Aizerman-Malishevsky theorem [1] just like its
infinite variant from [5].

In order to make the presentation more understandable, we first assume that the poset
P is finite. The general case is considered in Section 6. We start with a reminder of some
concepts and statements about posets and choice functions on them.

2 Preliminaries

Posets A poset is a partially ordered set, i.e. a set P equipped with an order relation ≤
(reflexive, transitive, and antisymmetric) on it. Since this relation will not change, the poset
is simply denoted as P . A poset is called linear (or a chain) if any two of its elements
are comparable (x ≤ y or y ≤ x). A poset is called trivial (or an antichain), if any two
elements are incomparable. A more general class of posets covering two previous ones is
distinguished by the transitivity condition of the comparability relation. Structurally, such
posets are the direct sum of chains. Posets of this form were used in [2, 4].

A subset I of P is called an (order) ideal (or a lower set, or a minor set), if y ≤ x ∈ I

implies y ∈ I . For example, the principal ideal I (x) = {y ∈ P, y ≤ x}. The ideal generated
by a subsetA in P is denoted as I (A); I (A) = ∪a∈AI (a). The dual is the concept of a filter;
a filter with each element contains larger ones. A filter generated by a subset A is denoted
as F(A), so that F(A) = {x ∈ P, x ≥ a for some a ∈ A}. The set of all ideals is denoted
by I(P ); it is a complete distributive sublattice of the Boolean lattice 2P of all subsets
in P .

Choice Functions In the classical situation (when the poset P is trivial), a choice function
is a mapping f : 2P → 2P such that f (X) ⊆ X for any X ⊆ P . In decision theory,
choice functions are used to describe a behavior of agents; having access to a variety of
alternatives X the decision-maker selects a subset f (X) from X. A rational decision-maker
chooses the best alternatives in some sense. The rationality conditions of the corresponding
choice function have been intensively studied in the choice theory, see, for example, [1].
Two conditions turned out to be the most popular. These are the heredity and the outcast
conditions.

The heredity property (known also as substitutability or the persistency property): if
A, B ⊆ P and A ⊆ B then f (B) ∩ A ⊆ f (A).

In other words, if an element from a smaller set A is chosen in a larger set B then it
should be chosen in the smaller one.

The outcast property (known also as consistency or as Irrelevance of Rejected Alterna-
tives): if f (B) ⊆ A ⊆ B then f (A) = f (B).

In words – removing ‘bad’ (unselected) elements does not affect the choice.
All these notions are extended to posets without any changes.
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Definition A choice function (CF) on a poset P is a mapping f : I(P ) → I(P ), such that
f (X) ⊆ X for any ideal X in P .

The conditions of heredity and outcast are formulated as above.

Definition A CF on a poset P is called conservative if it has the heredity and outcast
properties.

One can formulate the conservativeness by a single condition ([8]): if f (A) ⊆ B then
f (B) ∩ A ⊆ f (A). We find more convenient to use heredity and outcast separately.

Some Examples

1) Of course, any path-independent CF on a trivial poset is conservative. In particular,
the CF which selects the quota-many best options relatively some linear order on the
ground set P . Note that this linear order has nothing to do with the underlying partial
order on P which is trivial. It is an additional structure needed to define the choice
function.

2) There are interesting examples conservative CFs for non-trivial posets. Suppose we
need a pair of gloves. And if there are both right and left gloves in the menu, we choose
one right glove and one left glove. But if there are no right gloves, we choose two left
ones. And similarly, if there are no left ones, we choose two right ones. Here P is the
direct sum of two exemplar of Z+.

This example can be extended for arbitrary quota. It met in papers [2, 6].
3) ‘Constant’ CFs. Let I be a fixed ideal in a poset P . For an arbitrary ideal X, we put

f I (X) = I ∩ X. It is easy to see that f I is a conservative CF on P .
If a poset P is linear (a chain), then the previous construction gives all conservative

CFs. In fact, set I = f (P ). Since an arbitrary ideal X lies in P , from the heredity we
have the inclusion I ∩ X ⊆ f (X). Due to the linearity of P , either X ⊆ I or I ⊆ X.
In the first case I ∩ X = X, X ⊆ f (X), from where the equality f (X) = X = I ∩ X

comes. In the second case, I ∩X = I . We have the chain I = f (P ) ⊆ f (X) ⊆ P , and
the outcast gives f (X) = f (P ) = I = I ∩ X.

4) In section 3 we provide a series of important examples of conservative CFs.

Some properties of conservative CFs Below we list some simple properties of conserva-
tive CFs.

1. f (f (X)) = f (X) for any ideal X.
Apply the outcast to the chain of inclusions f (X) ⊆ f (X) ⊆ X.

2. Any conservative CF f has the so-called path independence property: for any ideals X

and Y

f (X ∪ Y ) = f (f (X) ∪ f (Y )).

Indeed, f (X) ⊆ X∪Y ; from the heredity we obtain f (X∪Y )∩X ⊆ f (X). Similarly,
f (X∪Y )∩Y ⊆ f (Y ). Hence f (X∪Y ) = f (X∪Y )∩(X∪Y ) ⊆ f (X)∪f (Y ) ⊆ X∪Y .
Using the outcast, we get f (X ∪ Y ) = f (f (X) ∪ f (Y )).

In fact, this equality is true not only for two ideals, but for an arbitrary number of
them. The proof is the same. Note also that the path independence implies the outcast
property, but not the heredity, see [2].
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3. The union of conservative CFs is a conservative CF.
The union ∪j fj of a family (fj , j ∈ J ) of CFs is given by the natural formula:

(∪j fj )(X) = ∪j fj (X)

If all fj are conservative CFs, and f = ∪j fj , we have to check the heredity and outcast
properties for CF f .

Heredity. Let Y ⊆ X. Then, for any j , we have inclusions fj (X) ∩ Y ⊆ fj (Y ).
Hence f (X) ∩ Y = (∪j fj (X)) ∩ Y ) = ∪j (fj (X) ∩ Y ) ⊆ ∪j fj (Y ) = f (Y ).

Outcast. Let f (X) ⊆ Y ⊆ X. Since fj (X) ⊆ f (X), we have the chain fj (X) ⊆ Y ⊆ X

for any j . The outcast for fj implies the equality fj (X) = fj (Y ) for any j , from where
f (X) = f (Y ).

The property 3 means that having several conservative CFs fj one can form new CF
∪j fj which also is conservative. This suggests to look for an enough big stock of ‘sim-
ple’ conservative CFs sufficient for construction of any conservative CF. The constant CFs
are not suitable for this purpose. The thing is that the union of constant CFs is constant
again. But examples 2) and 4) show that there exist non-constant CFs. Thus, we need
more flexible construction of ‘simple’ conservative CFs. To make the idea more transpar-
ent, we will temporarily assume that poset P is finite. In Section 6 we consider the general
case.

3 Elementary Choice Functions

Let A = (a1, ..., ak) (k ≥ 0) be a sequence of elements of a poset P . We use this sequence
to build the following ‘elementary’ CF fA. But first we have to enter one notation. Suppose
that X is an arbitrary ideal in P . Let i = i(A, X) be the first number i, such that ai ∈ X.
In other words, a1, ..., ai−1 do not belong to X, but ai does. If none ai belongs to X, we set
i = k. If k = 0 (that is if A is the empty sequence) we set i = 0.

Definition The elementary CF fA associated with the sequenceA = (a1, ..., ak) is given by
the formula (where X is an ideal in P , i = i(A, X), and I (a1, ..., ai) is the ideal generated
by a1, ..., ai)

fA(X) = X ∩ I (a1, ..., ai).

In particular, f∅(X) = ∅ for any X.
The intuitive meaning of the elementary CF fA associated with the sequence A =

(a1, ..., ak) is the follows. We understand the sequence (a1, ..., ak) as a hierarchy of goals
of our decision-maker, and the importance of goal ai decreases with the growth of i. The
decision-maker tries to reach the most important goal a1 first of all. If it is available, that
is, if a1 lies in the ideal X, he selects it (along with all smaller elements) and settles down
(that is, completes the choice). If the goal a1 is not available, it includes in the choice
all elements of X which are less than a1, and proceeds to achieve the next goal a2. And
so on.

This construction looks the simplest in the case when the poset P is trivial. In this case,
the ideal X is just a subset of P , and ai is the first (the most preferable) element of the
sequence A that got into X. If none of a1, ..., ak belongs to X, fA(X) = ∅.
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Proposition 1 fA is a conservative CF.

Proof If the sequence A is empty, then fA = ∅ and there is nothing to check.
Let us check the heredity. Suppose Y ⊆ X, and y belongs to both Y and fA(X). We

need to show that y ∈ fA(Y ). Let ai be the first term of the sequence A = (a1, ..., ak) that
falls into X. The elements a1, ..., ai−1 do not belong to X, and therefore do not belong to
Y . Hence i′ = i(A, Y ) ≤ i = i(A, X). By the construction fA(X), y ∈ I (a1, ..., ai), that is
y ≤ aj for some j = 1, ..., i. But then y ≤ aj for the same j , and therefore belongs to the
ideal I ′ = I (a1, ..., ai′) and fA(Y ) = Y ∩ I ′.

Let us check the outcast. Let fA(X) ⊆ Y ⊆ X. It is enough to check that fA(Y ) ⊆
fA(X). Let ai be the first element of the sequence which lies in X. Then a1, ..., ai−1 do
not fall in X, and more so in Y . As for ai , it belongs to fA(X) and therefore belongs to
Y . If y ∈ fA(Y ), then y lies under some of a1, ..., ai . And since y ∈ X, then it belongs to
fA(X).

Definition A sequence A = (a1, ..., ak) is compatible with a CF f if, for any i from 1 to k,
ai ∈ f (P − F(a1, ..., ai−1)). (For i = 1, this means a1 ∈ f (P ). Recall that F(a1, ..., aj ) is
the filter generated by a1, ..., aj .)

Proposition 2 If a sequence A is compatible with a hereditary CF f then fA ⊆ f .

Proof Let X be an arbitrary ideal; we need to show that fA(X) ⊆ f (X). Recall how fA(X)

was constructed. We find the first member ai of the sequence a1, ..., ak such that ai ∈ X;
then fA(X) = X ∩ I (a1, ..., ai). Suppose that x is an element of fA(X) and x ≤ aj for
some j ≤ i. Since aj ∈ f (P −F(a1, ..., aj−1)) and f (P −F(a1, ..., aj−1)) is an ideal, we
conclude that x ∈ f (P −F(a1, ..., aj−1)). On the other hand, the setsX and F(a1, ..., aj−1)

do not intersect. Hence we have x ∈ X ⊂ P −F(a1, ..., aj−1), and the heredity of f implies
that x ∈ f (X).

4 TheMain Theorem in the Finite Case

Theorem 1 Let P be a finite poset. Then any conservative CF on P is the union of some
elementary CFs.

Actually we shall prove stronger statement: any conservative CF f is the union of ele-
mentary CFs associated with AC-sequences compatible with f .Here a sequence (a1, ..., ak)

of elements of the poset is called an antichain sequence (AC-sequence) if all ai are
incomparable in P . In the case of trivial poset this assertion turns essentially into Aizerman-
Malishevski theorem. Note that even for enough simple CFs akin the selection of two
best items (see example 1 from Section 2) this decomposition may involve really a lot of
elementary (linear) CFs.

Proposition 3 Let f be a CF on finite poset P satisfying the outcast condition. Suppose
that x ∈ f (X) for some ideal X. Then there exists an AC-sequence A compatible with f

such that x ∈ fA(X).

Proof One can suppose that f is non-empty CF. We construct such a sequence A step by
step.
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Let us discuss the first step of the construction. If x ∈ f (P ), we put a1 = x and terminate
the construction of the sequence. The definition of fA shows that x ∈ fA(X).

So we can assume that x does not belong to f (P ). This is possible only if f (P ) is not
contained in X. Indeed, otherwise f (P ) ⊆ X ⊆ P and from the outcast we get f (P ) =
f (X) and x belongs to f (P ), contrary to the assumption. Hence, the set f (P ) − X is non-
empty. We take a1 to be a minimal element in the set f (P ) − X, put B1 = P − F(a1), and
go to the second step. Note that x /∈ I (a1).

At the k-th step, we have:

a) an AC-sequence (a1, ..., ak),
b) x does not belong to the ideal I (a1, ..., ak),
c) X ⊆ Bk := P − F(a1, ..., ak) (where B0 = P ),
d) for any i from 1 to k, ai is a minimal element of the set f (Bi−1) − X.

In particular, d) implies that the sequence (a1, ..., ak) is compatible with f . As above, we
consider two cases: when x belongs to f (Bk) and when it doesn’t.

If x ∈ f (Bk), we set ak+1 = x and terminate the construction of the sequence A. It is
clear that x ∈ fA(X). Due to b) and c), ak+1 is not comparable with a1, ..., ak .

Now suppose that x /∈ f (Bk). If f (Bk) ⊆ X, then from c) and the outcast we have that
f (Bk) = f (X) and contains x; a contradiction. Hence f (Bk) is not contained in X. Put
ak+1 to be a minimal element of the non-empty set f (Bk) − X. We assert that the extended
sequence (a1, ..., ak, ak+1) also satisfies the properties a)-d).

Let us prove a). Since ak+1 ∈ Bk , ak+1 /∈ F(a1, ..., ak). Therefore we have to show
that ak+1 /∈ I (a1, ..., ak). Suppose that ak+1 ≤ ai for some i ≤ k. Since ai ∈ f (Bi−1),
ak+1 belongs to f (Bi−1) as well and does not belong to X. Since ai is a minimal element
of f (Bi−1) − X (due to d)), we obtain that ak+1 = ai . But this is contrary to the fact that
ak+1 ∈ Bk and Bk (see c)) does not contain ai .

b) We have to show that x does not lie under ak+1. But if x ≤ ak+1, then x belongs to
f (Bk) due to the ideality of f (Bk), which contradicts the assumption that x /∈ f (Bk).

Check c), that is X ⊆ Bk+1, or that X does not intersect with the filter F(ak+1). If there
is an y ∈ X such that y ≥ ak+1, then by ideality of X the element ak+1 also belongs to X,
which contradicts to the choice ak+1 outside X.

Finally, d) follows from the previous d) and the choice of ak+1.
Since the poset P is finite, sooner or later the process ends, and we get an AC-sequence

A such that x ∈ fA(X). �
Proof of Theorem 1. Let g = ⋃

A fA where A runs AC-sequences compatible with
conservative CF f . Due to Proposition 2, any fA ⊆ f , hence g ⊆ f . Due to Proposition 3,
for any x ∈ f (X) we have x ∈ fA(X) for some A, where from f ⊆ g.

5 Join-irreducibility of Elementary Choice Functions

We have shown that any conservative CF is represented as the union of several elementary
CFs. Now we will show that these elementary blocks are ’simple’ in the sense that they no
longer decompose into a union of other conservative CFs. In other words, they are join-
irreducible.

Lemma 1 Let f and g be elementary CFs associated with AC-sequences A = (a1, ..., an)

and B = (b1, ..., bk) respectively, and g ⊆ f . Suppose, that a1 = b1, ..., ai−1 = bi−1 but
ai is different from bi . Then bi < ai (or bi is missing).
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Proof. We will assume that bi is actually present, and consider the ideal X = I (ai, bi).
We state that bi ∈ g(X). If this is not the case, then bi is not the first member of the sequence
B, belonging to X; there is a smaller number j < i, such that bj ∈ X. Since it is not it is
true that bj ≤ bi (due to the incomparability of members of B), then bj ≤ ai . But bj = aj ,
and we again get a contradiction with the incomparability of members of A.

Similarly ai is the first member of the sequence A that falls into X. So f (X) =
I (a1, ..., ai). Therefore, bi ∈ I (a1, ..., ai). bi cannot be less than a1 = b1, ..., ai−1 = bi−1,
because this would contradict the incomparability of members of the sequence B. So
bi ≤ ai . �

Proposition 4 Let f = fA be an elementary CF associated with AC-sequence A =
(a1, ..., an). If f = g ∪ h, where g and h are conservative CFs, then g or h is equal to f .

Proof Using Theorem 1, we decompose g and h into elementary CFs. As a result, we get the
decomposition f = g1 ∪ ... ∪ gl , where each CF gj = fBj is an elementary CF associated
with some AC-sequence Bj = (b

j

1 , ..., b
j
kj

). We want to show, that at least one of these Bj

is equal to A.
Consider one of these sequences B = (b1, ..., bk). For some time, this sequence may

coincide with the sequence A. Let d(B) be the first index i for which bi is different from ai

(for example, bi is simply missing).
Assuming that all Bj are different from A, we get that all d(Bj ) ≤ n. Denote by d the

maximum of the numbers d(B1), ..., d(Bl). We call the index j a ‘leader’ if d(Bj ) = d.
Let us form the ideal X = I 0(a1) ∪ ... ∪ I 0(ad−1) ∪ I (ad), where I 0(a) = {x ∈ P, x <

a} = I (a) − {a}. It is clear that ad is the first member of the sequence A that falls into X.
Because ai (with i < d) does not belong to I 0(ai), and also does not belong to other ideals
I 0(aj ) due to the incomparability with the rest aj . Therefore, f (X) = X and, in particular,
ad ∈ f (X).

Let us now consider gj (X), where j = 1, ..., l; the corresponding sequence Bj is simply
denoted as B = (b1, ..., bk). Let i be the first number for which bi falls into X. It can’t be a
number less than d(B), because for such number j (less than i and so more than the smaller
d) bj = aj and does not belong to X (see Lemma 1). On the other hand, bd(B) is less than
ad(B) (see Lemma 1), and therefore it belongs to X. If j is not a leader, then

gj (X) = I 0(a1) ∪ ... ∪ I 0(ad(Bj ))

(the last term is missing if bd(Bj ) is missing). If j is a leader, then

gj (X) = I 0(a1) ∪ ... ∪ I 0(ad−1) ∪ I (b
j
d)

.
Since b

j
d < ad (by Lemma 1), we see that ad does not belong to any ideal gj (X). In

contradiction with ad ∈ f (X) = ∪j g
j (X).

6 TheMain Theorem in the General Case

We assumed above that the poset P is finite. Now we will consider the general case (finite or
infinite). Everything is done as in the finite case, only finite sequences need to be replaced
by infinite ones, indexed by elements of well ordered sets (or ordinal numbers). Recall that
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a linearly ordered set (I, ≺) is said to be well ordered if any non-empty subset in it has
a minimal element. To be not confused, ideals in the set of indices I will be called initial
segments. Note that a chain (I, ≺) is well ordered if and only if any initial segment of I ,
other than the entire I , has the form [≺ i] = {j ∈ I, j ≺ i} for some i ∈ I .

A well sequence in P is a sequence A = (ai, i ∈ I ) elements of the poset P , which set
of indices I is well ordered. With such a sequence, one can associate the elementary CF fA

on the poset P , which is actually defined as in Section 3. Namely, let X be an ideal in P ;
denote i = i(A,X) the first member of the sequence which belong to X. In other words,
ai ∈ X, and aj /∈ X for j ≺ i. Then fA(X) is equal to the intersection of X with the ideal
in P generated by all aj , j ≺ i. That is

fA(X) = X ∩ I,

where I = ⋃
j≺i(A,X) I (aj ). If there is no such number i, then the ideal I is generated by

all aj , j ∈ I .
It is easy to understand that we can confine ourselves by non-repeating sequences, when

all ai are different. In this case, one can consider A as a subset of P equipped with a well
order ≺.

As in Proposition 1, it is checked that the CF fA is conservative.
The definition of compatibility of a well sequence A = (ai, i ∈ I ) with a CF f remains

the same: for any i ∈ I , we have ai ∈ f (Bi), where Bi = P − ∪j≺iF (aj ). And the same
reasonings as in Proposition 2 show that fA ⊆ f if the sequence A is compatible with a
hereditary CF f .

Theorem 2 Any conservative CF f is the union of elementary CFs fA, where A are well
sequences compatible with f .

As before, the most subtle part of the proof is the construction of well sequences com-
patible with f . The following reasoning resembles Zermelo’s proof of that any set have a
well order.

Namely, let F denote the set of filters F in P , for which f (P − F) = ∅. Let p be a
‘selector’ p : F → P , p(F) ∈ f (P − F). By virtue of the axiom of choice, there are a lot
of such selectors; fix someone.

Definition A tunnel is a subset U in P , equipped with a linear order ≺U , which have the
following property:

(∗) if V is an initial segment in U other than U then V = [≺U x], where x = p(F(V )).
Recall that F(V ) denotes the filter in P generated by the set V . A tunnel U is called

through one if F(U) does not belong to F , that is, if f (P − F(U)) is empty.
By virtue of (∗), the linear order ≺U of any tunnel U is well ordered. Therefore, a tunnel

can be considered as a well sequence that is obviously compatible with CF f . It remains to
show that there are quite a lot of tunnels. But first we need to say about the main property
of tunnels.

Say that a tunnel U ′ continues a tunnel U , if U ⊆ U ′ and U (as an ordered set) coincides
with some initial segment U ′. This define an order relation on the set of all tunnels. The
basic property of tunnels is that this order is linear, i.e. any two tunnels are comparable, one
of them continues the other.
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Lemma 2 Any two tunnels are comparable.

Indeed, let U and V be two tunnels, and W be the largest initial segment in both tunnels,
i.e. W = {x ∈ U ∩ V, [≺U x] = [≺V x], and the restrictions ≺U and �V on this set are
the same}.

We claim, that W is equal to U or V ; this is exactly what should be proved.
Let us assume that this is not the case, and that W is different from U and V . Since

W is an initial segment in U , then, by the property (∗), W has the form [≺U x], where
x = p(F(W)). Similarly, W has the form [≺V y], where y = p(F(W)). So x = y. But
then x = y belongs to bothU and V , hence belongs toW , despite the fact thatW = [≺U x].
A contradiction. �

Corollary 1 For any selector p there exists a unique through tunnel.

Proof Take the union of all tunnels.

The following assertion is a natural generalization of Proposition 3.

Proposition 5 Let X be an ideal in P , and x ∈ f (X). Then there is a through tunnel U

such that x ∈ fU(X).

Proof. For this aim we take a special selector p. Namely, assume that a filter F does not
intersect the ideal X, that is X ⊆ P − F . Then there are two possible situations. The first
one is when f (P −F) is not contained in X; in this case, we choose p(F) outside of X. The
second one is f (P − F) ⊆ X; since X ⊆ P − F then from the Outcast f (P − F) = f (X)

and contains x; in this case, we choose p(F) = x.
Now let U be the through tunnel for the selector p which exists due to Corollary. How

does fU(X) look like? Let V be the largest initial segment of the ‘sequence’ U that does not
intersect X. It can not be entire U , since then F(U) does not intersect X, X ⊆ P − F(U),
and from the outcast property f (X) is empty, contrary to x ∈ f (X).

So V = [≺ u] for u = p(F(V )) (see (∗)). That is, u is the first element of the sequence
U that belongs to X. According to the rule of p, this means that u = x. But in this case
x ∈ fU(X), because x belongs to both X and the ideal I (V ∪ {x}). �

The theorem 2 is now proved in the same way as the theorem 1.

Data Availability All data generated during this study are included in this article.
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