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Abstract
We study the minor relation for algebra homomorphims in finitely generated quasivari-
eties that admit a logarithmic natural duality. We characterize the minor homomorphism
posets of finite algebras in terms of disjoint unions of dual partition lattices and investigate
reconstruction problems for homomorphisms.
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1 Introduction

Minors of an n-ary operation f on a set A are those operations g on A that can be obtained
from f by identifying or permuting arguments, or by adding/deleting inessential arguments.
We write g � f if g is a minor of f . Thus defined, the minor relation � is a preorder on
the set of all operations on A, and the minor poset of A is the corresponding partial order
obtained after identifying operations by the minor equivalence g ≡ f ⇔ (g � f ∧ f �
g). The minor preorder and its associated partial order were introduced in the setting of
clone theory, where they were used to study and characterize equational classes of Boolean
functions (see [13], for instance). Since then, they were the topic of several investigations
(see [3, 7, 8, 24, 28], to name a few). The general idea behind these investigations is to
determine how much information about an operation f can be retrieved from its minors.
In particular, a series of recent papers deals with reconstruction properties, asking which
operations f can, up to minor equivalence, be recovered from (a portion of) their minors (see
[20–23]). We adopt the more general framework of these papers, where not only operations
but arbitrary functions of several arguments f : An → B are considered.
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In this paper, we investigate the minor order in the particular case of algebra homomor-
phisms. More precisely, let A be a class of algebras of the same type and for A, B ∈ A
let f : An → B be a homomorphism. Then, any minor of f is itself a homomorphism
and we are naturally led to study the restriction of the minor poset to the collection of
homomorphisms

⋃{A(An, B) | n ≥ 1} up to minor equivalence, which we call the minor
homomorphism poset. In that perspective, our main tool is the use of natural dualities to
translate various problems about the minor homomorphism poset into their dual equivalents.
If the duality on A is nice enough (logarithmic, in our case), these dual problems turn out
to be easier than the original ones. In particular, we solve problems about reconstructibil-
ity (Section 4) and about finding structural descriptions of the minor homomorphism posets
over finite algebras (Section 5). One purpose of this paper is to demonstrate how to success-
fully apply the theory of natural dualities and thus contribute to the popularization of these
methods in combinatorics.

The theory of natural dualities emerged in the late 1970s in order to give a common
ground for the development of dual equivalences generalizing Stone duality for Boolean
algebras and Priestley duality for distributive lattices. The general idea is that, for a finite
algebra M, it is sometimes possible to find a discrete structure

˜
M based on the same set as M

(therefore often called an alter-ego of M), such that the category of algebras A = ISP(M)

with homomorphisms is dually equivalent to the category of structured topological spaces
X = IScP(

˜
M) of closed subspaces of powers of

˜
M with continuous structure preserving

maps. Simply put, under these circumstances every algebra A ∈ A has a dual topological
structure A∗ ∈ X and every homomorphism A → B has a dual morphism B∗ → A∗. We
build our developments on previous approaches of clone theory in the framework of natural
dualities (see [16–18]).

Products and coproducts are interchanged under a dual equivalence, so the dual of a
homomorphism f : An → B is a morphism f ∗ : B∗ → ∐

n A∗. We restrict our investigation
to quasivarities A = ISP(M) for which there is an alter-ego

˜
M that yields a logarithmic

duality, which means that finite coproducts in the dual category of A are realized by direct
unions (disjoint unions with constants amalgamated). Under these circumstances, a dual
morphism f ∗ as above is easier to work with than f .

Let us point out some of our main achievements. Theorem 4.6 states that, up to minor
equivalence, homomorphisms f : An → B without inessential arguments are determined by
their identification minors (which are the homomorphisms obtained by identifying two argu-
ments of f ). Proposition 4.4 states that homomorphisms f : An → B are totally asymmetric
in the sense that they have trivial invariance group.

Theorem 4.6 and Proposition 4.4 build on Proposition 4.2, which shows that the principal
ideal generated in the minor homomorphism poset by a homomorphism f : An → B with n

essential arguments is anti-isomorphic to the full n-element partition lattice. Theorem 5.13
and its Corollary 5.15 completely characterize the minor homomorphism posets of finite
members of A in terms of disjoint unions of such partition lattices, by identifying their
maximal elements.

We illustrate our developments with numerous examples. In particular, we show that
even though the minor homomorphism poset of an algebra encodes very little information
about this algebra, it is sometimes enough to characterize some of the algebra’s properties.
For instance, we show that it is possible to recognize finite complemented lattices among
distributive lattices by looking at their minor homomporphism posets (Proposition 5.21).

The paper is organized as follows. In Section 2 we give a brief introduction to the theory
of natural dualities and we introduce the examples of dualities that accompany us throughout
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the paper. We then recall the definition of the minor preorder and the constructions related to
it. In Section 3, we introduce the minor homomorphism posets and develop the techniques
to investigate them through duality. In particular, we show how and why the setting of log-
arithmic dualities is especially well suited for the investigation of these posets. Section 4 is
devoted to the description of principal ideals in minor homomorphism posets and to recon-
structibility problems. In the finite case, we show the importance of maximal elements in
the description of these posets. Therefore, Section 5 focuses on identifying these maximal
elements to characterize the minor homomorphism posets in terms of disjoint unions of
partition lattices. We conclude the paper with final remarks and topics for further research.

2 Preliminaries

In this section, we set some notation and vocabulary for the rest of the paper. We recall the
basic constructions of natural dualities, which we illustrate with a number of examples. In
Section 2.4 we recall the definition of the minor relation and the concepts related to it.

2.1 Posets, Partitions and Permutations

If P = 〈P,≤〉 is a partially ordered set (in short, a poset) and p ∈ P , then p↓ and p↑
denote the principal ideal and the principal filter generated by p, respectively. We use P∂

to denote the dual poset of P, that is, the poset 〈P,≤∂ 〉 defined by p ≤∂ q iff q ≤ p.
Recall that a poset L is called a lattice if every pair {a, b} of elements of L has a greatest

lower bound a ∧ b and a least upper bound a ∨ b. A lattice L is distributive if it satisfies the
equation x∧(y∨z) = (x∧y)∨(x∧z) and its dual. Distributive lattices can be characterized
as those lattices which neither contain the pentagon lattice N5 nor the diamond lattice M3
as sublattice (see, e.g., [14, Section 3.II.1]).

If π is a partition of a set S, we often refer to its elements as blocks. We denote by �n the
set of partitions of [n] := {1, 2, . . . , n}. In particular, we have �0 = {∅} and �1 = {{1}}.
We use the usual lattice order on �n, which is defined by π1 ≤ π2 iff for every B ∈ π1
there is some C ∈ π2 such that B ⊆ C. We refer to 〈�n,≤〉 as the n-th partition lattice �n.
The cardinality of �n is given by the Bell number Bn for every n ≥ 0 (see [27]).

Finally, we denote by Sn the n-th symmetric group, that is, the group of permutations
over [n].

2.2 Natural Dualities

The theory of natural dualities emerged in the late 1970s in order to give a common frame-
work to develop and study dual equivalences for categories of algebras, generalizing Stone
duality for Boolean algebras and Priestley duality for distributive lattices. Natural dualities
are at the core of our investigation of the minor posets of homomorphims. Here we only
recall the basic definitions of this theory. We refer the reader to [6] for a more detailed
reference.

Let A = ISP(M) be the quasivariety generated by a finite algebra M with underlying set
M (we claim that our results can be naturally generalized for quasivarieties generated by a
finite set of finite algebras). We denote by

˜
M an alter-ego of M, i.e., a topological structure

˜
M = 〈M,G,H, R,Tdis〉,
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where Tdis is the discrete topology on M and G, H , R are a set (possibly empty) of algebraic
operations, algebraic partial operations (with nonempty domain), and algebraic (nonempty)
relations on M, respectively (here, an n-ary relation is algebraic on M if it is a subalgebra of
Mn, and an operation or a partial operation is algebraic on M if its graph is algebraic on M).
We denote by X the class IScP(

˜
M) of topological structures that are isomorphic to a closed

substructure of a nonempty power of
˜

M, and we consider X as a category with continuous
structure preserving maps as arrows. We let G, H and R be sets of symbols for operations,
partial operations and relations, respectively, that correspond to the type of elements of X .
For any X ∈ X , we use X∗ to denote X (X,

˜
M), considered as a subalgebra of MX .

For every A ∈ A, the Preduality Theorem [6, Theorem 1.5.2] states that A(A, M) is a
closed substructure A∗ of

˜
MA, and therefore an element of X . Moreover, the object map-

pings A �→ A∗ and X �→ X∗ can be lifted to contravariant functors ·∗ : A → X and
·∗ : X → A by setting

f ∗(u) = u ◦ f for all f ∈ A(A, B) and u ∈ B∗,
ϕ∗(x) = x ◦ ϕ for all ϕ ∈ X (X, Y) and x ∈ Y∗.

The Dual Adjunction Theorem [6, Theorem 1.5.3] asserts that ·∗ and ·∗ define a dual adjunc-
tion between A and X , where the associated natural transformations e : 1A → (·∗)∗ and
ε : 1X → (·∗)∗ are given by

eA(a)(u) = u(a) for all A ∈ A, u ∈ A∗ and a ∈ A,

εX(ϕ)(x) = ϕ(x) for all X ∈ X , ϕ ∈ X∗ and x ∈ X.

Definition 2.1 [6] We say that
˜

M yields a duality on A if eA is an isomorphism for every
A ∈ A, and that

˜
M yields a full duality on A if in addition εX is an isomorphism for every

X ∈ X . A full duality is called strong if
˜

M is injective in X .

For X in X , we denote by CX the set of 0-ary functions in GX and refer to them as
constants, where each c ∈ CX is identified with its value, which forms a one-element sub-
algebra of M. The structure on

˜
M shall always be chosen such that no other total or partial

function in (GX\CX ∪HX) is constant.
One of the main benefits of a full duality is that it maps products in one category to

coproducts in the other category and vice versa. As we shall see throughout the paper,
this correspondence is the key ingredient to our investigation of the minor order on
homomorphisms.

The case of a full duality generated by a unary alter-ego
˜

M (i.e., the partial and total
operations of

˜
M are at most unary) is of particular interest, since coproducts in X might

turn out to be direct unions. Recall that the direct union X⊕ Y of X, Y ∈ IScP(
˜

M) (where

˜
M is unary) is defined on the disjoint union X � Y := ({1} × X) ∪ ({2} × Y ) of X and
Y by amalgamating (1, cX) and (2, cY) for every c ∈ C, by defining the operations and
relation as the unions of the corresponding ones in X and Y, and by equipping the resulting
structure with the final topology with respect to the inclusion maps X, Y → X � Y . If X is
closed under direct unions, then the coproduct of X and Y in X is realized by X ⊕ Y (see
[6, Lemma 6.3.2]).

Definition 2.2 A unary structure
˜

M yields a logarithmic duality on A if it yields a strong
duality on A and finite coproducts in X are realized by direct unions.
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For the purposes of this paper it is convenient to think of the carrier set of the direct union
of X and Y in a slightly different (but isomorphic) way as

X\CX � Y\CY � CX⊕Y.

The Logarithmic Duality Theorem [6, Theorem 6.3.3] provides a sufficient condition to get
a logarithmic duality. Here, a n-ary relation R on

˜
M with arity n ≥ 2 avoids binary products

if for all 1 ≤ i < j ≤ n the set

{(πi (r) , πj (r)
) | r ∈ R}

contains no product of nontrivial subalgebras of
˜

M.

Theorem 2.3 [6] Let
˜

M be a unary structure which yields a strong duality on ISP(M).
Then the following are equivalent:

(i)
˜

M yields a logarithmic duality on ISP(M).
(ii) For all n ≥ 2, every n-ary relation of

˜
M avoids binary products.

Remark 1 The main results of this paper are all based on the assumption of a logarithmic
duality (see Assumption 3.3). This framework might seem a bit narrow. However, due to
the above theorem combined with other results from [6], we can find a lot of examples
of logarithmic dualities. In particular, there is a logarithmic duality for ISP(M) if M is
quasi-primal, that is, the ternary discriminator

t (x, y, z) =
{

z if x = y

x if x �= y

is term-definable in M (quasi-primal algebras are precisely the finite discriminator ones).
Examples of quasi-primal algebras can, for example, be found in [4, 31]. In [25] it is shown
that, over a fixed algebraic type containing some operation of arity at least 2, almost all
finite algebras of that type are quasi-primal. That is, a randomly chosen algebra of that type
is quasi-primal with probability one.

2.3 Examples of Natural Dualities

We end this section with some concrete examples of full natural dualities, which will be used
throughout this paper to both motivate and illustrate the results. All the dualities described
here except for the last one are logarithmic due to the Logarithmic Duality Theorem 2.3.

2.3.1 Boolean Algebras

Let B be the variety of Boolean algebras, which is generated as a quasivariety by the two-
element Boolean algebra

2 := 〈{0, 1}, 0, 1,∧,∨, ·−1〉.
The discrete space

˜
2 := 〈{0, 1},Tdis〉

yields a strong duality between B and the category S = IScP(
˜
2) of Stone spaces (that is,

zero-dimensional compact Hausdorff spaces). This is the formulation of the renowned Stone
duality (see [30]) in the language of natural dualities.

Any finite Boolean algebra 2k with k ≥ 1 has the discrete space 〈[k],Tdis〉 as dual space.
The category of finite Boolean algebras Bfin is therefore dually equivalent to the category
of finite sets.
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2.3.2 Distributive Lattices

LetD be the variety of (unbounded) distributive lattices, which is generated as a quasivariety
by the two-element distributive lattice

2 = 〈{0, 1},∧,∨〉.
The discrete structure

˜
2 := 〈{0, 1}, 0, 1,≤,Tdis〉

yields a strong duality between D and the category P01 = IScP(
˜
2) of bounded Priestley

spaces, i.e, bounded ordered compact spaces (X, 0, 1,≤,T ) in which for all x, y ∈ X with
x �≤ y there is a clopen downset that contains y but not x. This is the formulation of the
renowned Priestley duality (see [29]) in the language of natural dualities .

The full subcategory Dfin of D consisting of finite distributive lattices is dually equiv-
alent to the category of finite bounded posets (this discrete version of the Priestley duality
is known as Birkhoff duality). The dual of a finite distributive lattice D can be equivalently
constructed as the poset 〈J (D)01,≤D〉 of the join-irreducible elements J (D) of D with addi-
tional bounds 0 and 1, and the map a �→ a↓ ∩ J (D) is an isomorphism between D and the
lattice of downsets of 〈J (D)01,≤D〉.

2.3.3 Median Algebras

A median algebra (see [2]) is a ternary algebra A = 〈A, m〉 that satisfies the equations

m(x, x, y) = x,

m(x, y, z) = m(y, x, z) = m(y, z, x),

m(m(x, y, z), v, w) = m(x, m(y, v, w), m(z, v, w)).

In particular, every distributive lattice D ∈ D yields a median algebra 〈D, mD〉 by
stipulating

mD(a, b, c) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c).

It turns out that median algebras are exactly the subalgebras of median algebras 〈D, mD〉
stemming from some D ∈ D (see [1] and the references therein).

The variety of median algebras M is generated as a quasivariety by the two element
median algebra

2 := 〈{0, 1}, m〉,
where m is the majority operation m(x, x, y) = m(x, y, x) = m(y, x, x) = x. The discrete
structure

˜
2 := 〈{0, 1}, 0, 1,≤, ·c,Tdis〉,

where ≤ is the natural order and ·c is the unary operation that swaps 0 and 1, is known to
yield a strong duality on M (see [6, 15, 32]). The dual category IScP(

˜
2) is the category of

bounded strongly complemented Priestley spaces, that is, bounded Priestley spaces with an
order-reversing homeomorphism ·c which is an involution and that satisfies

x ≤ xc =⇒ x = 0.

2.3.4 MVm-algebras

Let 〈[0, 1],⊕,�,¬, 0, 1〉 be the standard MV-algebra defined by

x ⊕ y = min(1, x + y), x � y = max(0, x + y − 1), ¬x = 1− x.
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The variety MVm of MVm-algebras (where m > 0) is defined as MVm := ISP(Łm)

where Łm is the subalgebra {0, 1
m

, . . . , m−1
m

, 1} of [0, 1]. MVm-algebras are the algebras of
Łukasiewicz (m + 1)-valued logic. It is known (see [26]) that the discrete structure with
unary relations

˜
Łm := 〈Łm, {Łd | d ∈ div(m)},Tdis〉,

where div(m) is the set of positive divisors of m, yields a logarithmic strong duality for
MVm.

2.3.5 Boolean Groups

A Boolean group is a group 〈G,+, 0〉 in which every element x �= 0 is of order two. The
quasivariety of Boolean groups, denoted BG, is generated by

Z2 = 〈{0, 1},+, 0〉,
where + is addition modulo 2. The structure

˜
Z2 = 〈{0, 1},+, 0,Tdis〉 yields a full duality

for BG (see [17]). In particular, the full subcategory BGf in of finite Boolean groups is
self-dual. Since products and coproducts coincide in self-dual categories, this duality is not
logarithmic.

2.4 TheMinor Relation

Let A and B be two nonempty sets and n be a positive integer. A n-ary function from A to
B is a function f : An → B. The collection of all such functions is denoted by F (n)

AB and
the functions of several arguments from A to B are the elements of

FAB :=
⋃

n≥1

F (n)
AB .

For f ∈ FAB the arity of f is the unique n ∈ N for which f ∈ F (n)
AB and is denoted by

ar(f ).
Every map τ : [n] → [m] induces a map τA : Am → An via τA(a1, . . . , am) =

(aτ(1), . . . , aτ(n)). For g ∈ F (m)
AB and f ∈ F (n)

AB , we say that g is a minor of f and write
g � f if there is some τ : [n] → [m] such that g = f ◦ τA. The relation � is a preorder
on FAB (see [23, Subsection 2.2]) called the minor preorder. As every preorder does, it
induces an equivalence relation ≡, called the minor equivalence on FAB , given by f ≡ g

iff both f � g and g � f . The minor order is the partial order on FAB/≡ (well-)defined
by [g] ≤ [f ] iff g � f . The minor (A,B)-poset is given by

FAB := 〈FAB/≡,≤〉.
We will simply write FA for the minor (A,A)-poset (instead of FAA).

For f ∈ F (n)
AB and i ∈ [n] we say that the i-th argument of f is essential if there are

a, b ∈ An with ai �= bi and aj = bj for every j �= i such that f (a) �= f (b). Otherwise the
i-th argument of f is called inessential. The number of essential arguments of f is called
the essential arity of f , denoted by ess(f ). By definition we always have ess(f ) ≤ ar(f ).

Informally, we have g � f if g can be obtained from f by permuting arguments,
identifying arguments, or by adding/deleting inessential arguments. In particular, for every
function f ∈ FAB there is a function f ′ equivalent to f with ar(f ′) = ess(f ′). We usu-
ally choose such functions without inessential arguments as representatives for ≡. If f and
g are in F (n)

AB and both have no inessential arguments, then f ≡ g holds if and only if there
is a permutation σ ∈ Sn with f = g ◦ σA.
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For n ≥ 2 let
([n]

2

)
be the family of 2-element subsets of [n]. For I = {i, j} ∈ ([n]

2

)
with

i < j , define the map δI : [n] → [n− 1] by

δI (k) =

⎧
⎪⎨

⎪⎩

k for k < j

i for k = j

k − 1 for k > j .

Given f ∈ F (n)
AB , we write fI for the minor f ◦ δA

I and call it an identification minor of f .
The identification minor f{i,j} � f is the result of identifying the i-th and the j -th argument
of f .

To introduce the next notion, recall that a multiset is a collection of elements in which
elements are allowed to appear more than once. Formally, a multiset is a pair (M,m) where
M is a set and m : M → Z

+ assigns a multiplicity to each element of M . For example, we
write {a, a, a, b, b} for the multiset ({a, b},m) where m(a) = 3 and m(b) = 2. Clearly a
multiset (M,m) can be identified with a (regular) set if m(x) = 1 holds for all x ∈ M .

For f ∈ F (n)
AB , the deck of f is the multiset deck(f ) = {[fI ] | I ∈ ([n]

2

)} of all equiva-

lence classes of identification minors of f . A function g ∈ F (n)
AB is a reconstruction of f if

deck(f ) = deck(g).

Example 2.4 Let f : Z3 → Z be given by f (x, y, z) = x2 + y2 + z2. Then f{1,2}(x, y) =
2x2 + y2 and f{2,3}(x, y) = x2 + 2y2. Since these two identification minors only differ
by a permutation of arguments, we have f{1,2} ≡ f{2,3}. Still, in the deck of f we count
the equivalence classes of these two identification minors separately, that is, deck(f ) =
{[f{1,2}], [f{1,3}], [f{2,3}]}.

The only case in which the deck of f ∈ F (n)
AB can be identified with a (regular) set is

if all the identification minors of f are pairwise non-equivalent. As we will see later (in
Proposition 4.4), this is actually the case in our setting.

A series of recent papers (see [20–23]) deals with reconstruction properties in the
following sense.

Definition 2.5 ([20]) A function f ∈ FAB is reconstructible if all of its reconstructions are
equivalent. Furthermore, if C is a subclass of FAB we say that

• C is reconstructible if all members of C are reconstructible,
• C is weakly reconstructible if for every f ∈ C, all the reconstructions of f which are

members of C are equivalent,
• C is recognizable if all reconstructions of members of C are again members of C.

Remark 2 The minor relations and reconstruction problems introduced in this section stem
from corresponding relations and problems in Graph Theory, where they are topics of long-
term investigation (see [12] for an introducion).

In Section 4 we show that certain classes of homomorphisms of sufficient arity are
weakly reconstructible (see Theorem 4.6). Before that, we ‘set the scene’ of restricting the
minor poset to homomorphisms. This is the purpose of the next section.
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3 Minor Homomorphism Posets

We begin the section by introducing the minor homomorphism posets, which are obtained
by restricting the minor relations to those functions that are algebra homomorphisms. Then,
we restrict our investigation of homomorphisms posets to quasivarieties A = ISP(M) for
which there is a discrete structure

˜
M that yields a logarithmic duality on A. We introduce

co-minor relations for morphisms in the dual category X := IScP (see Section 2.2) and
show that they correspond by duality to the minor relations for homomorphisms in A (see
Corollary 3.6).

This correspondence is central for the results stated in the paper. Indeed, our recon-
struction result for homomorphisms (see Theorem 4.6) and the structural analysis of the
homomorphism posets that we carry out in Section 5 are based on the correspondence
between the minor and co-minor relations.

3.1 Minors of Homomorphisms

We use the notation introduced in Section 2.4. Furthermore, A will always denote a cate-
gory of algebras of the same type with homomorphisms. We will soon require additional
assumptions for A (see Assumption 3.3) but for now we may keep this level of generality.

Definition 3.1 For every n ≥ 1 and every A, B ∈ A we set A(n)
AB := A(An, B), and

AAB :=
⋃

n≥1

A(n)
AB.

We call AAB := 〈AAB/≡,≤〉 the minor (A, B)-homomorphism poset. Instead of AAA we
simply write AA.

Our first observation is that if f ∈ AAB and g � f , then g ∈ AAB.

Lemma 3.2 Let τ : [n] → [m], and A, B ∈ A.

(1) The map τA : Am → An belongs toA(Am, An).
(2) If f ∈ A(n)

AB then f ◦ τA ∈ A(m)
AB .

(3) If f ∈ AAB then [f ] ⊆ AAB and [f ]↓ ⊆ AAB/≡.
In particular,AAB/≡ is a downset in 〈FAB/≡,≤〉.

Proof Let O be a k-ary operation in the signature of A, and a1, . . . , ak ∈ Am. We obtain
successively

τA(OAm

(a1, . . . , ak)) = τA(OA(a1
1 . . . , ak

1), . . . , OA(a1
m, . . . , ak

m))

= (OA(a1
τ(1), . . . , a

k
τ(1)), . . . , O

A(a1
τ(n), . . . , a

k
τ(n))),

= OAn

((a1
τ(1), . . . , a

1
τ(n)), . . . , (a

k
τ(1), . . . , a

k
τ(n)))

= OAn

(τA(a1
1, . . . , a1

m), . . . , τA(ak
1 , . . . , ak

m))

= OAn

(τA(a1), . . . , τA(am)),

which proves (1).
Statements (2) and (3) immediately follow from (1)
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3.2 Dualizing theMinor Relation of Homomorphisms

We show how to dualize the minor relation on AAB under the assumption that there is a
logarithmic natural duality for A (we use the notation of Section 2.2). All our upcomping
results about the minor relation on homomorphisms are based on Assumption 3.3, that holds
for the remainder of the paper.

Assumption 3.3 A is the quasivariety ISP(M) generated by a finite algebra M and the
discrete structure

˜
M = 〈M, G,H, R,Tdis〉 yields a logarithmic duality on A.

We use X to denote the dual category of A. For an object X of X we denote by nX the
n-th copower of X. As noted after Definition 2.2, for our purpose it is convenient to consider
the carrier of nX as n disjoint copies of X\CX with the constants CnX added separately:

nX = ([n] × (X\CX)
) ∪ CnX.

We abbreviate X\CX by X
, and for every i ≤ n we will refer to the set {i} × X
 as the
i-th copy of X
 in nX.

Given any A, B ∈ A, we aim to describe the dual of the minor preorder � on AAB. For
every f ∈ A(n)

AB and g ∈ A(m)
AB with g � f , there is a map τ : [n] → [m] such that the

diagram

commutes. According to Assumption 3.3 and the first statement of Lemma 3.2, the previous
diagram is equivalent to

in the dual category X . Hence, in order to translate the minor relation to X , we need to char-
acterize the dual of the map τA for τ : [n] → [m]. Lemma 3.5 states that (τA)∗ identically
maps the i-th copy of A∗
 in nA∗ to the τ(i)-th copy of A∗
 in mA∗.

Definition 3.4 Let τ : [n] → [m] and X ∈ X . The term-wise identity map induced by τ on
X is the map τX : nX → mX defined by τX(cnX) = cmX for all c ∈ C, and

τX(i, x) = (τ (i), x) for all i ∈ [n], x ∈ X
.

Lemma 3.5 Let τ : [n] → [m]. For every A ∈ A we have (τA)∗ = τA∗ .

Proof By Assumption 3.3, for every k ≥ 1 the map ϕk : kA∗ → (Ak)∗ defined by
ϕk(c

kA∗) = c(Ak)∗ for every c ∈ C and ϕk

(
(i, u)

) = u ◦ pri for every i ∈ [k] and u ∈ A∗
 is
an isomorphism in X . Hence, the statement of the lemma is equivalent to

(τA)∗ ◦ ϕn = ϕm ◦ τA∗ . (1)
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Let u ∈ A∗ and a ∈ Am. On the one hand, we successively obtain
((

(τA)∗ ◦ ϕn

)
(i, u)

)
(a) = (

(τA)∗(u ◦ pri )
)
(a)

= (
(u ◦ pri ) ◦ τA

)
(a)

= u(aτ(i)).

On the other hand, we successively obtain
(
(ϕm ◦ τA∗)(i, u)

)
(a) = ϕm

(
(τ (i), u)

)
(a)

= (u ◦ prτ(i))(a)

= u(aτ(i)).

Thus we have verified identity Eq. 1.

Lemma 3.5 together with the argument preceding Definition 3.4 lead to the following
definition.

Definition 3.6 Let X, Y ∈ X and ϕ ∈ X (Y, nX), ψ ∈ X (Y, mX). We say that ψ is a
co-minor of ϕ, and we write ψ �d ϕ, if there is a map τ : [n] → [m] such that ψ = τX ◦ ϕ.

It is easy to check that �d is a preorder on XYX := ⋃
n≥1 X (Y, nX) for all X, Y ∈ X ,

and we denote the equivalence relation associated with it by ≡d . Moreover, we denote by
≤d the partial order induced by �d on XXY/≡d and we set

XXY := 〈XXY/≡d ,≤d〉.
If ϕ ∈ XXY, then we denote the class of ϕ for ≡d by [ϕ]d . As usual, we write XX instead
of XXX.

The cornerstone for our investigation of the minor homomorphism posets via duality is
the following result.

Corollary 3.7 Let A, B ∈ A and f, g ∈ AAB.

(1) The map ·∗ : 〈AAB,�〉 → 〈XB∗A∗ ,�d〉 is an isomorphism of preorders.
(2) The induced map ·∗ : AAB → X B∗A∗ defined by [f ]∗ = [f ∗]d is a poset

isomorphism.

To conclude this section, we recall how to recognize inessential arguments by duality
from [16].

Definition 3.8 Let X, Y ∈ X , let ϕ ∈ X (Y, nX) and i ∈ [n]. We say that the i-th co-
argument of ϕ is essential if

ϕ(Y ) ∩ ({i} ×X
) �= ∅.

The co-essential arity of ϕ is its number of essential co-arguments, denoted by essd(ϕ).

Lemma 3.9 [16, Lemmas 3.4 and 3.9, Proposition 4.2] Let f ∈ A(n)
AB. For every i ∈ [n] the

following conditions are equivalent.

(i) The i-th argument of f is essential.
(ii) The i-th co-argument of f ∗ is essential.

Therefore, ess(f ) = essd(f ∗).
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In other words, in order to determine the essential arguments of f ∈ A(n)
AB we only need

to ask which copies of A∗
 intersect with f ∗(B∗) in nA∗.

4 Principal Ideals andWeak Reconstructibility

Inspired by [24], we look at principal ideals [f ]↓ in AAB and relate them to partition lat-
tices. It turns out that, in our setting, every such principal ideal is anti-isomorphic to the
partition lattice of size ess(f ) (see Proposition 4.2). The deck (as introduced in Section 2.4)
of a homomorphism f forms a diverse collection which seems to carry a lot of infor-
mation about f . This suggests that f is likely to be reconstructible. Indeed, as stated in
Theorem 4.6, this is the case if we only consider reconstructions which are themselves
homomorphisms.

Let f ∈ F (n)
AB and π ∈ �n be a partition with m blocks. For every � ∈ [n], denote

by π� the block of π that contains �. Any bijective labeling c : π → [m] defines a minor
fc := f ◦ (ĉA), where ĉ : [n] → [m] is defined by ĉ(�) = c(π�). Moreover, we have
fc ≡ fc0 for any two bijective labelings c, c0 : π → [m]. This justifies the following
definition.

Definition 4.1 Let f ∈ F (n)
AB and π ∈ �n with cardinality m. We denote by [fπ ] the

equivalence class of fc for ≡, where c : π → [m] is any bijective labeling of the elements
of π . If in addition f ∈ A(n)

AB, then we denote by [f ∗π ]d the equivalence class for ≡d of
(fc)

∗ = ĉA∗ ◦ f ∗.

It is known that for every f ∈ F (n)
AB , the mapping [f·] : �n → [f ]↓ defined by π �→ [fπ ]

is onto and order-reversing (see [24, Corollary 7]). It may happen that [fπ ] = [fπ ′ ] holds
for distinct π and π ′ in �n, and [24] is devoted to the characterization of those equiva-
lence relations ∼ on �n that leads to an anti-isomorphism between �n/∼ and some [f ]↓.
Restricting the minor relation to AAB gives a much simpler situation, as shown in the next
result.

Proposition 4.2 For every f ∈ AAB the principal ideal [f ]↓ inAAB is anti-isomorphic to
the partition lattice �ess(f ).

Proof We can assume that f ∈ A(n)
AB, where n is the essential arity of f . We know by

Corollary 3.7 that [f ]↓ is order-isomomorpic to [f ∗]d↓, and we prove that [f ∗]d↓ is anti-
isomorphic to �ess(f ). We use the notation defined in (the paragraph preceding) Definition
4.1.

Let φ : �n → [f ∗]d↓ be the map defined by φ(π) = [f ∗π ]d . We have already noted that
φ is an onto, order-reversing map, and now we prove that φ is one-to-one. Let π1 and π2 be
distinct elements of �n and for i ∈ {1, 2} let

ψi := (ĉi )X ◦ f ∗ (2)

where ci : πi → [|πi |] is an arbitrary bijective labeling of the elements of πi . We show that
ψ1 �≡d ψ2. By symmetry, we may assume that there is some block C ∈ π1\π2, and we let
� be an element of C and D := π�

2 be the unique block of π2 containing �. Since C �= D,
we may assume that there is some k ∈ C\D (the case k ∈ D\C is similar). Since f has no
inessential arguments, we know by Lemma 3.9 that the �-th and k-th co-arguments of f ∗
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are essential. This means that there are some u, v ∈ B∗ such that

f ∗(u) ∈ {�} × A∗
 and f ∗(v) ∈ {k} × A∗
.

By construction, we obtain

{ψ1(u), ψ1(v)} ⊆ {c1(C)} × A∗
, ψ2(u) ∈ {c2(D)} × A∗
, ψ2(v) /∈ {c2(D)} × A∗
,

which shows that ψ1 maps u and v into the same copy of A∗
 in |π1|A∗, while ψ2 maps u

and v into two different copies of A∗
 in |π2|A∗. We conclude that ψ1 �≡d ψ2.
It remains to show that ϕ−1 is order-reversing. Let π1, π2 ∈ �n such that π1 �≥ π2 and

show that ϕ(π1) �≤d ϕ(π2). Let C be a block of π2 which is not contained in any block
of π1. There are two distinct elements i, j ∈ C which belong to two distinct blocks of π1.
For every i ∈ {1, 2}, denote by ci a bijective labeling ci : πi → [|πi |], and let ψi ∈ [fπi

]
be defined as in Eq. 2. By a similar argument as in the first part of the proof, we can find
u, v ∈ B∗ such that ψ2 maps u and v into the same copy of A∗
 in |π2|A∗, while ψ1 maps
u and v into two distinct copies of A∗
 in |π1|A∗. This shows that ψ1 ��d ψ2, and therefore
ϕ(π1) �≤d ϕ(π2) as desired.

Recall that the arity gap of f ∈ FAB is defined as the minimum difference between that
the essential arity of f and of that of an identification minor of f . We retrieve the following
result, which is a special instance of [16, Proposition 3.13], as a consequence of Proposition
4.2.

Corollary 4.3 For every A, B ∈ A and n > 1, the arity gap of f ∈ A(n)
AB is one.

Functions f ∈ FAB that have a unique identification minor have received special interest
and have been studied in relation with their invariance group (see [20, 22]). Recall that
the invariance group Inv(f ) of f ∈ F (n)

AB is defined to be the subgroup of Sn given by

{σ ∈ Sn | f = f ◦ σA}. If f ∈ A(n)
AB, we obtain the following result.

Proposition 4.4 Let f ∈ A(n)
AB with ess(f ) = n.

1. f has
(
n
2

)
pairwise non-equivalent identification minors.

2. Inv(f ) is trivial.

Proof Statement 1. is a direct consequence of Proposition 4.2.
For the second statement, note that an element σ ∈ Sn belongs to Inv(f ) if and only if

the diagram

(3)

commutes. Diagram (3) is, by Assumption 3.3, equivalent to

which commutes if and only if σ = idn since ess(f ) = n.
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In the following example, we show how Proposition 4.2 may fail if we weaken
Assumption 3.3 by assuming that

˜
M yields a duality which is not logarithmic.

Example 4.5 Let BG be the variety of Boolean groups and Z2 = 〈{0, 1},+, 0〉 as in

Section 2.3.5. The homomorphism f ∈ BG(3)
Z given by f (x, y, z) = x+y+z has essential

arity 3. But f has an unique identification minor (namely, the identity map) and arity gap 2.

Proposition 4.2 shows that the deck of any f ∈ AAB could not actually be richer
(it does not contain any duplicates). This observation leads us to the investigation of
reconstructibility properties for homomorphisms, as introduced in Section 2.4.

As explained in [23], the class AAB cannot be reconstructible. Indeed, let A, B ∈ A and
n < |A|. Let An�= ⊆ An consists of all elements of An which are injective on [n] (i.e. the
tuples in which no entry appears more than once). If f ∈ AAB has arity n, then any map
g : An → B which is equal to f on An\An�= satisfies deck(f ) = deck(g), which shows that
f is not reconstructible. However, such a map g is unlikely to still belong to AAB, which
naturally leads to the weak reconstruction problem for AAB.

Theorem 4.6 Let A, B ∈ A. The subclass A>2
AB of homomorphisms in AAB of essential

arity strictly greater than 2 is weakly reconstructible.

Proof We proceed by contradiction, assuming that there are f, g ∈ A(n)
AB for some n > 2

with deck(f ) = deck(g) but f �≡ g. We may assume that f and g both have no inessential
arguments. Due to Assumption 3.3 and Lemma 3.9, this means that every co-argument of
f ∗ and g∗ is essential and f ∗ �≡d g∗.

First we show (f ∗)−1(CnA∗) = (g∗)−1(CnA∗) and for all u ∈ B∗\(f ∗)−1(CnA∗) we
have that pr2(f

∗(u)) = pr2(g
∗(u)). For the sake of contradiction, assume that there is some

element u ∈ B∗ with f ∗(u) ∈ CnA∗ and g∗(u) /∈ CnA∗ (the case f ∗(u), g∗(u) �∈ CnA∗ and
pr2(f

∗(u)) �= pr2(g
∗(u)) is dealt with similarly). Let I ∈ (

n
2

)
. We have

(f ◦ δA
I )∗(u) = ((δI )A∗ ◦ f ∗)(u) belongs to C(n−1)A∗

while
(g ◦ δA

J )∗(u) = ((δJ )A∗ ◦ g∗)(u) does not belong to C(n−1)A∗ ,

for every J ∈ (
n
2

)
. It follows that the equivalence class of f ◦ δA

I belongs to deck(f ) but not
to deck(g), a contradiction.

Then, since f ∗ �≡d g∗ there is some u ∈ B∗ such that pr1(f
∗(u)) �= pr1(g

∗(u)). For
every i ∈ [n], set

Xi := (f ∗)−1({i} × A∗
) and Yi := (g∗)−1({i} × A∗
).
We have proved that

X := {Xi | i ∈ [n]} and Y := {Yi | i ∈ [n]} (4)

are distinct partitions of B∗\(f ∗)−1(CnA∗). Without loss of generality, we may assume that
there is some i ∈ [n] with Xi �∈ Y . Let u be an element of Xi , and let Yj be the block of
Y that contains u. We may assume that Xi �⊆ Yj (the case Yj �⊆ Xi is dealt with similarly)
and we let v be an element of Xi\Yj , and Yk be the block of Y that contains v. Since
n > 2, either i �= j or i �= k. If i �= j (the case i �= k can be dealt with similarly), then
(g ◦δA{i,k})∗(u) and (g ◦δA{i,k})∗(v) belong to the δ{i,k}(j)-th copy and δ{i,k}(k)-th copy of A∗


in (n − 1)A∗, respectively, and δ{i,k}(j) �= δ{i,k}(k). On the other hand, for every I ∈ (
n
2

)
,
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the map (f ◦ δA
I )∗ maps u and v to the δI (i)-th copy of A∗
 in (n − 1)A∗. Therefore the

equivalence class of g ◦ δA{i,k} belongs to deck(g) but not to deck(f ), a contradiction.

Theorem 4.6 also shows that A>2
AB is not recognizable (see Definition 2.5) if it is

nonempty and |A| > 2. Indeed, we already noted that a homomorphism f : An → B with
n ≤ |A| is not reconstructible, while now we showed that all its reconstructions which are
homomorphisms are equivalent. Therefore, there needs to be a reconstruction of f which is
not a homomorphism.

The first part of the proof of Theorem 4.6 shows that if two X -morphisms φ,ψ : Y →
nX have a common minor, then φ and ψ might map an element x ∈ Y into two different
copies of X in nX, but never to different elements. We generalize this proof in the following
lemma.

Lemma 4.7 Let ϕ,ψ : Y → nX be two morphisms such that [ϕ]d↓ ∩ [ψ]d↓ �= ∅. Then
ϕ−1(CnX) = ψ−1(CnX) =: P and for all y ∈ Y\P we have pr2(ϕ(y)) = pr2(ψ(y)).

Proof Let μ : Y → mX be a morphism such that μ �d ϕ and μ �d ψ . By Proposition 4.2,
there are τ, τ ′ : [n] → [m] such that μ = τX ◦ ϕ = τ ′X ◦ ψ . In particular, for every y ∈ Y,
we have the following equivalences

ϕ(y) ∈ CnX ⇐⇒ μ(y) ∈ CmX ⇐⇒ ψ(y) ∈ CnX.

Furthermore, for y ∈ Y\P we have

ϕ(y) = (i, x) ⇐⇒ μ(y) = (τ (i), x)

ψ(y) = (j, x) ⇐⇒ μ(y) = (τ ′(j), x),

from which we get the second part of the statement.

5 Characterizing theMinor Homomorphism Poset

Proposition 4.2 and Lemma 4.7 pave the way to a complete description of the posets AAB in
terms of partition lattices. Prior to developing the general tools to characterize these posets,
we look at a few examples to get a better understanding of how they are influenced by
the structure defined by

˜
M. We use the vocabulary and notation introduced in Section 2.3,

in particular, B and D denote the variety of Boolean algebras and unbounded distributive
lattices, respectively.

Example 5.1 The minor homomorphism posetB2k of the finite Boolean algebra 2k consists
of kk disjoint copies of the order dual of the k-th partition lattice:

B2k �
⊎

1≤i≤kk

�∂
k .

Proof Recall that [k] = {1, . . . , k} is the dual of 2k under Stone duality. We first note that
a homomorphism f : (2k)n → 2k satisfies ess(f ) ≤ k, since Im(f ∗) can meet at most k

copies of (2k)∗ in n(2k)∗. So, maximal elements [ϕ]d of X (2k)∗ are represented by maps
ϕ : [k] → k[k] with essd(ϕ) = k. If ϕ and ψ are two such maps, then ϕ ≡d ψ if and only
if pr2 ◦ ϕ = pr2 ◦ ψ . Thus, there are kk maximal classes in X (2k)∗ . For each maximal class
[ϕ]d , the corresponding class [ϕ∗] is maximal in B2k . We know by Proposition 4.2 that
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[ϕ∗]↓ � �∂
k . Moreover, for two maximal elements [ϕ]d �= [ψ]d , we have pr2 ◦ϕ �= pr2 ◦ψ ,

so [ϕ]d↓ ∩ [ψ]d↓ = ∅ holds by Lemma 4.7.

Remark 3 By extending the argument of Example 5.1, one can show that

B2�,2k �
⊎

1≤i≤�k

�∂
k .

The only difference here is that the morphisms ϕ : [k] → k[�] which represent maximal
elements are now characterized by all the distinct elements of [�][k].

Example 5.2 The minor homomorphism poset of the distributive lattice L depicted in Fig. 1
is isomorphic the disjoint union of 30 copies of the two-element chain and an antichain of
order 35:

DL �
⊎

1≤i≤30

�∂
2 �

⊎

1≤j≤29

�∂
1 �

⊎

1≤k≤6

�∂
0.

Proof The dual L∗ of L is computed as described in Section 2.3.2 as the finite bounded
poset 〈J (L)01,≤L, 0, 1〉 of the join-irreducible elements J (D) = {a, b, c} of L with
constants 0 and 1 added, and is depicted in Fig. 1.

A morphism ϕ : L∗ → nL∗ needs to be order-preserving and to preserve 0 and 1.
Therefore, if {ϕ(a), ϕ(c)} ∩ {0, 1} = ∅, then there is one index i ∈ [n] such that
{ϕ(a), ϕ(c)} ⊆ {i} ×L∗
. In particular, we have essd(ϕ) ≤ 2, since ϕ(L∗) can meet at most
2 different copies of L∗
 in nL∗ (ϕ(b) may not be in the same copy of L∗
 as {ϕ(a), ϕ(c)}).

Hence, up to equivalence≡d , there are 30 morphisms ϕ : L∗ → 2L∗ of co-essential arity
2 and they are defined by the constraints

(
pr2(ϕ(a)), pr2(ϕ(c))

) ∈ {
(0, a), (0, b), (0, c), (a, c), (a, 1), (c, 1),

(b, 1), (a, a), (b, b), (c, c)
}
, (5)

pr2(ϕ(b)) ∈ {a, b, c}, (6)

{pr1(ϕ(a)), pr1(ϕ(c))} = {1}, pr1(ϕ(b)) = 2. (7)

They correspond to 30 maximal elements in DL.
Moreover, there are 29 maximal elements [ϕ]d where ϕ : L∗ → L∗ has co-essential arity

1. These maps satisfy either ϕ(b) ∈ {0, 1} and condition (5), or {ϕ(a), ϕ(c)} ⊆ {0, 1} and
condition (6).

To complete the picture, there are 6 non-equivalent nullary morphisms ϕ defined by the
constraints ϕ(L∗) ⊆ C and ϕ(a) ≤ ϕ(c), and they also all correspond to maximal elements
in 〈AL/≡,≤〉.

Fig. 1 Distributive lattice L of
Example 5.2 and its dual L∗
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Example 5.1 illustrates that a minor homomorphism poset can be much smaller than the
corresponding minor poset. For instance, while B2k is of finite size kkBk , the poset F {0,1}
is countably infinite and contains a copy of every finite poset, as shown in [10].

Nevertheless, even for Boolean algebras A ∈ B the minor homomorphism poset BA can
get quite complex in the infinite case. There are two reasons why things get more compli-
cated in this case: the essential arities might be unbounded and the topology comes into
play. The following example illustrates this phenomenon (see also Example 5.23).

Example 5.3 The minor homomorphism poset of the Boolean algebra A of finite and
cofinite subsets of N contains countably infinite chains, and uncountably infinite antichains.

Proof The dual space A∗ is given by the one-point compactification N ∪ {ω} of N (or,
equivalently, the ordinal ω + 1 with the order topology). Explicitly this means that for any
U ⊆ A∗ we have

U is open ⇐⇒ U ⊆ N or (ω ∈ U and U ∩ N is cofinite).

The dual of a homomorphism f : An → A is a continuous map f ∗ : A∗ → nA∗ and vice
versa. Dealing with the topology on A∗ easily leads to the construction of infinite chains
and infinite antichains in BA, for instance.

To construct an uncountable antichain, for every S ⊆ N let cS : A∗ → A∗ be the
continuous map defined by

cS(x) =
{

ω if x ∈ S

x otherwise.

Then {[cS∗] | S ⊆ N} is an uncountable antichain in BA.
Now we construct a countable chain above an element [ϕ]d where ϕ is any unary

morphism. For every n ≥ 2, we define ϕn : A∗ → nA∗ by

ϕn(u) =
{

(1, ϕ(u)) if u ∈ A∗\{1, . . . , n− 1}
(u+ 1, ϕ(u)) if u ∈ {1, . . . , n− 1}.

For every n ≥ 2, the map ϕn is continuous (we have ϕn(u) = ϕ(u) for all but a finite
number of u ∈ A∗) with essd(ϕn) = n and ϕn ≺d ϕn+1, since ϕn = (δI )A∗ ◦ ϕn+1 holds for
I = {1, n+ 1}. Hence, the map n �→ [ϕn]d embeds 〈N,≤〉 in XA∗ for all ϕ ∈ X (1)

A∗ .

In Examples 5.1 and 5.2 the corresponding sets of essential arities ess(AAB) := {ess(f ) |
f ∈ AAB} have an upper bound. We generalize these examples in the following result.
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Theorem 5.4 Let A,B ∈ A be algebras such that ess(AAB) is bounded and let K be the
collection of maximal elements in (AAB/≡,≤). Then

AAB �
⊎

[f ]∈K

�∂
ess(f ).

Proof Since ess(AAB) is bounded, for every homomorphism h ∈ AAB there is a maximal
element mh  h, and we need to show that mh is unique. For the sake of contradiction,
assume that there are maximal elements [f ] and [g] of AAB with [f ∗]d↓ ∩ [g∗]d↓ �= ∅.
We can assume that f and g both have no inessential arguments. By Lemma 4.7 the maps
f ∗ and g∗ differ only in how they distribute elements of B∗ to different copies of A∗
, and
we construct the partitions X and Y of B∗\f ∗−1(CnA∗) as we did in Eq. 4.

Since [f ∗]d is maximal and [g∗]d �≤d [f ∗]d , we can find a block Xi ∈ X and a block
Yj ∈ Y such that both Xi ∩ Yj and Xi\Yj are nonempty. Now consider the map ϕ : B∗ →
(n+ 1)A∗ defined by

ϕ(u) =
{(

n+ 1, pr2(f
∗(u))

)
if u ∈ Xi ∩ Yj

f ∗(u) otherwise.

We prove that ϕ is a morphism and that essd(ϕ) = n + 1. For the sake of contra-
diction, assume that there is some k-ary relation r such that (u1, . . . , uk) ∈ rA∗ but
(ϕ(u1), . . . , ϕ(uk)) �∈ rnA∗ in the type of A∗ (the argument for partial or total func-
tions is similar). Since f ∗ preserves relations, we have Xi ∩ Yj ∩ {u1, . . . , uk} �= ∅ and
(Xi\Yj ) ∩ {u1 . . . , uk} �= ∅. In particular, g∗({u1, . . . , uk}) meets at least two different
copies of A∗
 in nA∗ and cannot preserve r , a contradiction.

Now, we prove that ϕ is continuous. Let k ∈ [n+1] and C be a closed subset of {k}×A∗
.
Then

ϕ−1(C) =
{

(f ∗)−1(C) ∩Xi ∩ Yj if k = n+ 1

(f ∗)−1(C)\(Xi ∩ Yj ) otherwise

is closed since Xi and Yj are clopen and f ∗ is continuous. Moreover, we have essd(ϕ) =
n+ 1 by definition of ϕ since f has essential arity n.

Now, we clearly have [f ∗]d < [ϕ]d by construction, which contradicts the maximality
of [f ].

Theorem 5.4 shows that AAB is completely determined by the essential arities of its
maximal elements. Now, we investigate how to recognize these maximal elements in the
dual category. Informally, they are represented by those morphisms ϕ : B∗ → nA∗ without
inessential co-arguments such that ϕ(B)∗ ∩ ({i} × A∗

)
cannot be decomposed into two

substructures that would lead to a morphism covering ϕ in 〈XB∗,A∗ ,�〉.

Definition 5.5 A substructure Y of X ∈ X is called complete if it satisfies the following
conditions.

(1) For every k-ary relation r of X and every x1, . . . , xk ∈ X

({x1, . . . xk} ∩ Y �= ∅ and (x1 . . . , xk) ∈ r
) =⇒ {x1, . . . , xk} ⊆ Y .
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(2) For every partial or total operation O of X, the graph rO of O satisfies condition (1).

For every S ⊆ X we denote by 〈S〉 the smallest complete substructure of X that contains S.
For every X ∈ X , let ∼ denote the equivalence relation defined on X
 by x ∼ y iff 〈{x}〉 =
〈{y}〉.

Lemma 5.6 For every X ∈ X and every x, y ∈ X
 we have x ∼ y if and only if there
are relations r1, . . . , r� ∈ RX ∪ {rO | O ∈ G ∪ H} of arity k1, . . . , k�, respectively, and
xi ∈ ri for all i ≤ � such that x ∈ {x1

1 , . . . x1
k1
}, y ∈ {x�

1, . . . , x�
k�
}, and {xj

1 , . . . , x
j
kj
} ∩

{xj+1
1 , . . . , x

j+1
kj
} �= ∅ for all j ≤ �− 1.

From the perspective of topology, there is no reason for ∼ to have nice properties.
For instance, we cannot assume that the classes of ∼ are closed or open, although this is
obviously true if X is finite.

Definition 5.7 We say that X ∈ X has the FCO property if X
/∼ is finite and if E ∪ CX is
a clopen subspace of X for every equivalence class E ∈ X
/∼.

Proposition 5.8 Let A, B ∈ A. If B∗ has the FCO property, then ess(AAB) ≤ |B∗
/∼|. If
in addition A = B, then ess(AA) = |A∗
/∼|.

Proof Let ϕ : B∗ → nA∗ be a morphism, and u, v ∈ B∗
. By Lemma 5.6, if u ∼ v and
{ϕ(u), ϕ(v)} ⊆ (nA∗)
, then ϕ(u) and ϕ(v) need to belong to the same copy of A∗
 in nA∗,
which proves the first assertion.

For the second part of the statement, let E1, . . . , En be the elements of A∗
/∼. Define
ψ : A∗ → nA∗ as the map that preserves constants and satisfies ψ(u) = (i, u) for any i ≤ n

and any u ∈ Ei . Then, the map ψ is a co-essentially n-ary morphism.

Structures with the FCO property can sometimes be constructed using finite products of
algebras, as illustrated in the next result.

Corollary 5.9 If A1, . . . , Ak ∈ A satisfy |(Ai )
∗
/∼| = 1 for every i ≤ k, then the dual of

A := A1 × · · · × Ak has the FCO property. Moreover, we have ess(ABA) ≤ k for every
B ∈ A, and ess(AA) = k.

Example 5.10 Let Lω be the distributive lattice whose elements are N and its finite subsets,
ordered by inclusion. Its dual Priestley space L∗ω is given by an enumerable antichain (made
out of the filters generated by singletons {i} for i ∈ N), the elements of which are all
covered by some element ω, and two additional bounds 0 and 1. It follows from Lemma 5.6
that |L∗
/∼| = 1. By Corollary 5.9, any f ∈ DLLk

ω
has essential arity at most k for every

bounded distributive lattice L and every k ≥ 1, in particular there is no f ∈ DLLω with
ess(f ) ≥ 2.

We can recover some Arrow type impossibility result from Corollary 5.9.

Corollary 5.11 [9, Corollary 4] Let C1, . . . , Ck, D be chains. A map f : C1×· · ·×Ck → D
is a median algebra homomorphism if and only if there is an i ∈ [k] and a monotone map
g : Ci → D such that f = g ◦ pri .
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The argument of the second part of the proof of Lemma 5.8 can be generalized as a useful
Lemma that enables us to construct homomophism majors of elements of AAB.

Lemma 5.12 Assume that A, B ∈ A, and that B∗ has the FCO property. For any morphism
ϕ : B∗ → nA∗ and any E in B∗
/∼, the map ψ : B∗ → (n+ 1)A∗ defined by

ψ(u) =
{(

n+ 1, pr2(ϕ(u))
)

if u ∈ E\ϕ−1(CnA∗)

ϕ(u) otherwise,

is a morphism. If, in addition, E\ϕ−1(CnA∗) �= ∅, then ϕ ≺d ψ .

Proof The map ψ is structure preserving by construction. We need to show that it is also
continuous. Let C be a closed subset of ({i} × A∗
) ∪ CnA∗ for some i ∈ [n + 1] and let �

be the unique element of [n] such that ϕ(E) meets {�} × A∗
. We have

ψ−1(C) =
{

ϕ−1({�} × pr2(C)) ∩ E if i = n+ 1

ϕ−1(C) ∩ (B∗\E) otherwise,

which shows that ψ is continuous by continuity of ϕ and the fact that E is clopen by
assumption. Moreover, we have ϕ = (δI )A∗ ◦ ψ where I = {�, n+ 1}.

We have the following dual characterization of maximal elements in AAB. Observe that
for any E ∈ B∗
/∼ the subspace E# := E ∪ CB∗ forms a closed substructure E# of B∗.

Theorem 5.13 Assume that A, B ∈ A and that B∗ has the FCO property, and let ϕ : B∗ →
nA∗ be a map.

(1) We have ϕ ∈ X (B∗, nA∗) if and only it for every E ∈ B∗
/∼ with ϕ(E) �⊆ CnA∗ , there
is an i ∈ [n] such that ϕ�E# is valued in {i} × A∗ and is a morphism.

(2) If condition (1) is satisfied, then [ϕ]d is maximal if and only if for every E1 �= E2 in
B∗
/∼ and all i ≤ n we have

ϕ(E1) ∩ ({i} × A∗
) �= ∅ =⇒ ϕ(E2) ∩ ({i} × A∗
) = ∅.

Proof (1) The condition is clearly necessary. To prove the converse, it suffices to note that
ϕ is structure preserving by definition of ∼ and continuous since E# is clopen for every
E ∈ B∗
/∼.

(2) To show that the condition is necessary, we can assume that ϕ has no inessential co-
argument and we prove the contrapositive. Let E1 and E2 be distinct elements in B∗
/∼ and
assume that ϕ(E1) ∩ ({i} ×A∗
) �= ∅ and ϕ(E2) ∩ ({i} ×A∗
) �= ∅ for some i ≤ n. Then,
the map ψ : B∗ → (n+ 1)A∗ defined by

ψ(u) =
{

(n+ 1, (pr2 ◦ ϕ)(u)) if u ∈ E1

ϕ(u) otherwise

is a morphism with [ϕ]d <d [ψ]d according to Lemma 5.12. Thus we have proved that [ϕ]d
is not maximal.

We prove that the condition is sufficient by contrapositive. Assume that there is a mor-
phism ψ : B∗ → (n + 1)A∗ with no inessential co-argument and a map τ : [n + 1] → [n]
such that ϕ = τA∗ ◦ ψ . By (1) there are elements E1, E2 of B∗
/∼ such that

E1 ⊆ ψ−1({n+ 1} × A∗
) and E2 ⊆ ψ−1({τ(n+ 1)} × A∗
).
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It follows that ϕ(Ei) ∩ ({τ(n+ 1)} × A∗
) �= ∅ for i ∈ {1, 2}.
It follows from Theorem 5.13 that, if B∗ has the FCO property and B∗
/∼ =

{E1, . . . , En}, then

X (B∗, nA∗)/≡d
∼= X (E#

1, A∗)× · · · ×X (E#
n, A∗) ∼= X (B∗, A∗). (8)

In what follows, we may use these isomorphims without further notice.
In the finite case, we can now improve the characterization of Theorem 5.4 thanks to

Theorem 5.13. First, we introduce some notation.

Notation 5.14 Let A and B be finite algebras of A and denote by E1, . . . , E� the elements
of B∗
/∼. For any i ≤ � and any ϕ ∈ X (E#

i , A∗), define cϕ by

cϕ =
{

0 if ϕ(E#
i ) ⊆ CA∗

1 else.

Denote by �B∗A∗ the Cartesian product
∏{X (E#

i , A∗) | i ≤ �}, and for any ϕ ∈ �B∗A∗ set
cϕ := cϕ1 + · · · + cϕ�

. We know by Eq. 8 that there is a bijective correspondence between
X (B∗, A∗) and �B∗A∗

Corollary 5.15 Let A and B be finite algebras ofA. Using Notation 5.14, we have

AAB ∼=
⊎
{�∂

cϕ
| ϕ ∈ �B∗A∗ }.

Corollary 5.16 Let A, B be finite elements of A and let E1, . . . , En be the elements of
A∗
/∼. Then

AAB ∼=
⊎
{�∂

dϕ
| ϕ ∈ X (B∗, A∗)},

where dϕ = #{Ei | ϕ(Ei) ∩ A∗
 �= ∅} for any ϕ ∈ X (B∗, A∗).

We now give a number of applications of Corollary 5.15 and 5.16. Recall that a finite
algebra M is quasi-primal if it has the ternary discriminator operation

tM(x, y, z) :=
{

x if x �= y

z if x = y

as a term function. Semi-primal algebras are those quasi-primal algebras that have no
isomorphism between their non-trivial subalgebras other than the identity. The finite subal-
gebras Łn of the standard MV-algebra [0, 1] are examples of semi-primal algebras. For any
semi-primal algebra M, there is structure

˜
M that has neither (partial) functions nor n-ary

relations for n ≥ 2 and yields a logarithmic duality for ISP(M) [6, Theorem 3.3.14].

Proposition 5.17 Assume that M is a semi-primal algebra and that
˜

M is a dualizing
structure defined as above. For any finite elements A, B ∈ A, we have

AAB ∼=
⊎
{�∂

dϕ
| ϕ ∈ X (B∗, A∗)},

where dϕ = |B∗
| − |ϕ−1(CA∗) ∩ B∗
| for every ϕ ∈ X (B∗, A∗).

Proof It follows from the assumptions on
˜

M that every singleton is an equivalence class
of ∼ on B∗
. According to Theorem 5.13, this means that every morphism ϕ : B∗ → A∗
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defines a corresponding maximal element [ϕ′]d in X B∗A∗ where ϕ′ has co-essential arity
dϕ .

Example 5.18 For every m ≥ 1, the algebra Łm is semi-primal and a dualizing structure
is given in Section 2.3.4. For the sake of illustration, set m = 12 and consider the algebra
A := Ł2 × Ł4 × Ł4 × Ł6 of ISP(Ł12). Then A∗ is the discrete structure

〈{u1, . . . , u4}, {rm | m ∈ div(12)},Tdis〉,
where

r1 = r3 = ∅, r2 = {u1}, r4 = {u1, u2, u3},
r6 = {u1, u4}, r12 = {u1, . . . , u4}.

It follows that morphisms ϕ : A∗ → A∗ are defined by the constraints

ϕ(u1) = u1, {ϕ(u2), ϕ(u3)} ⊆ {u1, u2, u3}, ϕ(u4) ∈ {u1, u4},
and dϕ = |A∗| = 4 for every ϕ since there is no constant in

˜
Łm. We obtain by Proposition

5.17 that the minor homomorphism poset MVA is the disjoint union of 18 copies of �∂
4.

The argument developed in Example 5.18 leads us to the following result.

Proposition 5.19 Let {p1, . . . , pk} and {q1, . . . , qk} be two sets of prime numbers and
α1, . . . , αk ≥ 1. Set m := p

α1
1 × · · · × p

αk

k and m′ := q1
α1 × · · · × q

αk

k , and define the map
μ : div(m) → div(m′) by

μ(p
β1
1 × · · · × p

βk

k ) = q
β1
1 × · · · × q

βk

k

Then, for every m1, . . . , mt ∈ div(m), it holds that

MVŁm1×···×Łmt
∼= MVŁμ(m1)×···×Łμ(mt )

.

Example 5.20 Corollary 5.15 helps to define a systematic technique to compute DLL′ for
finite distributive lattices L and L′. Indeed, it turns out that L′∗
/∼ is the set {E1, . . . , E�} of
the connected components of the Hasse diagram of L′∗
 considered as an undirected graph.
Maximal elements in X L∗L′∗ correspond via Eq. 8 to tuples ϕ := (ϕ1, . . . , ϕ�) such that
ϕ ∈ X (E#

i , L∗) for every i ≤ �, that is, to tuples of partial morphisms on L′∗ with maximal
domains. Each such tuple corresponds to a maximal element of co-essential arity cϕ and we
obtain

X L∗L′∗ ∼=
⊎
{�∂

cϕ
| ϕ ∈ X (E#

1, L∗)× · · · ×X (E#
�, L∗)}

by Corollary 5.15.

If B is a Boolean algebra, then its {∨,∧}-reduct B− is a distributive lattice. It turns
out that these reducts, which form the class of complemented distributive lattices, can be
recognized by their minor homomorphim posets, as shown in the next result. First, recall that
the join-irreducible elements of a complemented distributive lattice coincide with its atoms
(if there is an atom a strictly below a join irreducible element b and bc is the complement
of b then {0, a, b, bc, 1} is isomorphic to N5).
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Proposition 5.21 A finite distributive lattice L is complemented if and only if DL is
isomorphic to ⊎

1≤j≤n

⊎
{�∂

j | 1 ≤ i ≤ dj }

for some n ≥ 1, where dj :=
(
n
j

)
nj 2n−j for every j ≤ n.

Proof Let L be a finite complemented distributive lattice and a1, . . . , an be its atoms. Then
L∗ is isomorphic to the antichain {a1, . . . , an} together with the constants 1L∗ = L and
0L∗ = ∅ as top and bottom element, respectively. It follows that the equivalence ∼ on L∗

is the identity, just as in the Stone dual of the Boolean algebra associated with L. But, on the
contrary to the case of Boolean algebras where the dual structures have no constants, mor-
phisms can map elements ai to constants 0 or 1, which influences the number of morphisms
and their co-essential arities.

Let j ≤ n and let us count the number of morphisms ϕ : L∗ → jL∗ with co-essential
arity j such that [ϕ]d is maximal. Such a morphism ϕ maps j elements among a1, . . . , an

to distinct copies of L∗
 in jL∗ and (n − j) elements to constants 0 or 1. So, there are
dj := (

n
j

)
nj 2n−j such morphisms and each of them satisfies dϕ = j . The conclusion

follows from Corollary 5.16.
Conversely, assume that L is a distributive lattice whose homomorphism poset contains

exactly dj disjoint copies of �δ
j for each j ∈ {1, . . . , n}. It follows from Theorem 5.4 that

the maximum co-essential arity of an element ϕ ∈ XL∗ is n and that the number of non ≡d -
equivalent morphisms φ : L∗ → nL∗ of co-essential arity n is equal to dn = nn. Moreover,
we have |L∗
/∼| = n by Proposition 5.8. Now, we prove that the elements E1, . . . , En of
L∗
/∼ are singletons. For the sake of contradiction, assume that E1 contains two elements
u and v. By definition of ∼, we may assume u < v. The map ϕ1 : L∗ → nL∗ defined by

ϕ1(z) =

⎧
⎪⎨

⎪⎩

0 if z ≤ u

(1, z) if z ∈ E1 and z �≤ u

(i, z) if i �= 1 and z ∈ Ei,

is a morphism of co-essential arity n. Now, for every i ≤ n, let ei be a fixed element of Ei .
For every h ∈ [n][n], define the map ϕh : L∗ → nL∗ by ϕh(Ei) = {(i, eh(i))}. Together with
ϕ1, we have found nn+1 pairwise non≡d -equivalent morphisms L∗ → nL∗ of co-essential
arity n, a contradiction.

Finite median algebra are handled similarly as finite distributive lattices.

Proposition 5.22 Let A be a median algebra.

(1) If A is the m-reduct of a distributive lattice, then ess(f ) ≤ 1 for every f ∈MA.
(2) A is the m-reduct of a finite Boolean algebra if and only if

MA ∼=
⊎

1≤i≤k

⊎
{�∂

i | j ≤
(

k

i

)

2kki}

holds for some k ≥ 1.

Proof Equation (1) If A is the m-reduct of a distributive lattice L = 〈A,∨,∧〉, then the
prime convex subsets of A are A, ∅ and the prime filters and prime ideals of L. It follows
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that A∗ is the disjoint union of the poset of prime filters and the poset of prime ideals of L,
with ∅ and A as additional bottom and top elements, respectively, and where uc = A \ u

for any u ∈ A∗. It follows that ∼ is the total equivalence on A∗
, and essd(ϕ) ≤ 1 for any
morphism ϕ : A∗ → nA∗.

Equation (2) If A is the m-reduct of the Boolean algebra B = 2k then it follows by (1)
that A∗ is an antichain u1, . . . , uk, u

c
1, . . . , u

c
k with an additional top and bottom element

1A∗ = A and 0A∗ = ∅ , respectively. It follows that A∗
/∼ = {{ui, u
c
i } | i ≤ k} has

cardinality k. For each i ≤ k, there are 2k morphisms ϕi : {ui, u
c
i }# → A∗ that satisfy

Im(ϕi) �= {A,∅}, and two morphisms ϕi : {ui, u
c
i }# → A∗ that satisfy Im(ϕi) = {A,∅}.

We conclude that for any 0 ≤ i ≤ k there are
(
k
i

)
(2k)i2k−i = (

k
i

)
2kki tuples ϕ ∈ �A∗A∗

with cϕ = i, and we conclude the proof by Corollary 5.15.
Conversely, assume that the minor homomorphism poset of A is made of

(
k
i

)
2kki copies

of �∂
i for every i ∈ {0, . . . , k}. In particular, the maximum essential arity of an element

of MA is k, which implies that A∗
/∼ has k elements E1, . . . , Ek . It follows that A∗ ∼=
E#

1⊕· · ·⊕E#
k , so that (A∗)∗ ∼= (E#

1)∗×· · ·×(E#
k)∗. Moreover, there are 2k tuples ϕ ∈ �A∗A∗

that satisfy cϕ = 0, which means that

2k = |(A∗)∗| = |(E#
1)∗| × · · · × |(E#

k)∗| (9)

according to Eq. 8. Since |Ei | > 1 for every i ≤ k, we obtain that |(E#
1)∗| = · · · =

|(E#
k)∗| = 2. It follows that E#

i is the dual of the m-reduct of the 2 element Boolean algebra,
so that A is the m-reduct of the 2k element Boolean algebra.

Example 5.3 shows that the homomorphism poset of an infinite algebra can get pretty
wild. We end the section with an additional example in that direction.

Example 5.23 Let Fω be the free Boolean algebra with countably many generators. For
any n ≥ 1 and any f ∈ AFω

with essential arity n, there are (countably) infinitely many
elements f ′ : Fn+1

ω → Fω such that f ≺ f ′.

Proof The Stone dual of Fω is the Cantor space �. Since f ∗ : � → n� has co-essential
arity n, we know that Y := (f ∗)−1({n} × �) is a nonempty clopen subset of �, so it is
homeomorphic to �. Let {ωi | i ∈ N} be a countable clopen basis of Y . For every i ∈ N,
the map ϕ : � → (n+ 1)� defined as

ϕ(u) =
{

f ∗(u) if u �∈ Y or u �∈ ωi(
n+ 1, pr2(f

∗(u))
)

if u ∈ ωi

is a morphism of co-essential arity n+ 1 and f ∗ ≺d ϕ.

6 Concluding Remarks and Further Research

In this paper, we used natural duality theory to investigate the minor relation for algebra
homomorphisms. Although our developments are limited to finitely generated quasivarieties
that admit a logarithmic duality, we have shown that natural duality theory may turn to be a
powerful tool to explore combinatorial problems pertaining to general algebra. Conversely,
note that Proposition 4.4, Corollary 4.3 and Theorems 4.6 and 5.4 can be used as criteria to
test non-dualizability of a finite algebra M as follows.
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Proposition 6.1 Let M be a finite algebra. If one of the following conditions is satisfied,
then no structure

˜
M can yield a logarithmic duality forA = ISP(M).

(1) There is a finite algebra A in A whose minor homomorphism poset is not isomorphic
to a disjoint union of order dual of partition lattices.

(2) There are an algebra A inA and homomorphims f, g : An → A for some n ≥ 2 such
that deck(f ) = deck(g) but f �≡ g.

(3) There are finite algebras A, B in A and a homomorphism f : An → B such that
ess(f ) = n ≥ 2 and f ◦ δI ≡ f ◦ δJ for some I �= J in

(
n
2

)
.

(4) There are algebras A, B ∈ A and a homomorphism f : An → B for some n ≥ 2
whose arity gap is not 1.

We now list topics for further research. Theorem 5.4 states that for any A, B ∈ A such
that ess(AAB) is bounded, the poset AAB is a disjoint union of finite partition lattices, and
leads us to the following definition.

Definition 6.2 Let A, B be elements of A such that ess(AAB) is bounded, and let K be the
set of maximal elements of AAB. The (A, B)-minor sequence sAB is defined by sAB(1) =
#{[f ] ∈ K | ess(f ) ∈ {0, 1}} and sAB(n) = #{[f ] ∈ K | ess(f ) = n} for every n ≥ 2
(these cardinals may be infinite). If A = B, we write sA for sAA, and we call it the minor
sequence of A.

If ess(AAB) is bounded, then the sequence sAB completely characterizes AAB, which
leads us to the following problems.

(I) Characterize those cardinal sequences that can be realized as (A, B)-minor sequence
for some A, B ∈ A.

(II) Proposition 5.21 states that the class of finite complemented lattices can be charac-
terized in the variety of distributive lattices by their minor sequence. Proposition 5.22
states that finite ternary Boolean algebras can be characterized among median alge-
bras by their minor sequences. Generally, how to find subclasses of A that can be
characterized in A by the minor sequences of its elements?

(III) More generally, for any cardinal α and any subclass B of A, say that B is α-minor
determined if for every A ∈ B, every set of mutually non-isomorphic B ∈ B such that
AB ∼= AA has cardinality smaller than α. For example, the class of finite Boolean
algebras is 1-minor determined, but if m > 1 then the class of finite MVm-algebras is
not (if p is a prime divisor of m then the minor posets of Łp and Ł1 are isomorphic).
What are other nontrivial examples of α-minor determined classes B? A similar prob-
lem has been investigated in [19] by considering endomorphism monoids instead of
minor posets.

We obtain other interesting open problems by going beyond logarithmic natural dualities.

(IV) Find instances of non logarithmic natural dualities for which co-products can still be
easily computed in the dual category, and apply the tools developed in this paper.

(V) Use the TwoSwap Theorem [11, Theorem 2.4] to study minor continuous homomor-
phism posets in topological algebras.

(VI) Use other types of dualities (Pontryagin duality, De Vries duality,. . . ) to study minor
homomorphism posets.
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