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Abstract
Let n denote a positive integer. We describe the absolute retracts for the following five
categories of finite lattices: (1) slim semimodular lattices, which were introduced by G.
Grätzer and E. Knapp in (Acta. Sci. Math. (Szeged), 73 445–462 2007), and they have
been intensively studied since then, (2) finite distributive lattices (3) at most n-dimensional
finite distributive lattices, (4) at most n-dimensional finite distributive lattices with cover-
preserving {0, 1}-homomorphisms, and (5) finite distributive lattices with cover-preserving
{0, 1}-homomorphisms. Although the singleton lattice is the only absolute retract for the
first category, this result has paved the way to some other classes. For the second category,
we prove that the absolute retracts are exactly the finite boolean lattices; this generalizes a
1979 result of J. Schmid. For the third category and also for the fourth, the absolute retracts
are the finite boolean lattices of dimension at most n and the direct products of n nontriv-
ial finite chains. For the fifth category, the absolute retracts are the same as those for the
second category. Also, we point out that in each of these classes, the algebraically closed lat-
tices and the strongly algebraically closed lattices (investigated by J. Schmid and, in several
papers, by A. Molkhasi) are the same as the absolute retracts.
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1 Introduction

Before formulating our targets and results in Section 1.5, we give a short historical overview.
The history leading to the present work belongs to four topics, which are surveyed in the
following four subsections. According to our knowledge, the first three of these four topics
have been studied independently so far; one of our goals is to find some connection among
them.

1.1 Strongly Algebraically Closed Algebras in Categories of Algebras

By an equation in an algebra A we mean a formal expression

p(a1, . . . , am, x1, . . . , xn) ≈ q(a1, . . . , am, x1, . . . , xn)

where m ∈ N0 = {0, 1, 2, . . . }, n ∈ N
+ = N0 \ {0}, p and q are (m + n)-ary terms (in

the language of A), the elements a1, . . . , am belong to A and they are called parameters (or
coefficients), and x1, . . . , xn are the unknowns of this equation. Although a single equation
contains only finitely many unknowns, we allow infinite systems (that is, sets) of equations
and such a system can contain infinitely many unknowns.

By a category of algebras we mean a concrete category X such that the objects of X
are algebras of the same type, every morphism of X is a homomorphism, and whenever
A1 and A2 are isomorphic algebras such that A1 belongs to X , then so does A2. Note that
there can be homomorphisms among the objects of X that are not morphisms of X . If X
happens to contain all homomorphisms among its objects as morphisms, then X is a class
of algebras (with all homomorphisms); the parenthesized part of this term is often dropped
in the literature. Given a category X of algebras and objects A, B in X , we say that B is
an X -extension of A if A is a subalgebra of B and, in addition, the map ι : A → B defined
by x �→ x is a morphism in X . (If X is a class of algebras with all homomorphisms and
A, B ∈ X , then “extension” is the same as “X -extension”.)

Note that the concept of “B is an X -extension of A” includes not only A and B, but
also the embedding ι : A → B defined by x �→ x. Therefore, when we speak of “all X -
extensions of A”, then the meaning is that all possible embeddings ι are considered. For
example, if A is the two-element chain in the class L of lattices with all homomorphisms,
then A has three essentially different L-extensions into a three-element chain.

For a category X of algebras and an algebra A ∈ X , we say that A is strongly alge-
braically closed in X if for every X -extension B ∈ X of A and for any system � of
equations with parameters taken from A, if � has a solution in B, then it also has a solu-
tion in A. Following Schmid [33], if we replace “any system �” by “any finite system �”,
then we obtain the concept of an algebraically closed algebra A in X . These two concepts
have been studied by many authors; restricting ourselves to lattice theory, we only mention
Schmid [33] and Molkhasi [25–28].

1.2 Absolute Retracts

Given an algebra B and a subalgebra A of B, we say that A is a retract of B if there exists
a homomorphism f : B → A such that f (a) = a for all a ∈ A. The homomorphism f in
this definition is called a retraction map or a retraction for short.

Now let A be an algebra belonging to a category X of algebras. We say that A is an
absolute retract for X if for any X -extension B of A, there exists a retraction B → A
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among the morphisms of X . Similarly, A is an absolute H-retract for X if for any X -
extension B of A, there exists a retraction f : B → A (but f need not be a morphism of
X ). The letter H in this terminology comes from “homomorphism”. Although an absolute
H-retract is not a purely category theoretic notion, it helps us to state some of our assertions
in a stronger form. Observe that

an absolute retract for a category X of algebras is also (1.1)

an absolute H-retract for X , and

for a class X of algebras with all homomorphisms, (1.2)

absolute H-retracts and absolute retracts are the same.

Absolute retracts emerged first in topology, and they appeared in classes of algebras as
soon as 1946; see Reinhold [32]. There are powerful tools to deal with homomorphisms and,
in particular, retractions in several categories of lattices; we will benefit from these tools in
Sections 3 and 4.

1.3 Slim Semimodular Lattices

For a finite lattice L, let J(L) stand for the set of nonzero join-irreducible elements of L.
Note that J(L) is a poset (i.e., a partially ordered set) with respect to the order inherited
from L. Following Czédli and Schmidt [11], we say that a lattice is slim if it is finite and
J(L) is the union of two chains. Note that slim lattices are planar; see Lemma 2.2 of Czédli
and Schmidt [11]. As usual, a lattice L is (upper) semimodular if we have x ∨ z � y ∨ z

for any x, y, z ∈ L such that y covers or equals x (in notation, x � y). Since the pioneering
paper Grätzer and Knapp [20], recent years have witnessed a particularly intense activity
in studying slim semimodular lattices; see Czédli, Dékány, Gyenizse and Kulin [5], Czédli
and Grätzer [6, 7], Czédli, Grätzer, and Lakser [8], Czédli and Makay [10], Czédli and
Schmidt [11, 12], Grätzer [16–19], Grätzer and Knapp [21], Grätzer and Nation [22], some
additional papers by G. Grätzer, and a dozen other papers written or coauthored by the first
author. (Most of these dozen papers are referenced in one of [6], [7], and [9].) For the impact
of these lattices on (combinatorial) geometry, see Adaricheva and Bolat [1], Adaricheva and
Czédli [2], Czédli [3], and (the surveying) Section 2 of Czédli and Kurusa [9], and see their
impact on lattice theory in Ranitović and Tepavčević [30, 31].

1.4 Finite and n-Dimensional Distributive Lattices

It is well known that a finite distributive lattice D is determined by the poset J(D) up to
isomorphism. Borrowing a definition from Dushnik and Miller [14], the order dimension of
a poset P = (P ; ≤P ), denoted by dimord(P ), is the least number n such that the relation
≤P is the intersection of n linear orderings on P . We know from Milner and Pouzet [24]
that dimord(P ) is also the least number n such that P has an order embedding into the
direct product of n chains. The width of a poset P is defined to be the maximum size of
an antichain in P ; it will be denoted by width(P ). By Dilworth [13, Theorem 1.1], a finite
poset P is of width n if and only if P is the union of n (not necessarily disjoint) chains
but not a union of fewer chains. As it is pointed out in the first paragraph of page 276 in
Rabinovitch and Rival [29], it follows from Dilworth [13] that

for a finite distributive lattice D, dimord(D) = width(J(D)). (1.3)
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If dimord(D) = n, then D is said to be n-dimensional.

1.5 Targets and Results

First, we are going to prove the following easy proposition. By a finite algebra we mean a
finite nonempty set equipped with finitely many operations.

Proposition 1.1 If A is an algebra in a category X of algebras, then the following two
conditions are equivalent.

(1) A is strongly algebraically closed in X .
(2) A is an absolute H-retract for X .

Furthermore, if X consists of finite algebras, then each of (1) and (2) is equivalent to

(3) A is algebraically closed in X .

This proposition will be proved in Section 2. Armed with Proposition 1.1, we are going
to prove the following result in Section 3.

Theorem 1.2 Let L be a slim semimodular lattice and let S denote the class of all slim
semimodular lattices with all homomorphisms. Then the following four conditions are
equivalent.

(1) L is algebraically closed in S .
(2) L is strongly algebraically closed in S .
(3) L is an absolute retract for S .
(4) L is the one-element lattice, i.e., |L| = 1.

Since the singleton lattice does not look too exciting in itself, it is worth noting the
following. First, we know neither a really short proof of this theorem nor a proof without
using some nontrivial tool from the theory of slim semimodular lattices. Second, Theorem
1.2 together with Molkhasi [25–28] and Schmid [33] have just motivated a related result
with infinitely many absolute retracts for the class of slim semimodular lattices with less
morphisms than here; see Czédli [4]. Third and mainly, as it is explained in Section 4.1,
Theorem 1.2 and the tools needed to prove it have paved the way to Theorem 1.3 of the
present paper.

Before formulating Theorem 1.3, we need to define some categories of lattices. Let ω

stand for the least infinite cardinal number, let N+ := {1, 2, 3, 4, . . . }, and

for n ∈ N
+ ∪ {ω}, let D(n) denote the category

of finite distributive lattices with order dimension at
most n, with all homomorphisms.

(1.4)

In particular D(ω) = ⋃{D(n) : n ∈ N
+} is the category of all finite distributive lattices.

We also define

the category Dall of all (not necessarily finite) dis-
tributive lattices with all homomorphisms.

(1.5)

For finite lattices A and B, a lattice homomorphism f : A → B is said to be a cover-
preserving {0, 1}-homomorphism if f (0) = 0, f (1) = 1, and for all x, y ∈ A such that
x ≺ y, we have that f (x) ≺ f (y). Since any two maximal chains in a finite semimodular
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lattice are of the same length (this is the so-called Jordan–Hölder chain condition), we
easily obtain the following observation; see Lemma 4.3 for a bit more information.

If A and B are finite semimodular lattices and there exists
a cover-preserving {0, 1}-homomorphism A → B, then A

and B are of the same length.
(1.6)

Note that distributive lattices, to which we will apply (1.6), are semimodular.

For n ∈ N
+ ∪ {ω}, let D01≺(n) denote the category consist-

ing of finite distribute lattices of order dimension at most
n as objects and cover-preserving {0, 1}-homomorphisms as
morphisms.

(1.7)

By a nontrivial lattice we mean a lattice with more than one element. In particular, a non-
trivial chain is a chain with at least two elements. For n ∈ N

+, by an n-dimensional grid we
mean the direct product of n nontrivial finite chains. 2-dimensional grids are simply called
grids. Note that an n-dimensional grid is a finite distributive lattice and, clearly, its order
dimension is n.

Now that we have Eqs. 1.4–1.7, we are in the position to state our main result.

Theorem 1.3 (Main Theorem) . Let n ∈ N
+ be an integer and let D be a finite distributive

lattice. Then the following three assertions hold.

(1) If D ∈ D01≺(n) and D is an absolute H-retract for D01≺(n), then D is boolean or D

is an n-dimensional grid.
(2) If D is boolean, then D is an absolute retract for Dall.
(3) If D is an n-dimensional grid, then D is an absolute retract for D(n).

Note that for a finite distributive lattice D, part (2) of Theorem 1.3 is stronger than its
counterpart in Schmid [33] since he only allows lattice embeddings and homomorphisms
that preserve 0 and 1 whenever they exist. Up to our best knowledge, parts (1) and (3) of
Theorem 1.3 have no counterparts in the literature.

Next, we are going to formulate some corollaries that accomplish our goal mentioned in
the Abstract. To do so economically, we introduce some classes of lattices as follows. For a
category X of lattices, we let

AlgC(X ) := {L ∈ X and L is algebraically closed in X }, (1.8)
StAlgC(X ) := {L ∈ X and L is strongly algebraically closed

in X }, (1.9)

AbRt(X ) := {L ∈ X and L is an absolute retract for X }, (1.10)

AHRt(X ) := {L ∈ X and L is an absolute H-retract for X }, (1.11)

Boolfin := {L : L is a finite boolean algebra}, (1.12)

Bool≤(2n) := {L : L is a finite boolean lattice and |L| ≤ 2n}, (1.13)

Grid=(n) := {L : L is an n-dimensional grid}, and (1.14)

Finite(X ) := {X : X is a finite lattice belonging to X }. (1.15)

Using Eqs. 1.4–1.15, now we can formulate our corollaries; they will be derived from
Theorem 1.3 in Section 5.
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Corollary 1.4 For every positive integer n,

AbRt(D(n)) = AlgC(D(n)) = StAlgC(D(n)) = Bool≤(2n) ∪ Grid=(n).

Corollary 1.5 AbRt(D(ω)) = AlgC(D(ω)) = StAlgC(D(ω)) = Boolfin.

Corollary 1.6 Finite(AbRt(Dall)) = Finite(StAlgC(Dall)) = Boolfin.

Corollary 1.7 For every positive integer n,

AbRt(D01≺(n)) = AHRt(D01≺(n)) = AlgC(D01≺(n))

= StAlgC(D01≺(n)) = Bool≤(2n) ∪ Grid=(n).

Corollary 1.8

AbRt(D01≺(ω)) = AHRt(D01≺(ω)) = AlgC(D01≺(ω))

= StAlgC(D01≺(ω)) = Boolfin.

Corollaries 1.7 and 1.8 show that we can disregard many morphisms from the categories
occurring in Corollaries 1.4 and 1.5 so that the absolute retracts remain the same. This is
not at all so for the category S occurring in Theorem 1.2; see Czédli [4] for details.

Recall that a planar lattice is finite by definition.

Corollary 1.9 The class of planar distributive lattices with all morphisms is D(2), and we
have that

AbRt(D(2)) = AlgC(D(2)) = StAlgC(D(2)) = Bool≤(22) ∪ Grid=(2).

Corollary 1.10 The category of planar distributive lattices with cover-preserving {0, 1}-
homomorphisms is D01≺(2), and we have that

AbRt(D01≺(2)) = AHRt(D01≺(2)) = AlgC(D01≺(2))

= StAlgC(D01≺(2)) = Bool≤(22) ∪ Grid=(2).

2 Proving the Proposition

To ease the notation, we give the proof only for lattices; the general proof would be
practically the same.

Proof of Proposition 1.1 First, we deal with the implication (1) ⇒ (2) and, if X consists of
finite lattices, also with the implication (3) ⇒ (2).

Assume that X is a class of lattices, A ∈ X , and either A is strongly algebraically closed
in X or X consists of finite lattices and A is algebraically closed in X . Let B ∈ X be
an X -extension of A. We need to show the existence of a retraction f : B → A. We can
assume that A is a proper sublattice of B, because the identity map of B would obviously
be a B → A retraction if A = B. The elements of A and those of B \ A will be called old
elements and new elements, respectively. For each new element b, we take an unknown xb.
For each pair (a, b) ∈ B × B of elements such that at least one of a and b is new, we define
an equation Ejoin(a, b) according to the following six rules.

If a is old, b is new, and a ∨ b is old, then Ejoin(a, b) is a ∨ xb ≈ a ∨ b. (2.1)
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If a is new, b is old, and a ∨ b is old, then Ejoin(a, b) is xa ∨ b ≈ a ∨ b. (2.2)

If a and b are new and a ∨ b is old, then Ejoin(a, b) is xa ∨ xb ≈ a ∨ b. (2.3)

If a is old, b and a ∨ b are new, then Ejoin(a, b) is a ∨ xb ≈ xa∨b. (2.4)

If a and a ∨ b are new and b is old, then Ejoin(a, b) is xa ∨ b ≈ xa∨b. (2.5)

If a, b, and a ∨ b are all new, then Ejoin(a, b) is xa ∨ xb ≈ xa∨b. (2.6)

Analogously, replacing ∨ by ∧, we define the equations Emeet(a, b) for all (a, b) ∈ B × B

such that at least one of a and b is a new element. Let Ê be the system of all equations we
have defined so far. Note that if X consists of finite lattices, then Ê is finite.

Clearly, Ê has a solution in B. Indeed, we can let xb := b for all new elements b to
obtain a solution of Ê. Since we have assumed that either A is strongly algebraically closed
in X or X consists of finite lattices and A is algebraically closed in X , it follows that Ê

also has a solution in A. This allows us to fix a solution of Ê in A. That is, we can choose
an element ub ∈ A for each new element b such that the equations 2.1–2.6 turn into true
equalities when the unknowns xb, for b ∈ B \ A, are replaced by the elements ub.

Next, consider the map

f : B → A, defined by c �→
{

c, if c is an old element,

uc, if c is a new element.

We claim that f is a retraction. Clearly, f acts identically on A. So we need only to show
that f is a homomorphism. It suffices to verify that f commutes with joins since the case
of meets is analogous. If a, b ∈ A, then a ∨ b is also in A, and we have that f (a) ∨ f (b) =
a ∨ b = f (a ∨ b), as required. If, say, a, a ∨ b ∈ A and b ∈ B \ A, then Eq. 2.1 applies and
we obtain that f (a) ∨ f (b) = a ∨ ub = a ∨ b = f (a ∨ b), as required. If a, b, a ∨ b are
all new, then we can use Eq. 2.6 to obtain that f (a) ∨ f (b) = ua ∨ ub = ua∨b = f (a ∨ b),
as required. The rest of the cases follow similarly from Eq. 2.2–2.5. Thus, we conclude that
f commutes with joins. We obtain analogously that it commutes with meets, whereby f is
a homomorphism. So f is a retraction, proving that (1) ⇒ (2) and, if X consists of finite
lattices, (3) ⇒ (2).

To prove the implication, (2) ⇒ (1), assume that A ∈ X is an absolute H-retract for X ,
B ∈ X is an X -extension of A, and a system Ĝ of equations with constants taken from A

has a solution in B.
Let x, y, z, . . . denote the unknowns occurring in Ĝ (possibly, infinitely many), and

let bx, by, bz, · · · ∈ B form a solution of Ĝ. Since we have assumed that A is an abso-
lute H-retract for X , we can take a retraction f : B → A. We define dx := f (bx),
dy := f (by), dz := f (bz), . . . ; they are elements of A. Let p(a1, . . . , ak, x, y, z, ...) =
q(a1, . . . , ak, x, y, z, ...) be one of the equations of Ĝ; here p and q are lattice terms, the
constants a1, . . . , ak are in A, and only finitely many unknowns occur in this equation.
Using that f commutes with lattice terms and, at =∗, using also that bx , by , bz, . . . form a
solution of the equation in question, we obtain that

p(a1, . . . , ak, dx, dy, dz, . . . ) = p(f (a1), . . . , f (ak), f (bx), f (by), f (bz), . . . )

= f (p(a1, . . . , ak, bx, by, bz, . . . )) =∗ f (q(a1, . . . , ak, bx, by, bz, . . . )) =
q(f (a1), . . . , f (ak), f (bx), f (by), f (bz), . . . ) = q(a1, . . . , ak, dx, dy, dz, . . . ).

This shows that dx, dy, dz, · · · ∈ A form a solution of Ĝ in A. Therefore, A is strongly
algebraically closed in X , showing the validity of (2) ⇒ (1).

Finally, the implication (1) ⇒ (3) is trivial, completing the proof of Proposition 1.1.

133Order (2023) 40:127–148



3 Proving Theorem 1.2

First, we recall briefly from Czédli and Schmidt [12] what we need to know about slim
semimodular lattices. Every lattice in this section is assumed to be finite. For a slim semi-
modular lattice L, we always assume that a planar diagram of L is fixed. A cover-preserving
four-element boolean sublattice of L is called a 4-cell. For m, n ∈ N

+, the direct product of
an (m + 1)-element chain and an (n + 1)-element chain is called a grid or, when we want
to be more precise, an m-by-n grid; note that this grid has exactly mn 4-cells.

We can add a fork to a 4-cell of a slim semimodular lattice as it is shown in Figure 5
of [12]; this is also shown here in Fig. 1, where we have added a fork to the light-grey 4-
cell of S

(1)
7 to obtain S

(2)
7 , and in Fig. 2, where we can obtain R from the grid G by adding

a fork to the upper 4-cell of G. Corners are particular doubly irreducible elements on the
boundary of L, see Figure 2 in [12], but we do not need their definition here. Instead of the
exact definition of slim rectangular lattices, it suffices to know their characterization, which
is given by (the last sentence of) Theorem 11 and Lemma 22 in [12] as follows:

L is a slim rectangular lattice if and only if it can be obtained from a
grid by adding forks, one by one, in a finite (possibly zero) number
of steps.

(3.1)

We know from Lemma 21 of [12] that

a lattice L is a slim semimodular lattice if and only if |L| ≤ 2
or L can be obtained from a slim rectangular lattice by removing
finitely many corners, one by one.

(3.2)

Proof of Theorem 1.2 The equivalence of (1) and (2) follows trivially from Proposition 1.1.
Also, Proposition 1.1 yields the equivalence of (2) and (3). Since the one-element lattice is
an absolute retract for any class of lattices containing it, the implication (4) ⇒ (3) is trivial.

Thus, it suffices to prove the implication (3) ⇒ (4). To do so, it is sufficient to prove that
whenever L ∈ S and |L| ≥ 2, then L is not an absolute retract for S . So let L be a slim
semimodular lattice with at least two elements. By Eq. 3.2 (or trivially if |L| = 2), we can
pick a slim rectangular lattice R such that L is a sublattice of R. It follows from Eq. 3.1 that
there exist m, n ∈ N

+ such that R can be obtained from an m-by-n grid G by adding forks,
one by one. Let t ∈ N

+ denote the smallest number such that m + n + 1 ≤ t and |L| < t .
To present an example that helps the reader follow the proof, let L be the 9-element slim

semimodular lattice on the top left of Fig. 2. For this L, we define R and G by the top

Fig. 1 S
(1)
7 , S

(2)
7 , and S

(7)
7
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Fig. 2 Illustrating the proof of Theorem 1.2

right diagram and the bottom right diagram of Fig. 2, respectively, and we have that m = 2,
n = 1, and t = 10.

We define the lattices S
(i)
7 for i ∈ N

+ by induction as follows; see Fig. 1 for i ∈ {1, 2, 7},
and see the diagram in the middle of Fig. 2 for i = 10 if we disregard the black-filled ele-
ments. (That is, S(i)

7 = K \{black-filled elements} in this diagram.) Resuming the definition

of the lattices S
(i)
7 , we obtain S

(1)
7 by adding a fork to the only 4-cell of the four-element

boolean lattice. From S
(i)
7 , we obtain S

(i+1)
7 by adding a fork to the rightmost 4-cell of S

(i)
7

that contains 1, the largest element of S
(i)
7 . (Note that we have also defined a fixed planar

diagram of S
(i)
7 in this way.) The elements of S

(i)
7 (or those of a planar lattice diagram) not

on the boundary of the diagram are called inner elements. Let a1, a2, . . . , ai be the inner
coatoms of S

(i)
7 , listed from left to right. In our diagrams, they are grey-filled. From now

on, we only need S
(t)
7 . It follows from Eq. 3.1 that S

(t)
7 is a slim semimodular (in fact, a slim

rectangular) lattice. The meet a1 ∧ · · · ∧ at of its inner coatoms will be denoted by b, as it
is indicated in Fig. 2.
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Since m + n + 1 ≤ t , the interval [b, am+1] of S
(t)
7 includes an m-by-n grid G′ with

top element am+1. In our example, G′ is indicated by the light-grey area in the sense that
G′ consists of those six elements of S

(t)
7 = S

(10)
7 that are on the boundary of the light-grey

rectangle. (Remember that S(10)
7 = K\{black-filled elements} in the middle of Fig. 2.) Since

the grids G′ and G have the same “sizes”, they are isomorphic. Thinking of the diagrams,
we can even assume that G′ and G are geometrically congruent. Hence, when we add forks
to G one by one in order to get R, we can simultaneously add forks to G′ in the same way
and, consequently, also to S

(t)
7 . In this way, we obtain a slim rectangular lattice K from

S
(t)
7 ; this follows from Eq. 3.1. Note that K ∈ S . In the middle of Fig. 2, K consists of

the empty-filled elements, the grey-filled elements, and the black-filled elements. In K , the
former interval G′ has become an interval isomorphic to R. But R is an extension of L,
whereby K has a sublattice L′ such that L′ is isomorphic to L. In the middle of the figure,
the elements of L′ are the pentagon-shaped larger elements. Note that the original inner
coatoms a1, . . . , at are also inner coatoms of K .

Next, for the sake of contradiction, suppose that L is an absolute retract for S . Then so
is L′ since L′ ∼= L. Since K ∈ S and L′ is a sublattice of K , there exists a retraction
f : K → L′. Let Θ := {(x, y) ∈ K2 : f (x) = f (y)} be the kernel of f . Then Θ is a
congruence of K with exactly |L′| blocks. But t > |L| = |L′|, whence there are distinct
i, j ∈ {1, . . . , t} such that ai and aj belong to the same Θ-block. Hence, (ai, aj ) ∈ Θ ,
implying that (ai, 1) = (ai ∨ ai, aj ∨ ai) ∈ Θ . Thus, the Θ-block 1/Θ of 1 contains
ai . By Grätzer’s Swing Lemma, see his paper [17] (alternatively, see Czédli, Grätzer, and
Lakser [8] or Czédli and Makay [10] for secondary sources), {a1, . . . , at } ⊆ 1/Θ . Since
congruence blocks are sublattices, b = a1 ∧ · · · ∧ at ∈ 1/Θ . Therefore, using the facts that
congruence blocks are convex sublattices, am+1 ∈ 1/Θ , and G′ was originally a subinterval
of [b, am+1] in S

(t)
7 , we obtain that L′ ⊆ [b, am+1] ⊆ 1/Θ in the lattice K . Hence, for

any x, y ∈ L′, we have that (x, y) ∈ Θ . Consequently, the definition of Θ and that of a
retraction yield that, for any x, y ∈ L′, x = f (x) = f (y) = y. Therefore, |L| = |L′| = 1,
which is a contradiction. This contradiction implies that neither L′, nor L is an absolute
retract for S , completing the proof of Theorem 1.2.

4 Proving Theorem 1.3

4.1 Notes Before the Proof

This subsection is to enlighten the way from Theorem 1.2 to Theorem 1.3. The reader is not
expected to check the in-line statements in this subsection; what will be needed later will be
proved or referenced in due course.

In the proof of Theorem 1.2, forks play a crucial role. This raises the question what
happens if forks are excluded from Eq. 3.1. It follows easily from Czédli and Schmidt [12,
Lemma 15] that the lattices we obtain by means of Eqs. 3.1 and 3.2 without adding forks
are exactly the members of D(2). But D(2) is the class of distributive slim semimodular
lattices. Hence, utilizing the theory of slim semimodular lattices, the particular case n = 2
of Corollary 1.4 becomes available with little effort. Although this section is more ambitious
by allowing n ∈ N

+ ∪{ω} and aiming at Theorem 1.3 in addition to its corollaries, the ideas
extracted from the theory of slim semimodular lattices and from the proof of Theorem 1.2
have been decisive in reaching Theorem 1.3.
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4.2 Auxiliary Lemmas

Unless otherwise explicitly stated, every lattice in this section is assumed to be finite. For
an n-dimensional grid G and a maximal element a ∈ J(G), the principal ideal ↓a is a
nontrivial chain. Chains of this form will be called the canonical chains of G. The following
lemma follows trivially from the fact that in a direct product of finitely many finite chains
we compute componentwise.

Lemma 4.1 If n ∈ N
+ and G is an n-dimensional grid, then the following assertions hold.

(1) G has exactly n canonical chains; in the rest of the lemma, they will be denoted by C1,
. . . , Cn.

(2) Each element x of G can uniquely be written in the canonical form

x = x[1] ∨ · · · ∨ x[n] where x[1] := x ∧ 1C1 ∈ C1, . . . , x[n] :=
x ∧ 1Cn ∈ Cn; the elements x[1],. . . ,x[n] are called the canonical
joinands of x.

(4.1)

(3) For each i ∈ {1, . . . , n}, the map πi : G → Ci defined by x �→ x[i] is a surjective
homomorphism.

(4) The mapG → C1×· · ·×Cn defined by x �→ (x[1], . . . , x[n]) is a lattice isomorphism.

The notation x[1], . . . , x[n] will frequently be used, provided the canonical chains of
an n-dimensional grid are fixed. The map πi above is often called the i-th projection. Note
that, for an n-dimensional grid G, J(G) is the disjoint union of C1 \ {0}, . . . , Cn \ {0}. Thus,
the set {C1, . . . , Cn} of the canonical chains is uniquely determined, and only the order of
these chains needs fixing. We also need the following lemma; the sublattices of a chain are
called subchains.

Lemma 4.2 Assume that n ∈ N
+, L and K are n-dimensional grids, and L is a sublattice

of K . Then there are nontrivial subchains E1, . . . , En of the canonical chains C1, . . . , Cn of
K , respectively, such that

L = {x ∈ K : x[1] ∈ E1, . . . , x[n] ∈ En}. (4.2)

The visual meaning of Lemma 4.2 is that an n-dimensional grid cannot be embedded
into another n-dimensional grid in a “skew way”.

Proof of Lemma 4.2 Assume that n ∈ N
+, L and K are n-dimensional grids, and L is a

sublattice of K . Then there are integers t1 ≥ 2, . . . , tn ≥ 2 and chains Hi = {0, 1, . . . , ti −
1} (with the natural ordering of integer numbers) such that we can pick an isomorphism
ϕ : H1 ×· · ·×Hn → L. The canonical chains of K will be denoted by C1, . . . , Cn. The least
element of H1 × · · · × Hn and that of L are �0 := (0, . . . , 0) and 0L = ϕ(�0), respectively.
For (i1, . . . , in) ∈ H1 × · · · × Hn, we write ϕ(i1, . . . , in) rather than the more precise
ϕ((i1, . . . , in)). For j ∈ {1, . . . , n} and i ∈ Hj \ {0}, we are going to use the notation

a
(j)
i := ( 0, . . . , 0

︸ ︷︷ ︸
j−1 zeros

, i, 0, . . . , 0
︸ ︷︷ ︸
n−j zeros

), (4.3)

Clearly,

J(H1 × · · · × Hn) = {a(j)
i : j ∈ {1, . . . , n} and i ∈ Hi \ {0}}. (4.4)
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It is also clear that the atoms of H1 × · · · × Hn are a
(1)
1 , . . . , a

(n)
1 . With the notation given in

Eq. 4.1, for j ∈ {1, . . . , n} we let

Ij := {i ∈ {1, . . . , n} : ϕ(a
(j)

1 )[i] > 0L[i]}. (4.5)

Since a
(j)

1 > �0 and ϕ is an isomorphism, Ij �= ∅. We claim that

if j �= k ∈ {1, . . . , n}, then Ij ∩ Ik = ∅. (4.6)

We prove this by way of contradiction. Suppose that j �= k but i ∈ Ij ∩Ik . Then ϕ(a
(j)

1 )[i] >

0L[i] and ϕ(a
(k)
1 )[i] > 0L[i]. Since j and k play a symmetrical role and the elements

ϕ(a
(j)

1 )[i] and ϕ(a
(k)
1 )[i] belonging to the same canonical chain Ci of K are comparable,

we can assume that 0L[i] < ϕ(a
(j)

1 )[i] ≤ ϕ(a
(k)
1 )[i]. Hence, using Lemma 4.1(3),

ϕ(a
(j)

1 )[i] = ϕ(a
(j)

1 )[i] ∧ ϕ(a
(k)
1 )[i] = (

ϕ(a
(j)

1 ) ∧ ϕ(a
(k)
1 )

)[i]
= ϕ(a

(j)

1 ∧ a
(k)
1 )[i] = ϕ(�0)[i] = 0L[i],

contradicting (4.5) and proving (4.6). Using that I1, . . . , In are nonempty subsets of the
finite set {1, . . . , n} and they are pairwise disjoint by Eq. 4.6, we have that

n ≤ |I1| + · · · + |In| = |I1 ∪ · · · ∪ In| ≤ |{1, . . . , n}| = n.

Hence, none of the I1, . . . , Ij can have more than one element, and we obtain that |I1| =
· · · = |In| = 1. Therefore, after changing the order of the direct factors in H1 × · · · × Hn

and so also the order of the atoms a
(1)
1 , . . . , a

(n)
1 if necessary, we can write that I1 = {1},

. . . , In = {n}. This means that, for all j, k ∈ {1, . . . , n},
ϕ(a

(j)

1 )[k] ≥ 0L[k], and ϕ(a
(j)

1 )[k] > 0L[k] ⇐⇒ k = j . (4.7)

Next, we generalize (4.7) by claiming that for j, k ∈ {1, . . . , n} and i ∈ Hj \ {0},
ϕ(a

(j)
i )[k] ≥ 0L[k], and ϕ(a

(j)
i )[k] > 0L[k] ⇐⇒ k = j . (4.8)

To prove this, we can assume that i > 1 since otherwise (4.7) applies. Using Eq. 4.7 together
with the fact that πk and πj defined in Lemma 4.1(3) are order-preserving, we obtain that

ϕ(a
(j)
i )[k] ≥ ϕ(a

(j)

1 )[k] ≥ 0L[k] for all k ∈ {1, . . . , n}, as required, and ϕ(a
(j)
i )[j ] ≥

ϕ(a
(j)

1 )[j ] > 0L[j ]. So all we need to show is that ϕ(a
(j)
i )[k] > 0L[k] is impossible if

k �= j . Suppose, for a contradiction, that k �= j , k, j ∈ {1, . . . , n}, and ϕ(a
(j)
i )[k] > 0L[k].

We also have that ϕ(a
(k)
1 )[k] > 0L[k] by Eq. 4.7. Belonging to the same canonical chain

of K , the elements ϕ(a
(j)
i )[k] and ϕ(a

(k)
1 )[k] are comparable, whence their meet is one

of the meetands. Thus, ϕ(a
(j)
i )[k] ∧ ϕ(a

(k)
1 )[k] > 0L[k]. Hence, using that ϕ and πk are

homomorphisms and a
(j)
i ∧ a

(k)
1 = �0, we obtain that

0L[k] < ϕ(a
(j)
i )[k] ∧ ϕ(a

(k)
1 )[k] = (

ϕ(a
(j)
i ) ∧ ϕ(a

(k)
1 )

)[k]
= ϕ(a

(j)
i ∧ a

(k)
1 )[k] = ϕ(�0)[k] = 0L[k],

which is a contradiction proving Eq. 4.8.
Next, after extending the notation given in Eq. 4.3 by letting a

(j)

0 := �0 for j ∈ {1, . . . , n},
we have that

ϕ(a
(k)
i )[k] ≥ 0L[k] for all k ∈ {1, . . . , n} and i ∈ Hk (4.9)
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since a
(k)
i ≥ a

(k)
0 = �0, ϕ and πk are order-preserving maps, and 0L = ϕ(�0). For j ∈

{1, . . . , n}, we define

Ej := {ϕ(a
(j)
i )[j ] : i ∈ Hj }. (4.10)

By Eq. 4.1, Ej ⊆ Cj , that is, Ej is a subchain of Cj for all j ∈ {1, . . . , n}. We are going to
show that these Ej satisfy Eq. 4.2.

First, assume that x ∈ K is of the form x = x[1] ∨ · · · ∨ x[n] such that x[j ] ∈ Ej

for all j ∈ {1, . . . , n}. Then, for each j ∈ {1, . . . , n}, there is an i(j) ∈ Hj such that

x[j ] = ϕ(a
(j)

i(j))[j ]. Using what we already have, let us compute:

x = x[1] ∨ · · · ∨ x[n] = ϕ(a
(1)
i(1))[1] ∨ · · · ∨ ϕ(a

(n)
i(n))[n] (4.11)

(4.9)= ϕ(a
(1)
i(1))[1] ∨ · · · ∨ ϕ(a

(n)
i(n))[n] ∨ 0L[1] ∨ · · · ∨ 0L[n]

(4.8)= ϕ(a
(1)
i(1))[1] ∨ · · · ∨ ϕ(a

(n)
i(n))[n]

∨ ϕ(a
(1)
i(1))[2] ∨ · · · ∨ ϕ(a

(1)
i(1))[n]

∨ · · · ∨ ϕ(a
(n)
i(n)[1] ∨ · · · ∨ ϕ(a

(n)
i(n))[n − 1]

(4.1)= ϕ(a
(1)
i(1)) ∨ · · · ∨ ϕ(a

(n)
i(n)) = ϕ(a

(1)
i(1) ∨ · · · ∨ a

(n)
i(n)) (4.12)

Since ϕ(a
(1)
i(1) ∨ · · · ∨ a

(n)
i(n)) ∈ ϕ(H1 × · · · × Hn) = L, the computation from Eqs. 4.11 to

4.12 shows the “⊇” part of Eq. 4.2.
To show the reverse inclusion, assume that x ∈ L. Applying Lemma 4.1(2) to the ϕ-

preimage of x (or trivially since we are in a direct product), we obtain the existence of
i(1), . . . , i(n) such that x = ϕ(a

(1)
i(1) ∨ · · · ∨ a

(n)
i(n)). Reading the computation from Eq. 4.12

to Eq. 4.11 upward, it follows that x = ϕ(a
(1)
i(1))[1] ∨ · · · ∨ ϕ(a

(n)
i(n))[n]. By the uniqueness

part of Lemma 4.1(2), x[1] = ϕ(a
(1)
i(1))[1], . . . , x[n] = ϕ(a

(n)
i(n))[n]. Combining this with

Eq. 4.10, we have that x[1] ∈ E1, . . . , x[n] ∈ En. This yields the “⊆” inclusion for Eq. 4.2
and completes the proof of Lemma 4.2.

The following easy lemma sheds more light on the categories D01≺(n), n ∈ N
+ ∪ {ω}.

The length of a lattice M is denoted by length(M).

Lemma 4.3 Assume that K,L are finite semimodular lattices (in particular, finite distribu-
tive lattices) and f : K → L is a map. Then the following three assertions hold.

(1) If f is a cover-preserving {0, 1}-homomorphism, then f is a cover-preserving {0, 1}-
embedding and length(K) = length(L).

(2) If f is a lattice embedding and length(K) = length(L), then f is a cover-preserving
{0, 1}-homomorphism.

(3) If L is a sublattice of K such that the map L → K defined by x �→ x is a cover-
preserving {0, 1}-embedding and f is a retraction, then f is a lattice isomorphism
(and, in particular, f is also a cover-preserving {0, 1}-embedding).

Proof First, recall the following concept. A sublattice S of a lattice M is a congruence-
determining sublattice of M if any congruence α of M is uniquely determined by its
restriction α�S := {(x, y) ∈ S2 : (x, y) ∈ α}. By Grätzer and Nation [22],

every maximal chain of a finite semimodular
lattice is a congruence-determining sublattice.

(4.13)
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To prove part (1), let f : K → L be a cover-preserving {0, 1}-homomorphism. We know
from Eq. 1.6 that length(K) = length(L). Let Θ := {(x, y) ∈ K2 : f (x) = f (y)} be
the kernel of f , and take a maximal chain C in K . For c, d ∈ C such that c ≺ d, we
have that (c, d) /∈ Θ since f (c) ≺ f (d). Hence, using that the blocks of Θ�C are convex
sublattices of C, it follows that Θ�C= 	C . Applying (4.13), we have that Θ = 	K . Thus,
f is injective, proving part (1).

We prove the “lion’s share” of part (2) by way of contradiction. Suppose that in spite of
the assumptions, f is not cover-preserving. Pick a, b ∈ K such that a ≺ b but f (a) �≺ f (b).
The injectivity of f rules out that f (a) = f (b). Hence, the interval [f (a), f (b)] is of
length at least 2. Extend {a, b} to a maximal chain C = {0 = c0, c1, . . . , ck = 1} of K such
that a = ci−1, b = ci , and c0 ≺ c1 ≺ · · · ≺ ck . By the Jordan–Hölder chain condition,
k = length(K). Using the injectivity of ϕ again and the fact that ϕ is order-preserving,
length([f (cj−1), f (cj )]) ≥ 1 for all j ∈ {1, . . . , k}. So the summands in

length(L) ≥
k∑

j=1

length([f (cj−1), f (cj )]) (4.14)

are positive integers but the i-th summand is at least two. Therefore, this sum and
length(K) = length(L) are at least k + 1, which is a contradiction. This shows that f is
cover-preserving. In particular, with C as above, we have that f (0) = f (c0) ≺ f (c1) ≺
· · · ≺ f (ck−1) ≺ f (ck) = f (1). Hence, length([f (0), f (1)]) = k = length(K) =
length(L), implying that f (0) = 0 and f (1) = 1. Thus, f is a cover-preserving
{0, 1}-homomorphism, completing the proof of part (2).

Next, to prove part (3), observe that 0L = 0K and 1L = 1K . Hence, since f is a
retraction, f (0K) = 0L and f (1K) = 1L, as required. We are going to show that when-
ever a ≺ b in K , then f (a) ≺ f (b) in L. Suppose to the contrary that a ≺ b in K but
f (a) �≺ f (b) in L. Then there are two cases (since f is order-preserving): either we have
that f (a) = f (b), or f (a) < f (b) and the length of the interval [f (a), f (b)] is at least
2. For each of these two cases, let Θ denote the kernel {(x, y) ∈ K2 : f (x) = f (y)}
of f , and let U = {0 = u0, u1, . . . , uk = 1} be a maximal chain of L. It is also
a maximal chain of K since the embedding L → K defined by x �→ x is a cover-
preserving {0, 1}-homomorphism. We know from the Jordan–Hölder chain condition that
length(K) = k = length(L).

First, we deal with the first case, f (a) = f (b). Then (a, b) ∈ Θ shows that Θ �= 	K .
We have that Θ�U �= 	U since Eq. 4.13 applies. Using that the blocks of Θ�U are convex
sublattices of U , it follows that (ui−1, ui) ∈ Θ�U for some i ∈ {1, . . . , k}. This means
that f (ui−1) = f (ui). This equality leads to a contradiction since f is a retraction and so
ui−1 = f (ui−1) = f (ui) = ui . Since the only conditions tailored to a and b were a ≺ b

and f (a) = f (b), we have also obtained that

if a′ ≺ b′ in K , then f (a′) �= f (b′). (4.15)

Next, we focus on the case f (a) < f (b) and length([f (a), f (b)]) ≥ 2. As in the proof
of part (2), we can extend {a, b} to a maximal chain C of K . Since U is also a maxi-
mal chain of K , the Jordan–Hölder chain condition gives that length(C) = length(K) =
length(U) = k. This allows us to write that C = {0 = c0, c1, . . . , ck = 1} where a = ci−1
and b = ci for some i ∈ {1, . . . , k}, and c0 ≺ c1 ≺ · · · ≺ ck . By the Jordan–Hölder
chain condition, (4.14) is still valid. Each summand in Eq. 4.14 is at least 1 by Eq. 4.15,
but the i-th summand is length([f (ci−1), f (ci)]) = length([f (a), f (b)]) ≥ 2. Hence,
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k = length(K) = length(L) ≥ k + 1, which is a contradiction again. In this way, we have
shown that f is a cover-preserving {0, 1}-homomorphism.

Applying the already proven part (1) of Lemma 4.3, we obtain that f is a cover-
preserving {0, 1}-embedding. This yields that |K| ≤ |L|. But we also have that |L| ≤ |K|
since L is a sublattice of K . Thus, |K| = |L|, whence the embedding f is a lattice iso-
morphism since these lattices are finite. This completes the proof of part (3) and that of
Lemma 4.3.

Lemma 4.4 If L is a nontrivial finite distributive lattice with order dimension n ∈ N
+, then

there exists a cover-preserving {0, 1}-embedding of L into an n-dimensional grid G.

Proof of Lemma 4.4 By Eq. 1.3, width(J(L)) = n. It follows from Dilworth [13, Theorem
1.1], mentioned already in Section 1.4, that there are chains C1, . . . , Cn in J(L) such that
J(L) = C1 ∪ · · · ∪ Cn. We define E1, . . . , En by induction as follows:

E1 := C1 and, for i ∈ {2, . . . , n}, Ei := Ci \ (C1 ∪ · · · ∪ Ci−1).

We show by an easy induction that

for i ∈ {1, . . . , n}, E1 ∪ · · · ∪ Ei = C1 ∪ · · · ∪ Ci , and
the sets E1, . . . , Ei are pairwise disjoint.

(4.16)

Since this is trivial for i = 1, assume that i ∈ {2, . . . , n} and Eq. 4.16 holds for i − 1. Then
E1 ∪ · · · ∪ Ei−1 ∪ Ei = C1 ∪ · · · ∪ Ci−1 ∪ (Ci \ (C1 ∪ · · · ∪ Ci−1)) = C1 ∪ · · · ∪ Ci shows
the equality in Eq. 4.16 for i. The sets E1, . . . , Ei−1 are pairwise disjoint by the induction
hypothesis, while Ei is disjoint from them because of Ei := Ci \ (C1 ∪ · · · ∪ Ci−1) =
Ci \ (E1 ∪ · · · ∪ Ei−1). This shows the validity of Eq. 4.16.

Observe that none of E1, . . . , En is empty. Indeed, J(L) = C1 ∪· · ·∪Cn = E1 ∪· · ·∪En

by Eq. 4.16, and so if one of E1, . . . , En was empty, then J(L) would be the union of less
than n chains, contradicting Dilworth [13, Theorem 1.1].

Next, with E+
i := Ei ∪ {0} for i ∈ {1, . . . , n} and 0 = 0L /∈ Ei , we define G :=

E+
1 × · · · × E+

n . Since none of E1, . . . , En is empty, we have that |E+
i | ≥ 2 and so G is

an n-dimensional grid. Clearly, |J(G)| = |E1| + · · · + |En|. This equality and Eq. 4.16 give
that |J(G)| = |E1 ∪ · · · ∪ En| = |C1 ∪ · · · ∪ Cn| = |J(L)|. We know from the folklore or
from Grätzer [15, Corollary 112] that

the length of a finite distributive lattice equals the
number of its join-irreducible elements,

(4.17)

whereby G and L are of the same length. (4.18)

For x ∈ L and i ∈ {1, . . . n}, let xi stand for the largest element of E+
i ∩ ↓x; this makes

sense since E+
i is a chain of L and 0 ∈ E+

i ∩ ↓x shows that E+
i ∩ ↓x �= ∅. We are going to

show that
the map ϕ : L → G defined by the rule
x �→ (x1, . . . , xn) is a lattice embedding.

(4.19)

To prove (4.19), let x, y ∈ L. Denote x ∧ y and x ∨ y by u and v, respectively. We have
that ϕ(x) = (x1, . . . , xn) and ϕ(y) = (y1, . . . , yn). Here yi is the largest element of E+

i ∩
↓y, and analogous notation applies for ϕ(u) and ϕ(v). Since the lattice operations in the
direct product G are computed componentwise, we only need to show that, for every i ∈
{1, . . . , n}, xi ∧ yi = ui and xi ∨ yi = vi . In fact, we only need to show that xi ∧ yi ≤ ui

and xi ∨ yi ≥ vi since the converse inequalities follow from the fact that ϕ is clearly
order-preserving. Since xi and yi belong to the same chain, E+

i , these two elements are
comparable. They play a symmetrical role, whence we can assume that xi ≤ yi . Thus,
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the equalities xi = xi ∧ yi and yi = xi ∨ yi reduce our task to show that xi ≤ ui and
yi ≥ vi . Since xi ∈ E+

i ∩ ↓x and xi ≤ yi yields that xi ∈ E+
i ∩ ↓y, we have that

xi ∈ E+
i ∩↓x ∩↓y = E+

i ∩↓(x ∧ y) = E+
i ∩↓u. Taking into account that ui is the largest

element of E+
i ∩ ↓u, the required inequality xi ≤ ui follows. It belongs to the folklore of

lattice theory (and it occurs in the last paragraph of the proof of Theorem 107 in Grätzer
[15]) that

if D is a finite distributive lattice, t ∈ N
+, p ∈ J(D),

q1, . . . , qt ∈ D, and p ≤ q1 ∨ · · · ∨ qt , then there is an
i ∈ {1, . . . , t} such that p ≤ qi .

(4.20)

Continuing our argument for ϕ, we can assume that vi �= 0 since otherwise the required
yi ≥ vi is trivial. Then we know that vi ≤ v = x ∨ y and vi ∈ Ei ⊆ J(L). Hence Eq. 4.20
gives that vi ≤ x or vi ≤ y. If vi ≤ x, then the definition of xi yields that vi ≤ xi , whence
vi ≤ yi . If vi ≤ y, then the definition of yi immediately yields that vi ≤ yi . So the required
yi ≥ vi holds in both cases, and we have shown that ϕ is a lattice homomorphism.

Next, we claim that for each x ∈ L,

x = x1 ∨ · · · ∨ xn. (4.21)

By finiteness, there is a nonempty subset H of J(L) ∪ {0} such that x = ∨
H . For each

h ∈ H , (4.16) and J(L) = C1 ∪ · · · ∪ Cn yield an i ∈ {1, . . . , n} such that h ∈ E+
i . Then

we have that h ∈ E+
i ∩↓x, whereby h ≤ xi ≤ x1 ∨ · · · ∨ xn. Since this holds for all h ∈ H ,

we have that x = ∨
H ≤ x1 ∨ · · · ∨ xn. The converse inequality is trivial, and we conclude

Eq. 4.21. Clearly, Eq. 4.21 implies the injectivity of ϕ. Thus, we have shown Eq. 4.19.
Finally, Eq. 4.18, Eq. 4.19, and Lemma 4.3(2) imply that f is a cover-preserving {0, 1}-

homomorphism, completing the proof of Lemma 4.4.

Lemma 4.5 If n ∈ N
+, L is an n-dimensional grid, but L is not a boolean lattice, then L

is a sublattice of an (n + 1)-dimensional grid K such that K and L are of the same length.

Proof By the assumption, L = C1 × · · · × Cn such that C1, . . . , Cn are nontrivial chains
and at least one of them consists of at least three elements. Up to isomorphism, the order of
the direct factors is irrelevant, whereby we can assume that |C1| ≥ 3. Let q be the unique
coatom of C1. Then 0 < q ≺ 1 in C1 and E0 := ↑q = {q, 1} is a two-element subchain of
C1. The subchain E1 := ↓q is still a nontrivial chain. Define K := E0×E1 ×C2 ×· · ·×Cn.
It is an (n+1)-dimensional grid. Since J(L) consists of the vectors with exactly one nonzero
component and similarly for J(K), |J(L)| = (|C1| − 1) + (|C2| − 1) + · · · + (|Cn| − 1) =
(|E0| − 1) + (|E1| − 1) + (|C2| − 1) + · · · + (|Cn| − 1) = |J(K)|. Hence, Eq. 4.17 gives
that L and K are of the same length. We are going to show that L can be embedded into K .

Instead of defining an injective homomorphism L → K and verifying its properties
in a tedious way, recall the following. If H1 and H2 are lattices, F1 is a filter of H1, I2
is an ideal of H2, and ψ : F1 → I2 is a lattice isomorphism, then the ordered quintuple
(H1, H2, F1, I2, ψ) uniquely determines a lattice H by identifying x with ψ(x), for all
x ∈ F1, in H1 ∪ H2. This H is the well-known Hall–Dilworth gluing of H1 and H2 or,
to be more precise, the Hall–Dilworth gluing determined by the quintuple; see, for exam-
ple, Grätzer [15, Lemma 298] for more details. Furthermore, it is also well known, see
Grätzer [15, Lemma 299], that

if M is a lattice, M1 is an ideal of M , M2 is a filter
of M , and T := M1 ∩ M2 �= ∅, then M1 ∪ M2 is
a sublattice of M and M is isomorphic to the Hall–
Dilworth gluing determined by (M1,M2, T , T , idT ),

(4.22)
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where idT : T → T is the identity map defined by x �→ x.
In the rest of this proof, �0 and �1 will stand for (0C2 , . . . , 0Cn) ∈ C2 × · · · × Cn and

(1C2 , . . . , 1Cn) ∈ C2 × · · · × Cn, respectively. In L, we let IL := ↓(q, �1 ), FL := ↑(q, �0 ),
and TL := IL ∩ FL = [(q, �0), (q, �1)]. In K , we let IK := ↓(q, q, �1 ); remember that the
first q here is the least element of E0 while the second q is the largest element of E1. Still
in K , we also let FK := ↑(q, q, �0 ) and TK := IK ∩ FK = [(q, q, �0 ), (q, q, �1 )]. Clearly,
the map ρ : IL → IK defined by (x, �y ) �→ (q, x, �y ) is an isomorphism. Let

τ : FL → FK be defined by (x, �y ) �→ (x, q, �y);
it is also an isomorphism. We have to check that the restrictions ρ�TL

and τ�TL
are the

same maps and they are TL → TK isomorphisms. But this is clear since TL = {(q, �y ) :
�y ∈ C2 × · · · × Cn} and TK = {(q, q, �y ) : �y ∈ C2 × · · · × Cn}. Hence, it follows from
Eq. 4.22 that IK ∪FK is a sublattice of K . It also follows from Eq. 4.22 that L, which is the
Hall–Dilworth gluing determined by (IL, FL, TL, TL, idTL

), is isomorphic to this sublattice.
Therefore, after replacing K by an isomorphic copy if necessary, we conclude that L is a
sublattice of K , proving Lemma 4.5.

4.3 The Auxiliary Lemmas at Work

Based on our lemmas, we are ready to prove the main theorem of the paper and its
corollaries.

Proof of Theorem 1.3 We prove 1.3(1), that is part (1) of Theorem 1.3, by contradiction.
Suppose that n ∈ N

+ and D ∈ D01≺(n) is an absolute H-retract for D01≺(n), but D is
neither boolean nor it is an n-dimensional grid. The first task in the proof is to find a proper
D01≺(n)-extension K of D. Let k := dimord(D); note that k ≤ n. By Lemma 4.4, D has a
D01≺(n)-extension L such that L is a k-dimensional grid. There are three cases depending
on k and L.

First, assume that k < n and L is boolean. Then D �= L since D is not boolean. So if we
let K := L, then

K ∈ D01≺(n), K �= D, and K is a
D01≺(n)-extension of D.

(4.23)

Second, assume that k < n and L is not boolean. Then Eq. 1.6 gives that length(L) =
length(D). Lemma 4.5 allows us to take a (k+1)-dimensional grid K such that length(K) =
length(L) and L is a sublattice of K . So D is a sublattice of K and length(D) = length(K).
Hence if we apply Lemma 4.3(2) to the map D → K defined by x �→ x and take
dimord(K) = k + 1 ≤ n into account, we obtain that K is a D01≺(n)-extension of D. Since
dimord(D) = k �= dimord(K), we have that D �= K and so Eq. 4.23 holds again.

Third, assume that k = n, that is, dimord(D) = n. Then, by Lemma 4.4, D has a
D01≺(n)-extension K such that K is an n-dimensional grid. Since we have assumed that D

is not an n-dimensional grid, Eq. 4.23 holds again.
We have seen that, in each of the three possible cases, Eq. 4.23 holds. Since D ∈ D01≺(n)

was assumed to be an absolute H-retract for D01≺(n), there exists a retraction f : K → D.
We know from Eq. 4.23 that the map D → K defined by x �→ x is a cover-preserving
{0, 1}-embedding. Hence f is an isomorphism by Lemma 4.3(3), whereby |K| = |D|. This
contradicts the fact that D is a proper sublattice of K by Eq. 4.23, and we have proved
1.3(1).

To prove 1.3(2), assume that a finite boolean lattice D is a sublattice of a not necessarily
finite distributive lattice K . We are going to show that there exists a retraction K → D.
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Since this is trivial if D is a singleton, we can assume that |D| > 1. Let n := dimord(D).
Combining Eqs. 1.3 and 4.17 and taking into account that the join-irreducible elements of
a finite boolean lattice are exactly its atoms, it follows that D has exactly n atoms and it
is of length n. Hence, we can take a maximal chain C = {0 = c0, c1, . . . , cn−1, cn = 1}
in D such that ci−1 ≺ ci for i ∈ {1, . . . , n}. For i ∈ {1, . . . , n}, the Prime Ideal Theorem
allows us to pick a prime ideal Ii of K such that ci−1 ∈ Ii but ci /∈ Ii . Since Ii is a
prime ideal, the partition {Ii ,K \ Ii} determines a congruence Θi of K . This congruence
separates ci−1 and ci , that is, (ci−1, ci) /∈ Θi . Let Θ := ⋂{Θi : i ∈ {1, . . . n}}. Now Θ

is a congruence of K and its restriction Θ�C is a congruence of the sublattice C. We claim
that Θ�C= 	C ; suppose the contrary. We know from the folklore that any congruence of a
finite lattice is determined by the covering pairs it collapses, whence (ci−1, ci) ∈ Θ�C for
some i ∈ {1, . . . , n}. But then (ci−1, ci) ∈ Θ�C⊆ Θ ⊆ Θi , contradicting the fact that Θi

separates ci−1 and ci . This shows that Θ�C= 	C . Therefore, it follows from Eq. 4.13 and
Θ�C= (Θ�D)�C that

Θ�D= 	D . (4.24)

Observe that

if α and β are congruences of a not necessarily finite lattice, α

has exactly m ∈ N
+ blocks, and β has exactly n ∈ N

+ blocks,
then α ∩ β has at most mn blocks.

(4.25)

Indeed, Eq. 4.25 follows from the fact that β cuts each of the m α-blocks into at most n

pieces. Since Θi has only two blocks, it follows from Eq. 4.25 that Θ has at most 2n blocks.
But the elements of D belong to pairwise different Θ-blocks by Eq. 4.24, whereby Θ has
exactly 2n = |D| blocks. Next, we define a map

f : K → D by the rule f (x) = d ∈ D ⇐⇒ (x, d) ∈ Θ . (4.26)

For later reference, we note that

to show that f in Eq. 4.26 is a retraction, we will only
use that K is a lattice, D is finite a sublattice of K , Θ has
exactly |D| blocks, and Θ�D= 	D .

(4.27)

Since Θ has exactly 2n blocks, |D| = 2n and Eq. 4.24 guarantee the properties mentioned
in Eq. 4.27. The equality Θ�D= 	D yields that for each x ∈ K , there is at most one d

in Eq. 4.26. If there was an x ∈ K with its Θ-block x/Θ disjoint from D, then Θ would
have more than |D|-blocks since x/Θ would be different from the pairwise distinct blocks
of the elements of D. Thus, for each x ∈ K , there is exactly one d ∈ D with (x, d) ∈ Θ ,
whereby Eq. 4.26 defines a map, indeed. If f (x1) = d1 and f (x2) = d2, then (x1, d1) ∈ Θ

and (x2, d2) ∈ Θ yield that (x1 ∨ x2, d1 ∨ d2) ∈ Θ , whence f (x1 ∨ x2) = d1 ∨ d2 ∈ D. The
same holds for meets, and so f is a homomorphism. By the reflexivity of Θ , f (d) = d for
all d ∈ D. Thus, f is a retraction, proving 1.3(2).

Next, to prove 1.3(3), first we observe that

if E is a finite subchain of a chain
C, then E is a retract of C.

(4.28)

To see this, let E = {e1, e2, . . . ek} such that e1 < e2 < · · · < ek . Understanding the
principal ideals below in C, it is trivial that the equivalence Θ with blocks ↓e1, ↓e2 \ ↓e1,
. . . , ↓ek−1 \↓ek−2, C \↓ek−1 is a congruence of C. Since Θ�E= 	E and Θ has |E| blocks,
(4.27) implies (4.28).
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Next, Eq. 4.28 allows us to assume that n ≥ 2, D is an n-dimensional grid, L ∈ D(n),
and D is a sublattice of L. We are going to find a retraction L → D. It follows from
Milner and Pouzet [24], see Section 1.4 of the present paper, that dimord(D) ≤ dimord(L).
Combining this inequality with n = dimord(D) and L ∈ D(n), we obtain that dimord(L) =
n. Hence, by Lemma 4.4, there is a cover-preserving {0, 1}-embedding of L into an n-
dimensional grid K . Then D is a sublattice of K , and both D and K are n-dimensional
grids. Let C1, . . . , Cn be the canonical chains of K . By Lemma 4.2, these canonical chains
have nontrivial subchains E1, . . . , En, respectively, such that Eq. 4.2 holds with D in place
of L. For i ∈ {1, . . . , n}, πi : K → Ci defined by x �→ x[i] is a homomorphism by Lemma
4.1(3). Since x[i] = 0 ∨ · · · ∨ 0 ∨ x[i] ∨ 0 ∨ · · · ∨ 0 (where x[i] is the i-th joinand on
the right), the uniqueness of the canonical form Eq. 4.1 gives that (x[i])[i] = x[i]. Hence,
πi acts identically on Ci and so πi is a retraction. Using Eq. 4.28, we can take a retraction
gi : Ci → Ei . Clearly, the composite map fi := gi ◦ πi is a retraction K → Ei . For x ∈ D

, (4.2) gives that x[i] ∈ Ei . Hence, for x ∈ D and i ∈ {1, . . . , n},
fi(x) = gi(πi(x)) = gi(x[i]) = x[i]. (4.29)

Let Θi be the kernel of fi . Since fi , as any retraction, is surjective, Θi has exactly |Ei |
blocks. Therefore, if we let Θ := ⋂n

i=1 Θi , then Θ is a congruence of K with at most∏n
i=1 |Ei | = |D| blocks by Eq. 4.25. On the other hand, if (x, y) ∈ Θ holds for x, y ∈ D,

then (x, y) ∈ Θi and Eq. 4.29 give that x[i] = fi(x) = fi(y) = y[i] for all i ∈ {1, . . . , n},
whence it follows from Eq. 4.1 that x = y. This means that Θ�D= 	D . Thus, Θ has at least
|D| blocks, and we obtain that Θ has exactly |D|-blocks. Therefore, Eqs. 4.26 and 4.27
imply that there is a retraction f : K → D. Since the restriction f �L : L → D, defined by
x �→ f (x), is clearly a retraction, we have shown the existence of a retraction L → D, as
required. This completes the proof 1.3(3) and that of Theorem 1.3.

5 Proving the Corollaries

Proof of Corollary 1.4 For categories X and Y , we say that X is a subcategory of Y if
every object of X is an object of Y and every morphism of X is a morphism of Y . It is
trivial to observe that

if X and Y are categories of lattices such that X is a subcategory of
Y and a lattice L ∈ X is an absolute H-retract for Y , then L is also
an absolute H-retract also for X .

(5.1)

Let n ∈ N
+. It suffices to show that Bool≤(2n) ∪ Grid=(n) = AbRt(D(n)) since the rest of

equalities follow from Eq. 1.2 and Proposition 1.1. If D ∈ Bool≤(2n), then D ∈ AbRt(Dall)

by Theorem 1.3 (2), whence Eq. 5.1 yields that D ∈ AbRt(D(n)). If D ∈ Grid=(n), then
D ∈ AbRt(D(n)) by Theorem 1.3(3). Thus, we have verified the “⊆” part of the required
equality. Conversely, if D ∈ AbRt(D(n)), then Eq. 5.1 implies that D ∈ AbRt(D01≺(n)).
Hence, D ∈ AHRt(D01≺(n)) by Eq. 1.1, and we obtain from Theorem 1.3(1) that D ∈
Bool≤(2n) ∪ Grid=(n). This yields the converse inclusion “⊇”.

Proof of Corollary 1.5 In virtue of Eq. 1.2 and Proposition 1.1, it suffices to show that
AbRt(D(ω)) = Boolfin. If D ∈ Boolfin, then Theorem 1.3(2) and Eq. 1.2 give that D ∈
AHRt(Dall). Applying Eqs. 5.1 and 1.2, we obtain that D ∈ AbRt(D(ω)). This gives the
“⊇” part of the required equality.
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Conversely, assume that D ∈ AbRt(D(ω)). Denote dimord(D) by k. Then D ∈ D01≺(k+
1), and Eq. 1.2 together with Eq. 5.1 give that D ∈ AHRt(D01≺(k + 1)). Applying The-
orem 1.3(1), D ∈ Boolfin or D ∈ Grid=(k + 1). But D ∈ Grid=(k + 1) is excluded by
dimord(D) = k. Therefore, D ∈ Boolfin, and the “⊆” inclusion also holds.

Proof of Corollary 1.6 It follows from Eq. 1.2 and Proposition 1.1 that only the equality
Finite(AbRt(Dall)) = Boolfin needs proving. Assume that D belongs to Finite(AbRt(Dall)).
By Eqs. 1.2, 5.1, and 1.2 again, D ∈ AbRt(D(ω)). Hence, Corollary 1.5 gives that D ∈
Boolfin, showing that Finite(AbRt(Dall)) ⊆ Boolfin. Since Theorem 1.3(2) takes care of the
converse inclusion, the proof is complete.

Proof of Corollary 1.7 Since it follows from Proposition 1.1 that AHRt(D01≺(n)) =
AlgC(D01≺(n)) = StAlgC(D01≺(n)), it suffices to show that

AbRt(D01≺(n)) ⊆ AHRt(D01≺(n)), (5.2)

AHRt(D01≺(n)) ⊆ Bool≤(2n) ∪ Grid=(n), and (5.3)

Bool≤(2n) ∪ Grid=(n) ⊆ AbRt(D01≺(n)). (5.4)

But Eq. 5.2 is a particular case of Eq. 1.1 while Eq. 5.3 is the same as Theorem 1.3(1),
whereby it suffices to prove Eq. 5.4. Assume that D ∈ Bool≤(2n) ∪ Grid=(n). Then D ∈
AbRt(D(n)) = AHRt(D(n)) by Corollary 1.4 and Eq. 1.1. Applying Eq. 5.1, we obtain that
D ∈ AHRt(D01≺(n)). Let K be a D01≺(n)-extension of D. Since D ∈ AHRt(D01≺(n)),
there exists a retraction f : K → D. By Lemma 4.3(3), f is a morphism of D01≺(n). Thus,
D ∈ AbRt(D01≺(n)), proving Eq. 5.4 and Corollary 1.7.

Proof of Corollary 1.8 Denote by Eq. 5.2[ω], (5.3)[ω], and Eq. 5.4[ω] the conditions we
obtain from Eqs. 5.2, 5.3, and 5.4, respectively, by substituting Boolfin for Bool≤(2n), ∅
for Grid=(n), and ω for the remaining occurrences of n. As in the previous proof, it is
clear by Proposition 1.1 that it suffices to show Eq. 5.2[ω], (5.3)[ω], and Eq. 5.4[ω]. As
before, Eq. 5.2[ω] is a particular case of Eq. 1.1. To show Eq. 5.3[ω], assume that D ∈
AHRt(D01≺(ω)). Letting k := dimord(D), we have that D ∈ AHRt(D01≺(k + 1)). So if we
apply the Eq. 5.3 part of Corollary 1.7, we obtain that D ∈ Bool≤(2k+1) ∪ Grid=(k + 1).
Since dimord(D) = k �= k + 1 excludes that D ∈ Grid=(k + 1), we conclude that D ∈
Bool≤(2k+1) ⊆ Boolfin, proving Eq. 5.3[ω].

To show Eq. 5.4[ω], assume that D ∈ Boolfin, and let L be an D01≺(ω)-extension of D.
Since Boolfin = ⋃

k∈N+ Bool≤(2k) and D01≺(ω) = ⋃
k∈N+ D01≺(k), we can pick an n ∈

N
+ such that D ∈ Bool≤(2n) and L ∈ D01≺(n). It follows from the Eq. 5.4 part of Corol-

lary 1.7 that there is retraction f : L → D such that f is a morphism of D01≺(n). Since
D01≺(n) ⊆ D01≺(ω), f is also a morphism of D01≺(ω). Hence, D ∈ AbRt(D01≺(ω)),
proving Eq. 5.4[ω] and Corollary 1.8.

Proof of Corollary 1.9 By Proposition 5.2 of Kelly and Rival [23], a finite lattice is planar
if and only if its order dimension is at most 2. Hence, the class of planar distributive lattices
is D(2). Thus, the rest of the statement becomes a particular case of Corollary 1.4.

Proof of Corollary 1.10 The first half of Corollary 1.9 yields that we are in the category
D01≺(2). Therefore, the required equalities follow from Corollary 1.7.
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16. Grätzer, G.: On a result of Gábor Czédli concerning congruence lattices of planar semimodular lattices.

Acta. Sci. Math. (Szeged) 81, 25–32 (2015)
17. Grätzer, G.: Congruences in slim, planar, semimodular lattices: The Swing Lemma. Acta. Sci. Math.

(Szeged) 81, 381–397 (2015)
18. Grätzer, G.: Congruences of fork extensions of slim, planar, semimodular lattices. Algebra Universalis

76, 139–154 (2016)
19. Grätzer, G.: Notes on planar semimodular lattices. VIII. Congruence lattices of SPS lattices. Algebra

Universalis 81(15), 3 (2020)
20. Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. I. Construction. Acta. Sci. Math.(Szeged)

73, 445–462 (2007)
21. Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. III. Congruences of rectangular lattices.

Acta. Sci. Math. (Szeged) 75, 29–48 (2009)
22. Grätzer, G., Nation, J.B.: A new look at The Jordan-Hölder theorem for semimodular lattices. Algebra
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