
https://doi.org/10.1007/s11083-021-09578-z

MV-algebras and Partially Cyclically Ordered Groups

Gérard Leloup1

Received: 30 August 2019 / Accepted: 5 September 2021 /
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
We prove that there exists a functorial correspondence between MV-algebras and partially
cyclically ordered groups which are the wound-rounds of lattice-ordered groups. It follows
that some results about cyclically ordered groups can be stated in terms of MV-algebras. For
example, the study of groups together with a cyclic order allows to get a first-order charac-
terization of groups of unimodular complex numbers and of finite cyclic groups. We deduce
a characterization of pseudofinite MV-chains and of pseudo-simple MV-chains (i.e. which
share the same first-order properties as some simple ones). We generalize these results to
some non-linearly ordered MV-algebras, for example hyperarchimedean MV-algebras.
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1 Introduction

This article has been written in such a way that it can be read by someone who does not
have prior knowledge of cyclically ordered groups. We state the basic concepts of par-
tially ordered groups that we require. We also list all the definitions and properties about
MV-algebras and logic that we need. Whenever possible, in our proofs we try to use only
properties of partially ordered groups, lattice-ordered groups or linearly ordered groups.

Unless otherwise stated all groups in this paper are abelian groups.
Every MV-algebra can be obtained in the following way. Let (G,≤, ∧, u) be a lattice-

ordered group (briefly �-group) together with a distinguished strong unit u > 0 (i.e. for
every x ∈ G there is a positive integer n such that x ≤ nu); such a group is called a
unital �-group. We set [0, u] := {x ∈ G | 0 ≤ x ≤ u}. For every x, y in [0, u] we let
x ⊕ y = (x + y) ∧ u and ¬x = u − x. We see that the restriction of the partial order ≤ to
[0, u] can be defined by x ≤ y ⇔ ∃z y = x ⊕ z.
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Now, the quotient group C = G/Zu can be equipped with a partial cyclic order. First,
we explain what is a cyclic order. On a circle C, there is no canonical linear order, but there
exists a canonical cyclic order. Assume that one traverses a circle counterclockwise. For
every x �= y �= z �= x, we declare that R(x, y, z) holds if one can find x, y, z in this order
starting from some point of the circle. Now, starting from another point one can find them in
the order y, z, x or z, x, y. So in turn R(y, z, x) and R(z, x, y) hold. We say that R is cyclic.
Furthermore, for any x in C the relation y <x z ⇔ R(x, y, z) is a linear order relation on
the set C\{x}.

��

��y

xz

���

These rules give the definition of a cyclic order. We generalize this definition to a (strict)
partial cyclic order by assuming that <x is a partial order relation which needs not be a
linear order.

Turning to the cyclic order R(·, ·, ·) on the quotient group C = G/Zu it is defined by
setting R(x1+Zu, x2+Zu, x3+Zu) if there exists n2 and n3 in Z such that x1 < x2+n2u <

x3 + n3u < x1 + u (see Proposition 3.5). One can prove that (C,R) satisfies for every x, y,
z, v in C:

• R(x, y, z) ⇒ x �= y �= z �= x (R is strict)
• R(x, y, z) ⇒ R(y, z, x) (R is cyclic)
• by setting y ≤x z if either R(x, y, z) or x �= y = z or x = y �= z or x = y = z, then

≤x is a partial order relation on C
• R(x, y, z) ⇒ R(x + v, y + v, z + v) (R is compatible)
• R(x, y, z) ⇒ R(−z,−y, −x).

Any group equipped with a ternary relation which satisfies those properties is called a
partially cyclically ordered group. If all the orders ≤x are linear orders, then (C,R) is called
a cyclically ordered group. In the case where C = G/Zu, where G is a partially ordered
group, we say that C is the wound-round of a partially ordered group, or a wound-round.

If A is an MV-algebra, then there is a unital �-group (GA, uA) (uniquely determined up
to isomorphism) such that A is isomorphic to the MV algebra [0, uA]. The group GA is
called the Chang �-group of A. We show that the MV-algebra A is definable in the partially
cyclically ordered group (GA/ZuA,R). It follows that there is a functorial correspondence
between cyclically ordered groups and MV-chains (i.e. linearly ordered MV-algebras). So
some properties of MV chains can be deduced from analogous properties of cyclically
ordered groups.

In [8], D. Glusschankov constructed a functor between the category of projectable MV-
algebras and the category of projectable lattice-ordered groups. The approach of the present
paper is different, and it does not need to restrict to a subclass of MV-algebras.

In Section 2 we list basic properties of MV-algebras and of their Chang �-groups. We also
give a few basic notions of logic which we need in this paper. Section 3 starts with defini-
tions and basic properties of partially cyclically ordered groups. We focus on those partially
cyclically ordered groups which can be seen as wound-rounds of partially ordered groups
or lattice-ordered groups. In particular, we show that there is a functor from the category of
unital partially ordered groups to the category of their wound-rounds. The restriction of this
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functor to the linearly ordered groups gives rise to a full and faithful functor. In Section 4
we show that there is a functor �� from the category of MV-algebras to the category of
partially cyclically ordered groups together with c-homomorphisms. We define a class AC
of partially cyclically ordered groups C in which we can define an MV-algebra A(C) ∪ {1}
(Theorem 4.11). Then we prove that the wound-rounds of �-groups belong to AC (The-
orem 4.16). Furthermore, the subgroup generated by A(C) being the wound-round of an
�-group is a first-order property (Theorem 4.17). Section 5 is dedicated to MV-chains. In
this case the one-to-one mapping C �→ A(C) defines a functorial correspondence between
the class of MV-chains and the class of cyclically ordered groups. We describe this functor.
Next we prove that if A and A′ are two MV-chains, then A and A′ are elementarily equiva-
lent if, and only if, ��(A) and ��(A′) are elementarily equivalent (Proposition 5.2). We
also prove that any two MV-chains are elementarily equivalent if, and only if, their Chang �-
groups are elementarily equivalent (Proposition 5.4). The class of pseudo-simple MV-chains
is defined to be the elementary class generated by the simple chains. We define in the same
way the pseudofinite MV-chains. One can prove that a pseudo-simple MV-chain is an MV-
chain which is elementarily equivalent to some MV-subchain of {x ∈ R | 0 ≤ x ≤ 1}, and
a pseudofinite MV-chain is an MV-chain which is elementarily equivalent to some ultra-
product of finite MV-chains. We use the results of [12] on cyclically ordered groups to
deduce characterizations of pseudo-simple and of pseudofinite MV-chains. Furthermore, we
get necessary and sufficient conditions for such MV-chains being elementarily equivalent
(Theorems 5.8, 5.9). In Section 6, we generalize the results of Section 5 about pseudofinite
and pseudo-simple MV-chains to pseudo-finite and pseudo-hyperarchimedean MV-algebras
which are cartesian products of finitely many MV-chains (Theorems 6.4, 6.5).

The author would like to thank Daniele Mundici for his bibliographical advice and his
suggestions. He also thanks an anonymous referee for their careful reading of this paper.

2 MV-algebras

The reader can find more properties for example in [3, Chapter 1].

2.1 Definitions and Basic Properties

Definition 2.1 An MV-algebra is a set A equipped with a binary operation ⊕, a unary
operation ¬ and a distinguished constant 0 satisfying the following equations. For every x,
y and z:

MV1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z

MV2) x ⊕ y = y ⊕ x

MV3) x ⊕ 0 = x

MV4) ¬¬x = x

MV5) x ⊕ ¬0 = ¬0
MV6) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

If this holds, then we define 1 = ¬0, x �y = ¬(¬x ⊕¬y) and x ≤ y ⇔ ∃z, x ⊕z = y.
Then ≤ is a partial order called the natural order on A. This partial order satisfies: x ≤ y ⇔
¬y ≤ ¬x, and A is a distributive lattice with smallest element 0, greatest element 1, where
x ∨ y = ¬(¬x ⊕ y) ⊕ y, x ∧ y = ¬(¬(x ⊕ ¬y) ⊕ ¬y) = (x ⊕ ¬y) � y. The operations ∧
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(infimum) and ∨ (supremum) are compatible with ⊕ and �. Note that Condition MV6) can
be written as x ∨ y = y ∨ x. In the case where ≤ is a linear order, A is called an MV-chain.

Following [3], if n is a positive integer and x is an element of a group, then we denote by
nx the sum x+· · ·+x (n times). If x belongs to an MV-algebra, then we set n.x = x⊕· · ·⊕x

(n times). Further, we will set xn = x � · · · � x.
If G is a partially ordered group and u ∈ G, u is said to be a strong unit if u > 0 and

for every x ∈ G there is n ∈ N such that x ≤ nu. It follows that there exists n′ ∈ N

such that −x ≤ n′u, hence −n′u ≤ x ≤ nu. A unital �-group is an �-group (i.e. a lattice-
ordered group) with distinguished strong unit u > 0. More generally, a unital partially
(resp. linearly) ordered group is a partially (resp. linearly) ordered group together with a
distinguished strong unit.

Example 2.2 If (G, u) is a unital �-group, then the set [0, u] := {x ∈ M | 0 ≤ x ≤ u}
together with the operations x ⊕ y = (x + y) ∧ u, ¬x = u − x, and where 0 is the identity
element of G, is an MV-algebra, whose natural partial order is the restriction of the partial
order on G. It is denoted �(G, u). In this case, x � y = (x + y − u) ∨ 0, and it follows:
(x ⊕ y) + (x � y) = x + y.

A unital homomorphism between two unital partially ordered groups (G, u) and (G′, u′)
is an order-preserving group homomorphism f between G and G′ such that f (u) = u′. An
�-homomorphism between two �-groups G and G′ is a group-homomorphism such that for
every x, y in G we have that f (x ∧ y) = f (x) ∧ f (y) and f (x ∨ y) = f (x) ∨ f (y) (it
follows that f is also an order-preserving homomorphism).

A homomorphism of MV-algebras is a function f from an MV-algebra A to an MV-
algebra A′ such that f (0) = 0 and for every x, y in A, f (x ⊕ y) = f (x) ⊕ f (y) and
f (¬x) = ¬f (x).

The mapping � : (G, u) �→ �(G, u) is a full and faithful functor from the category A
of unital �-groups to the category MV of MV-algebras. If f is a unital �-homomorphism
between (G, u) and (G′, u′), then �(f ) is the restriction of f to [0, u] [3, Chapter 7].

Now, for every MV-algebra A there exists a unital �-group (GA, uA), uniquely defined
up to isomorphism, such that A is isomorphic to [0, uA] together with above operations;
(GA, uA) is called the Chang �-group of A (see [3, Chapter 2]). We will sometimes let GA

stand for (GA, uA). For further purposes we describe this Chang �-group in Section 2.2.
The mapping �: A �→ (GA, uA) is a full and faithful functor from the category MV
to the category A. We do not describe here the unital �-homomorphism �(f ), where f

is a homomorphism of MV-algebras. The composite functors �� and �� are naturally
equivalent to the identities of the respective categories (see [3, Theorems 7.1.2 and 7.1.7]).

The language of MV-algebras is LMV = (0, ⊕, ¬). However, since ≤, ∧ and ∨ are
definable in LMV , we will assume that they belong to the language. We will denote by Lo =
(0, +, −,≤) the language of (partially) ordered groups, and by Llo = (0, +,−, ∧,∨) the
language of �-groups. When dealing with unital �-groups, we will add a constant symbol to
the language, which will then be denoted by Llou = Llo ∪{u}, and LloZu = Llo ∪{Zu} will
denote the language of �-groups together with a unary predicate for the subgroup generated
by u.

The Chang �-group GA of A is an Llou-structure where u is a constant predicate inter-
preted by the distinguished strong unit of GA. Now, GA is also an LloZu-structure where
Zu is a unary predicate interpreted by: Zu(x) if, and only if, x belongs to the subgroup
generated by the distinguished strong unit; in this case we denote GA by (GA,ZuA).
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In the MV-algebra A, recall that x � y stands for ¬(¬x ⊕ ¬y). In [0, uA] ⊂ GA we
have that x � y = (x + y − uA) ∨ 0. If A is an MV-chain, then the formula x > 0 and
0 = x � x = · · · = xn is equivalent to: 0 < x < 2.x < · · · < n.x ≤ uA.

We conclude this subsection by stating a lemma which we will need in Section 4, in
particular in the proof of Corollary 4.3.

Notations 2.3 In the following, if x < y are elements of a partially ordered structure G,
then we will set [x, y] := {z ∈ G | x ≤ z ≤ y}, [x, y[ := [x, y]\{y}, ]x, y] := [x, y]\{x}
and ]x, y[ := [x, y]\{x, y}.

Lemma 2.4 Let G be an �-group and 0 < u ∈ G.

(1) Either [0, u] = {0, u},
or there exists x ∈ ]0, u[ such that [0, u] = {0, u, x},
or there exists x ∈ ]0, u[ such that [0, u] = {0, u, x, u − x},
or for every x ∈ ]0, u[ there exists y ∈ ]0, u[ such that x < y or y < x.

(2) If ]0, u[ contains x, y such that x < y, then for every z ∈ ]0, u[ there exists z′ ∈ ]0, u[
such that z < z′ or z′ < z.

Proof As noted a referee, this lemma follows from a property of distributive lattices, which
we prove for completeness. So we assume that G is a distributive lattice.

(1) If [0, u] contains two or three elements, the property is trivial. If it contains four ele-
ments 0, x, y, u, then either [0, u] is linearly ordered, or x ∧ y = 0 and x ∨ y = u.
Now we assume that [0, u] contains at least five elements, and we let x ∈ ]0, u[. By
hypotheses, there exists x′ �= x′′ in ]0, u[ \{x}. If x ∧ x′ = x or x ∨ x′ = x, then we
let y = x′. If x ∧ x′′ = x or x ∨ x′′ = x, then we let y = x′′. Otherwise, since every
distributive lattice is cancellative (i.e. (x ∨z′ = x ∨z′′ & x ∧z′ = x ∧z′′) ⇒ z′ = z′′),
we have x ∨ x′ �= x ∨ x′′ or x ∧ x′ �= x ∧ x′′. If x ∨ x′ �= x ∨ x′′, then x ∨ x′ �= u or
x ∨ x′′ �= u. We set y = x ∨ x′ or y = x ∨ x′′. The case x ∧ x′ �= x ∧ x′′ is similar.

(2) This follows from (1).

Corollary 2.5 Let A be an MV-algebra. Then:
either A = {0, 1},
or there exists x ∈ A\{0, 1} such that A = {0, 1, x},
or there exists x ∈ A\{0, 1} such that A = {0, 1, x,¬x},
or for every x ∈ A\{0, 1} there exists y ∈ A\{0, 1} such that x < y or y < x.
If A\{0, 1} contains x, y such that x < y, then for every z ∈ A\{0, 1} there exists z′ ∈
A\{0, 1} such that z < z′ or z′ < z.

2.2 Construction of the Chang �-group

The correspondence between MV-algebras and partially cyclically ordered groups relies
on the so-called good sequences defined for the construction of the Chang �-groups (see
[13], [3, Chapter 2]). We describe this construction and we also define an analogue of
the good sequences in an �-group. We start with some properties of partially ordered
groups.

Remark 2.6 We know that every cancellative abelian monoid M embeds canonically in a
group G generated by the image of M following the construction of Z from N. Now, one
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can deduce from properties of partially ordered groups (see for example [1], Propositions
1.1.2, 1.1.3, and also 1.2.5) that:

(1) M is the positive cone of a compatible partial order on G if, and only if, for every x,
y in M , x + y = 0 ⇒ x = y = 0, and this partial order is given by x ≤ y ⇔ ∃z ∈
M, y = x + z,

(2) G is an �-group if, and only if, for every x, y in M , x ∧ y exists.

The following lemmas show that every element of the positive cone of a unital �-group
can be associated to a unique sequence of elements of [0, u]. So G is determined by its
restriction to [0, u]. This property will give rise to the construction of the Chang �-group.

Lemma 2.7 Assume that (G, u) is a unital �-group. Let 0 < x ∈ G and m be a positive
integer such that x ≤ mu. Then, there exists a unique sequence x1, . . . , xn of elements of
[0, u] such that x = x1 +· · ·+ xn and, for 1 ≤ i < n− 1, (u− xi)∧ (xi+1 +· · ·+ xn) = 0,
and n ≤ m.

Proof For every y ∈ G, we have that (u−y)∧(x−y) = 0 ⇔ (u∧x)−y = 0 ⇔ y = u∧x.
Set x1 = x ∧u. Then x1 is the unique element of G such that (u−x1)∧ (x −x1) = 0. Since
0 < x, we have that 0 ≤ x1 ≤ u, and 0 ≤ x − x1 = x − (u ∧ x) = x + ((−u) ∨ (−x)) =
(x − u) ∨ 0 ≤ (mu − u) ∨ 0 = (m − 1)u. By taking x − x1 in place of x we get x2 ∈ [0, u]
such that (u − x2) ∧ (x − x1 − x2) = 0, and we have that x − x1 − x2 ∈ [0, (m − 2)u],
and so on. Hence there exists a unique sequence x1, . . . , xn of elements of [0, u] such that
x = x1 + · · · + xn and, for 1 ≤ i < n − 1, (u − xi) ∧ (xi+1 + · · · + xn) = 0.

Lemma 2.8 The condition: for 1 ≤ i < n−1, (u−xi)∧(xi+1 +· · ·+xn) = 0 is equivalent
to: for 1 ≤ i < n − 1, (u − xi) ∧ xi+1 = 0. If this holds, then, for 1 ≤ i < j ≤ n,
(u − xi) ∧ xj = 0

Proof Assume that for 1 ≤ i < n−1, (u−xi)∧(xi+1 +· · ·+xn) = 0. Let i < j ≤ n. Since
0 ≤ xi and 0 ≤ xj ≤ xi+1 + · · · + xn, it follows that (u − xi) ∧ xj = 0. Now, let y, z, z′ in
[0, u] such that (u − y) ∧ z = (u − z) ∧ z′ = 0, then 0 ≤ (u − y) ∧ z′ = (u − y) ∧ z′ ∧ u =
(u − y) ∧ z′ ∧ (z + u − z) ≤ ((u − y) ∧ z′ ∧ z) + ((u − y) ∧ z′ ∧ (u − z)) = 0. Hence by
induction we can prove that the condition: for 1 ≤ i < n − 1, (u − xi) ∧ xi+1 = 0 implies
for 1 ≤ i < n − 1, (u − xi) ∧ (xi+1 + · · · + xn) = 0.

Remark 2.9 By setting, for x, y in [0, u], x ⊕ y = (x + y) ∧ u, we have that x � y =
0 ∨ (x + y − u). Hence, using the fact that for every z in G we have that z = z ∨ 0 + z ∧ 0,
we get: x + y = (x ⊕ y) + (x � y). We deduce from the proof of Lemma 2.7 that x ⊕ y

is the unique element of [0, u] such that (u − x ⊕ y) ∧ (x + y − x ⊕ y) = 0, and then
x + y − x ⊕ y ∈ [0, u]. It follows that x = x ⊕ y ⇔ (u − x) ∧ y = 0. Furthermore, from
the equality x + y = (x ⊕ y) + (x � y) we get x ⊕ y = x ⇔ x � y = y.

Now, we come to the Chang �-group.

Definition 2.10 Let A be an MV-algebra. A sequence (xi) of elements of A indexed by
the natural numbers 1, 2, . . . is said to be a good sequence if, for each i, xi ⊕ xi+1 = xi ,
and it contains only a finite number of nonzero terms. If x = (xi) and y = (yi) are good
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sequences, then we define z = x + y by the rules z1 = x1 ⊕ y1, z2 = x2 ⊕ (x1 � y1) ⊕ y2,
and more generally, for every positive integer i:

zi = xi ⊕ (xi−1 � y1) ⊕ · · · ⊕ (x1 � yi−1) ⊕ yi .

We also define a partial order ≤ by x ≤ y ⇔ ∃z, y = x + z.

We see that A embeds into the monoid MA of good sequences by x �→ (x, 0, 0, . . . ), and
one can prove that MA is cancellative, it satisfies the properties 1) and 2) of Remark 2.6,
where:
x ∧ y = (xi ∧ yi), x ∨ y = (xi ∨ yi), and
if y = x + z, then z = (yi) + (¬xn,¬xn−1, . . . , ¬x1, 0, . . . ), where xn is the last nonzero
term of (xi) (see [3, Chapter 2]).

Consequently, MA defines in a unique way an �-group, and the image of (1, 0, . . . ) in
this �-group is a strong unit. This unital �-group is the Chang �-group GA.

The good sequence defining some x = (x1, . . . , xn, 0, . . . ) of the positive cone of GA is
the same as the sequence defined in Lemmas 2.7 and 2.8, as shows the next proposition.

Proposition 2.11 Let x = (x1, . . . , xn, 0, . . . ) in the positive cone of GA. Then x =
(x1, 0, . . . ) + · · · + (xn, 0, . . . ). The embedding xi �→ (xi, 0, . . . ) of A in GA can be
considered as an inclusion. Hence we can assume that xi ∈ GA and write x = x1 +· · ·+xn.

Proof Let (xi) be a good sequence, and for k ≥ 1 let y = (x1, . . . , xk, 0, . . . ) +
(xk+1, 0, . . . ). By Lemma 2.8 and Remark 2.9, we have, for 1 ≤ i < j ≤ k+1, xi ⊕xj = xi

and xi � xj = xj . It follows that
y1 = x1 ⊕ xk+1 = x1,
for 2 ≤ i ≤ n, yi = xi ⊕ (xi−1 � xk+11) ⊕ · · · ⊕ (x1 � 0) ⊕ 0 = xi ⊕ xk+1 = xi ,
yk+1 = 0 ⊕ (xn � xk+1) ⊕ · · · ⊕ (x1 � 0) ⊕ 0 = 0 ⊕ xk+1 ⊕ 0 = xk+1,
and for i > k + 1, yi = 0.

So by induction we get (x1, . . . , xn, 0, . . . ) = (x1, 0 . . . ) + · · · + (xn, 0, . . . ). The
remainder of the proof is straightforward.

2.3 Elementary Equivalence, Interpretability

Two structures S and S′ for a language L are elementarily equivalent if any L-sentence is
true in S if, and only if, it is true in S′. We let S ≡ S′ stand for S and S′ being elementarily
equivalent. Furthermore if S ⊂ S′, then we say that S is an elementary substructure of S′
(briefly S ≺ S′) if every existential formula with parameters in S which is true in S′ is also
true in S. We will need the following properties.

Theorem 2.12 ([9] Corollary 9.6.5 on p. 462, see also [4] Theorems 5.1, 5.2) Let L be a
first-order language.

(1) If I is a nonempty set and for each i ∈ I , Ai and Bi are elementarily equivalent
L-structures, then

∏
i∈I Ai ≡ ∏

i∈I Bi (here
∏

denotes the direct product).
(2) If I is a nonempty set and for each i ∈ I , Ai and Bi are L-structures with Ai ≺ Bi ,

then
∏

i∈I Ai ≺ ∏
i∈I Bi .

If, for every i ∈ I , Si is an L-structure and U is an ultrafilter on I , then the ultraproduct
of the Si’s is the quotient set

(∏
i∈I Si

)
/ ∼, where ∼ is the equivalence relation: (xi) ∼

(yi) ⇔ {i ∈ I | xi = yi} ∈ U . If R is a unary predicate of L, then R((xi)) holds in the
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ultraproduct if the set {i ∈ I | R(xi) holds in Si} belongs to U . Every relation symbol and
every function symbol is interpreted in the same way. An elementary class is a class which
is closed under ultraproducts.

A structure S1 for a language L1 is interpretable in a structure S2 for a language L2 if the
following holds.

• There is a one-to-one mapping ϕ from a subset T1 of S2 onto S1,
• for every L1-formula � of the form R(x̄), F(x̄) = y, x = y or x = c (where R is a

relation symbol, F is a function symbol and c is a constant), there is an L2-formula �′
such that for every x̄ in T1, S1 |= �(ϕ(x̄)) ⇔ S2 |= �′(x̄),

(this is a particular case of the definition of interpretability p. 58 and pp. 212-214 in [9]).

Theorem 2.13 (Reduction Theorem 5.3.2, [9]) If S1, S′
1 (resp. S2, S′

2) are structures for the
language L1 (resp. L2) such that S1 is interpretable in S2 and S′

1 is interpretable in S′
2 by

the same rules, then S2 ≡ S′
2 ⇒ S1 ≡ S′

1 and S2 ≺ S′
2 ⇒ S1 ≺ S′

1.

Since A = [0, u], a ⊕ b = (a + b) ∧ u, ¬a = u − a, it follows that the LMV -structure A

is interpretable in the Llou-structure (GA, uA) and in the LloZu-structure (GA,ZuA). Con-
sequently, if A, A′ are MV-algebras such that (GA, uA) ≡ (GA′ , uA′) (resp. (GA,ZuA) ≡
(GA′ ,ZuA′)), then A ≡ A′. The same holds with ≺ instead of ≡.

3 Partially Cyclically Ordered Groups

In this section we state definitions and basic properties of partially cyclically ordered groups
and cyclically ordered groups. Then we turn to the wound-round partially cyclically ordered
groups, in particular we deduce a transfer theorem of elementary equivalence. Next we study
the functor between partially ordered groups and partially cyclically ordered groups.

Recall that all the groups are assumed to be abelian groups.

3.1 Basic Properties

Definition 3.1 We say that a group C is partially cyclically ordered (briefly a pco-group)
if it is equipped with a ternary relation R which satisfies (1), (2), (3), (4), (5) below.

(1) R is strict i.e., for every x, y, z in C: R(x, y, z) ⇒ x �= y �= z �= x.
(2) R is cyclic i.e., for every x, y, z in C: R(x, y, z) ⇒ R(y, z, x).
(3) For every x, y, z in C set y ≤x z if either R(x, y, z) or y = z or y = x. Then for every

x in C, ≤x is a partial order relation on C. We set y <x z for y ≤x z and y �= z. If
y and z admit an infimum (resp. a supremum) in (C,≤x), then it will be denoted by
y ∧x z (resp. y ∨x z).

(4) R is compatible, i.e., for every x, y, z, v in C, R(x, y, z) ⇒ R(x + v, y + v, z + v).
(5) For every x, y, z in C, R(x, y, z) ⇒ R(−z,−y, −x).

If for every x ∈ C the order ≤x is a linear order, then we say that C is a cyclically ordered
group (briefly a co-group).

The language (0, +,−, R) of pco-groups will be denoted by Lc.
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A c-homomorphism is a group homomorphism f between two pco-groups (or co-groups)
such that for every x, y, z, if R(x, y, z) holds and f (x) �= f (y) �= f (z) �= f (x), then
R(f (x), f (y), f (z)) holds.

Two basic examples of co-groups are the following.

(1) Let U be the multiplicative group of unimodular complex numbers. For eiθj (1 ≤
j ≤ 3) in U, such that 0 ≤ θj < 2π , we let R(eiθ1 , eiθ2 , eiθ3) if, and only if, either
θ1 < θ2 < θ3 or θ2 < θ3 < θ1 or θ3 < θ1 < θ2 (in other words, when one traverses
the unit circle counterclockwise, starting from eiθ1 one finds first eiθ2 then eiθ3 ). Then
U is a co-group. One sees that the group Tor(U) of torsion elements of U (that is, the
roots of 1 in the field of complex numbers) is a co-subgroup.

(2) Any linearly ordered group is a co-group once equipped with the ternary relation:
R(x, y, z) iff x < y < z or y < z < x or z < x < y. Such a cyclically ordered
is called a linearly cyclically ordered group. In the same way, any partially ordered
group is a pco-group.

Now, a pco-group is not necessarily a co-group. Let (C1, R1) and (C2, R2) be nontrivial
co-groups and C = C1 ×C2 be their cartesian product. For (x1, x2), (y1, y2) and (z1, z2) in
C, set R((x1, x2), (y1, y2), (z1, z2)) if, and only if, R1(x1, y1, z1) and R2(x2, y2, z2). Then
(C, R) is a pco-group which is not a co-group.

For notational convenience, if C is a pco-group and x1, . . . , xn belong
to C, we sometimes denote by R(x1, . . . , xn) the formula: R(x1, x2, x3) &
R(x1, x3, x4) & . . . & R(x1, xn−1, xn). In the unit circle U, R(x1, . . . , xn) means that
starting from x1 one finds the elements x2, . . . , xn in this order (this generalizes the
notation x1 < x2 < · · · < xn of the language of ordered groups).

Lemma 3.2 Let C be a pco-group, n ≥ 3 and x1, . . . , xn in C.

(1) R(x1, . . . , xn) ⇔ ∀(i, j, k) ∈ [1, n] × [1, n] × [1, n], 1 ≤ i < j < k ≤ n ⇒
R(xi, xj , xk).

(2) ∀y ∈ C, R(x1, . . . , xn) ⇔ R(x1 + y, . . . , xn + y).
(3) ∀i ∈ [1, n − 1], R(x1, . . . , xn) ⇔ R(xi+1, . . . , xn, x1, . . . , xi).

Proof (1) ⇐ is straightforward. Assume that R(x1, . . . , xn) holds and let 1 ≤ i < j <

k ≤ n. Then R(x1, xi, xi+1) and R(x1, xi+1, xi+2) hold. Therefore, since <x1 is tran-
sitive, R(x1, xi , xi+2) holds, and so on. Hence R(x1, xi, xj ) holds, and in the same
way R(x1, xj , xk) holds. It follows that R(xj , x1, xi) and R(xj , xk, x1) hold. Hence
R(xj , xk, xi) holds which implies that R(xi, xj , xk) holds.

(2) For every i in [2, n − 1], R(x1, xi , xi+1) holds. Hence R(x1 + y, xi + y, xi+1 + y)

holds. Consequently, R(x1 + y, . . . , xn + y) also holds.
(3) Assume that R(x1, . . . , xn) holds. We have that R(x1, x2, xn) holds and by (1) for

every i in [3, n − 1]: R(x2, xi , xi+1) holds. Therefore R(x2, . . . , xn, x1) holds. Now,
(3) follows by induction.

We conclude this subsection with a characterization of the order relation <0. That is, if
C is a pco-group, then by the definition <0 is a partial order on the set C. Conversely, if <

is a partial order on an abelian group, one can wonder under what conditions < is the order
<0 of some partial cyclic order on this group.

This characterization will be the main tool of the proof of Proposition 3.5.
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Proposition 3.3 Let C be a group. Then there exists a compatible partial cyclic order R on
C if, and only if, there exists a partial order < on the set C\{0} such that for all x and y in
C\{0}: x < y ⇒ (y − x < −x & − y < −x).

If this holds, then we can set R(x, y, z) ⇔ 0 �= y − x < z − x, and ≤ is the restriction
to C\{0} of the relation ≤0.

Proof Assume that C is a pco-group, and x <0 y in C\{0}. Then R(0, x, y) holds. Hence
by compatibility: R(−x, 0, y − x) holds so R(0, y − x, −x) holds i.e. y − x <0 −x.
Furthermore, we have R(−y, −x, 0), hence R(0, −y, −x) holds, which implies −y <0 −x.

Assume that < is a strict partial order on C\{0} such that for all x and y in C\{0} we
have that x < y ⇔ y − x < −x. For all x, y, z in C set R(x, y, z) if, and only if,
0 �= y − x < z − x.

We prove that R satisfies (1), (2), (3), (4), (5) of Definition 3.1.

(1) R(x, y, z) implies y − x �= 0, z − x �= 0 and y − x �= z − x hence x �= y, x �= z and
y �= z.

(2) Assume that R(x, y, z) holds. This implies y − x < z − x, hence z − y = (z − x) −
(y − x) < −(y − x) = x − y. Therefore: R(y, z, x).

(3) Let v ∈ C and assume that R(x, y, z) and R(x, z, v) hold. Then y − x < z − x and
z − x < v − x, hence: y − x < v − x i.e. R(x, y, v), so ≤x is transitive. Now, if
R(x, y, z) holds, then y −x < z−x, hence z−x �< y −x, i.e. ¬R(x, z, y). It follows
that ≤x is a partial order.

(4) Assume that R(x, y, z) holds. Then 0 �= y −x < z−x hence 0 �= (y +v)− (x +v) <

(z + v) − (x + v). Therefore R(x + v, y + v, z + v).
(5) The relation R(x, y, z) is equivalent to y − x < z − x, hence it implies x − z < x − y.

This in turn is equivalent to −z − (−x) < −y − (−x), that is R(−x, −z, −y). It
follows that R(x, y, z) implies R(−z, −y, −x).

The relation <0 can make the construction of pco-groups easier. For example, let C =
Z/6Z = {0, 1, 2, 3, −2, −1}, and set 1 <0 2, 1 <0 −1, −2 <0 2, and −2 <0 −1. One can
check that in this case, <0 cannot be extended to a total order.

3.2 Wound-round pco-groups

First we look at the case of co-groups, starting with a basic example.
In the field C of complex numbers, the multiplicative group U of unimodular complex

numbers is the image of the additive group R of real numbers under the epimorphism θ �→
eiθ . It follows that U is isomorphic to the quotient group R/2πZ. Then one can define the
cyclic order on R/2πZ by: R(x1 + 2πZ, x2 + 2πZ, x3 + 2πZ) if, and only if, there exists
x′
j in [0, 2π [ such that xj − x′

j ∈ 2πZ (1 ≤ j ≤ 3) and x′
σ(1) < x′

σ(2) < x′
σ(3) for some σ

in the alternating group A3 of degree 3 (in other words, x′
1 < x′

2 < x′
3 or x′

2 < x′
3 < x′

1 or
x′

3 < x′
1 < x′

2).
More generally, if (L, u) is a unital linearly ordered group, then the quotient group L/Zu

can be cyclically ordered by setting R(x1 + Zu, x2 + Zu, x3 + Zu) if, and only if, there
exists x′

j in [0, u[ such that xj − x′
j ∈ Zu (1 ≤ j ≤ 3) and x′

σ(1) < x′
σ(2) < x′

σ(3)

for some σ in the alternating group A3 of degree 3 [5, p. 63]. We say that L/Zu is the
wound-round of L. Now, every co-group can be obtained in this way as shows the following
theorem.
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Theorem 3.4 (Rieger, [5]) Every co-group is the wound-round of a unique (up to isomor-
phism) unital linearly ordered group (uw(C), uC).

The ordered group uw(C) defined above is called the unwound of C.
Now, we generalize this winding construction to partially ordered groups. First, note

that if (G, u) is a unital linearly ordered group, then for every x in G there is a unique x′
in [0, u[ such that x − x′ ∈ Zu. So, one can check that the condition “there exists x′

j in
[0, u[ such that xj − x′

j ∈ Zu (1 ≤ j ≤ 3) and x′
σ(1) < x′

σ(2) < x′
σ(3) for some σ in

the alternating group A3 of degree 3” is equivalent to “there exist n2 and n3 in Z such that
x1 < x2 + n2u < x3 + n3u < x1 + u”.

Proposition 3.5 Let (G,<) be a partially ordered group, 0 < u ∈ G, C be the quotient
group C = G/Zu and ρ be the canonical mapping from G onto C.

(1) For every x and y in G, there exists at most one n ∈ Z such that x < y + nu < x + u.
(2) For every x1, x2, x3 in G, set R(ρ(x1), ρ(x2), ρ(x3)) if, and only if, there exist n2 and

n3 in Z such that x1 < x2 + n2u < x3 + n3u < x1 + u. Then (C,R) is a pco-group.

Proof (1) Assume that n and n′ are integers such that x < y + nu < x + u and x <

y + n′u < x + u. Then −x − u < −y − n′u < −x. Therefore, by addition, −u <

(n − n′)u < u, hence n − n′ = 0.
(2) Assume that x1 < x2 + n2u < x3 + n3u < x1 + u, let x′

1, x′
2, x′

3 in G such that
ρ(x′

i ) = ρ(xi) (i ∈ {1, 2, 3}), and let n′
1, n′

2, n′
3 be the integers such that x′

i = xi +niu

(i ∈ {1, 2, 3}). Then x′
1 − n′

1u < x′
2 − n′

2u + n2u < x′
3 − n′

3u + n3u < x′
1 − n′

1u.
Hence x′

1 < x′
2 + (n2 + n′

1 − n′
2)u < x′

3 + (n3 + n′
1 − n′

3)u < x′
1 + u. So R is indeed

a ternary relation on C.
We set ρ(0) <0 ρ(x) <0 ρ(y) ⇔ R(ρ(0), ρ(x), ρ(y)), and we prove that <0 is a strict

partial order relation such that ρ(0) <0 ρ(x) <0 ρ(y) ⇒ ρ(y) − ρ(x) <0 −ρ(x) & −
ρ(y) <0 −ρ(x).

By the definition, ρ(0) <0 ρ(x) <0 ρ(y) holds iff there exist m and n in Z such that
0 < x + mu < y + nu < u. Trivially, <0 is anti-reflexive and it follows from (1) that it is
anti-symmetric. The transitivity is also trivial. Since x + mu < y + nu < u, we have that
0 < y−x+(n−m)u < −x+(1−m)u. Now, we have that −u < −y−nu < −x−mu < 0,
hence 0 < −y + (1 − n)u < −x + (1 − m)u < u. On the one hand, this proves −ρ(y) <0
−ρ(x). On the other hand, this completes the inequality: 0 < y − x + (n − m)u < −x +
(1−m)u < u, and consequently ρ(y)−ρ(x) <0 −ρ(x). Now, by Proposition 3.3, G/Zu is
a pco-group.

Definition 3.6 Let C be a pco-group. We say that C is a wound-round if there exists a
unital partially ordered group (G, u) such that C � G/Zu, partially cyclically ordered as in
Proposition 3.5. If G is an �-group, then we say that C is the wound-round of an �-group. If
(G, u) is uniquely defined (up to isomorphism), then it is called the unwound of C.

For example, let G1 be the lexicographically ordered group R
−→×R, and G2 be the group

R × R partially ordered in the following way: (x, y) ≤ (x′, y′) ⇔ x = x′ and y ≤ y′.
In G1 and G2, let u = (0, 1). Then G1/Zu � G2/Zu. They are also c-isomorphic
to pco-group R × (R/Z) equipped with the partial cyclic order R′ defined by setting
R′((x1, y1), (x2, y2), (x3, y3)) if, and only if, x1 = x2 = x3 and R(y1, y2, y3), where R is
the cyclic order of R/Z defined in Proposition 3.5.
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If C is the wound-round of a partially ordered group G together with 0 < u ∈ G,
then we can assume that u is a strong unit. Indeed, one can easily check that the subset
H := {x ∈ G | ∃(m, n) ∈ Z× Z, mu ≤ x ≤ nu} is a subgroup of G, and u is a strong unit
of H . Now, if there exists y such that R(ρ(0), ρ(x), ρ(y)) or R(ρ(0), ρ(y), ρ(x)) holds,
then there exists n ∈ Z such that 0 < x + nu < u. In particular, −nu < x < (1 − n)u.
Hence, x ∈ H . It follows that we can restrict ourselves to the subgroup H/Zu, or assume
that u is a strong unit of G.

In the remainder of this paper, we will always assume that u is a strong unit.
The construction in Proposition 3.5 gives rise to a transfer principle of elementary equiv-

alence. In the linearly ordered case, [6, Theorem 4.1] proves that if (G, u) and (G′, u′) are
unital linearly ordered groups, then we have (G, u) ≡ (G′, u′) ⇔ G/Zu ≡ G′/Zu′ and
(G, u) ≺ (G′, u′) ⇔ G/Zu ≺ G′/Zu′.

The implication ⇒ uses the fact that the restriction of the canonical epimorphism ρ:
G → C = G/Zu to [0, u[ is a one-to-one mapping. In the case where (G, u) is a unital
partially ordered group, one can also define a subset Gu such that the restriction of ρ to Gu

is one-to-one.

Lemma 3.7 Let (G, u) be a unital partially ordered group, C be the quotient group G/Zu,
ρ be the canonical mapping from G onto C and Gu = {x ∈ G | x ≥ 0 & x �≥ u}. Then:

• the restriction of ρ to the subset Gu is a one-to-one mapping onto C,
• for every x, y, z in Gu, ρ(x)+ρ(y) = ρ(z) ⇔ x+y−z ∈ Zu and R(ρ(x), ρ(y), ρ(z))

holds if, and only if, either x < y < z or y < z < x or z < x < y.

Proof Since u is a strong unit, for every x ∈ G there exist integers m and n such that
mu ≤ x < nu, and we can assume that m is maximal. Then x − mu ∈ Gu, hence the
restriction of ρ to Gu is onto. Let x and y in Gu such that ρ(x) = ρ(y), then x − y ∈ Zu.
Hence there exists an integer m such that y = x +mu, and without loss of generality we can
assume that m ≥ 0. If m ≥ 1, then y ≥ x+u ≥ u: a contradiction. Hence m = 0, and y = x.
So the restriction of ρ to Gu is one-to-one. The remainder of the proof is straightforward
using properties of Section 2.3.

This lemma implies sufficient conditions for two wound-rounds being elementarily
equivalent.

Theorem 3.8 Let (G, u) be a unital partially ordered group, C be the quotient group C =
G/Zu, ρ be the canonical mapping from G onto C and Gu = {x ∈ G | x ≥ 0 & x �≥ u}.
Then:

• the pco-group C, in the language Lc, is interpretable in (G,Zu) in the language LloZu,
• if (G′, u′) is a unital partially ordered group, then (G,Zu) ≡ (G′,Zu′) ⇒ G/Zu ≡

G′/Zu′ (the same holds with ≺ instead of ≡).

Proof Follows from Lemma 3.7 and properties of Section 2.3.

3.3 The Wound-round Functor

We show that the wound-round mapping gives rise to a functor. Then we prove that its
restriction to the co-groups is full and faithful. Next, we look at the case of �-groups.

334 Order (2022) 39:323–359



3.3.1 General Case

Proposition 3.9 The wound-round mapping defines a functor � from the category of unital
partially ordered groups, together with unital order-preserving group homomorphisms, to
the category of pco-groups, together with c-homomorphisms.

Proof We prove that if f is a unital order-preserving homomorphism between the uni-
tal partially ordered groups (G, u) and (G′, u′), then we can define a c-homomorphism
between C := G/Zu and C′ := G′/Zu′. Let ρ (resp. ρ′) be the canonical epimorphism
from G onto C (resp. from G′ onto C′). Since f (Zu) = Zu′, we can define a group
homomorphism f̄ between C and C′ by setting for every x ∈ G f̄ (ρ(x)) = ρ′(f (x)).
Let x < y < z in G such that f̄ (ρ(x)) �= f̄ (ρ(y)) �= f̄ (ρ(z)) �= f̄ (ρ(x)). Since f

is order-preserving, we have that f (x) ≤ f (y) ≤ f (z). Now, f (x) �= f (y) �= f (z),
so we have that f (x) < f (y) < f (z). We deduce that if R(ρ(x), ρ(y), ρ(z)) holds and
f̄ (ρ(x)) �= f̄ (ρ(y)) �= f̄ (ρ(z)) �= f̄ (ρ(x)), then R(f̄ (ρ(x)), f̄ (ρ(y)), f̄ (ρ(z)) holds.
Hence f is a c-homomorphism. Now, one can check that if f ◦ g is the composite of two
unital order-preserving homomorphisms, then f̄ ◦ ḡ = f ◦ g.

3.3.2 Linearly Ordered Groups

First we show that a c-homomorphism is not necessarily the image of a unital order-
preserving homomorphism as in the proof of Proposition 3.9. Then we will define the
w-homomorphisms and we prove that the wound round functor between unital linearly
ordered groups, together with unital order preserving homomorphisms, and the co-groups,
together with the w-homomorphisms, is full and faithful.

We know that the kernels of order-preserving homomorphisms between partially ordered
groups are the convex subgroups (see, for, example, [5, Theorem 7, p. 21]). Let f be a
unital order-preserving homomorphism between partially ordered groups. Since f (u) = u′,
f is not the zero homomorphism. Hence ker f is a proper convex subgroup. Consequently,
ker f is the ρ-image of a proper convex subgroup of G. The kernel of a c-homomorphism
between wound-rounds is not necessarily the ρ-image of a proper convex subgroup. For
example, let n ≥ 2, G = G′ = Z, u = 2n, u′ = 2. Then C = Z/2nZ and C′ = Z/2Z.
Consider the homomorphism which sends the class of 1 modulo 2n to the class of 1 modulo
2. Since C′ = Z/2Z is trivially cyclically ordered, this a c-homomorphism, but its kernel
is not the image of a proper convex subgroup of Z (since {0} is the only proper convex
subgroup of Z).

In the linearly ordered case, we can characterize the c-homomorphisms f such that the
kernel of f is the ρ-image of a proper convex subgroup. For this purpose, we need to define
the linear part of a co-group, its winding part, its c-convex subgroups, and to state some
properties of co-groups, which we will use only in the remainder of this subsection.

• Linear part. Let (G, u) be a linearly ordered group with a strong unit, C be the cycli-
cally ordered group G/Zu and ρ be the canonical epimorphism from G to C. Since
G contains a strong unit, it contains a greatest proper convex subgroup l(G). Then,
the restriction of ρ to l(G) is one-to-one. We denote by l(C) its image. It is called
the linear part of C. Indeed, one can check that the restriction of R to l(C) is a lin-
ear cyclic order. An element a is in the positive cone of l(C) if, and only if, it satisfies
R(0, a, 2a, . . . , na), for every integer n ≥ 2 ([11, Section 3]). Note that C is linearly
cyclically ordered if, and only if, l(C) = C.
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• Winding part. The group C/l(C) is equipped with a structure of co-group which is
induced by the cyclic order on C (see. [14, Proposition 2.9]). This cyclically ordered
group is called the winding part of C, and is denoted by U(C). Then, the cyclically
ordered group U(C) embeds in a unique way in U ([11, Lemma 5.1, Theorem 5.3]). If
x ∈ C, we denote by UC(x) the image of its class x + l(C). Then there exists a real
number θ such that UC(x) = eiθ . If x /∈ l(C), then θ is not congruent to 0 modulo 2π ,
we let θC(x) be the unique element of ]0, 2π [ such that UC(x) = eiθC(x). If x ∈ l(C),
then we set θC(x) = 0.

Denote by α the canonical unital order-preserving epimorphism from (G, u) onto
(G/l(G), u+ l(G)) (see diagram below). Since l(G) is the greatest proper convex subgroup
of G, the ordered group G/l(G) is archimedean. Hence it embeds in R, and there is a unique
order preserving embedding β such that β(u+ l(G)) = 2π . We let ρR be the canonical epi-
morphism from (R, 2π) to its wound-round U � Z/2πZ. We denote by α1 the canonical
c-epimorphism from C onto C/l(C), and by β1 the unique c-embedding of C/l(C) in U.
Note that since l(C) is order isomorphic to l(G), the co-group C/l(C) = U(C) is isomor-
phic to the unwound of (G/l(G), u + l(G)). Hence there is a group epimorphism ρ1 from
(G/l(G), u + l(G)) onto C/l(C) such that ρ1 ◦ α = α1 ◦ ρ.

The restriction of ρR to [0, 2π [ is one-to-one and onto. We denote by τR the one-
to-one mapping from U onto [0, 2π [⊂ R such that ρR ◦ τR is the identity of U. We
let I = (β ◦ α)−1([0, 2π [). Then I is the interval [l(G), u + l(G)[:= l(G) ∪ {x ∈
G | ∀(y, z) ∈ l(G) × l(G) y < x < u + z}. The restriction of ρ to I is one-
to-one and onto. We denote by τ the one-to-one mapping from C onto I such that
ρ ◦ τ is the identity of C. We summarize this in the following commutative diagram.

I (G, u) (G/l(G), u + l(G)) (R, 2π) [0, 2π [

C = G/Zu C/l(C) = U(C) U

inclusion α

ρ

β

ρ1 ρR

inclusion

α1

τ

β1

τR

Here, α, β, α1 and β1 are homomorphisms of groups, but τ and τR are not. However,
for a, b in U the reals τR(a) + τR(b) and τR(a + b) are congruent modulo 2π (here and
in the following lemma, in order to make a distinction between the elements of linearly
ordered groups and those of their wound-rounds, we use the letters a, b, . . . when dealing
with elements of C or U). More exactly, we have τR(a) + τR(b) = τR(a + b) if, and only
if, τR(a) + τR(b) ∈ [0, 2π [, and τR(a) + τR(b) = τR(a + b) + 2π otherwise. In the same
way, for a, b in C, we have τ(a) + τ(b) = τ(a + b) if, and only if, τ(a) + τ(b) ∈ I , and
τ(a) + τ(b) = τ(a + b) + u otherwise.

Let θC be the mapping from C to [0, 2π [ defined above. Then θC = τ ◦ β1 ◦ α1. So, for
a, b in C we have θC(a + b) = τ(β1 ◦α1(a)+β1 ◦α1(b)), which is equal to θC(a)+ θC(b)

if, and only if, θC(a) + θC(b) ∈ [0, 2π [. Otherwise, θC(a) + θC(b) = θC(a + b) + 2π .
Consequently, for every x, y in I , we have x +y ∈ I if, and only if, θC(ρ(x))+θC(ρ(y)) =
θC(ρ(x) + ρ(y)), which in turn is equivalent to θC(ρ(x)) + θC(ρ(y)) < 2π . Otherwise we
have θC(ρ(x)) + θC(ρ(y)) = θC(ρ(x) + ρ(y)) + 2π .

• C-convex subgroups. Since the ordered groups l(G) and l(C) are isomorphic, there
is a one-to-one mapping from the set convex subgroups of l(G) onto the set convex
subgroups of l(C) (see [11, Section 4]) which preserves the inclusion order. The convex
subgroups of l(C) are said to be c-convex subgroups of C. We also assume that C is a c-
convex subgroup of itself. The formal definition of c-convex subgroups is the following.
A subgroup C1 of C is a c-convex subgroup if C1 = C or it satisfies for every a, b in C,
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(b ∈ C1 ⇒ b = ρ(0) or b �= −b) & (b ∈ C1 & R(ρ(0), b,−b) & R(ρ(0), a, b)) ⇒
a ∈ C1. Let H be a proper convex subgroup of G. In any case ρ(H) is linearly ordered.
If C is not linearly cyclically ordered, then ρ(H) is a proper c-convex subgroup of C.

In order to study the functor between linearly ordered groups and co-groups, we define a
new class of homomorphisms. In the following definition and the following lemma, (G, u)

and (G′, u′) are unital linearly ordered groups, and the notations are the same as in the proof
of Proposition 3.9.

Definition 3.10 A c-homomorphism from C to C′ is said to be a w-homomorphism if its
kernel is a linearly ordered c-convex subgroup of C.

Note that if f is a unital order-preserving homomorphism from (G, u) to (G′, u′), then
f̄ is a w-homomorphism.

We can prove that ϕ being a w-homomorphism from C to C′ is equivalent to ϕ being
a c-homomorphism and ∀a ∈ C\{0} (2a = 0 or (R(0, a, 2a) and ¬R(0, a, 2a, 3a))) ⇒
ϕ(a) �= 0′. Indeed, let C1 be a c-convex subgroup of C. Then C1 is not linearly ordered if,
and only if, C1 = C and U(C) �= {0}. So we have to prove that in any case, if U(C) �=
{0} and ∀a ∈ C\{0} (2a = 0 or R(0, a, 2a) and ¬R(0, a, 2a, 3a)) ⇒ ϕ(a) �= 0′ holds,
then ker ϕ �= C. By [6, Lemma 6.9 (1)], the formula R(0, a, 2a) and ¬R(0, a, 2a, 3a) is
equivalent to (θC(a) = 2π

3 and 0 ≤ 3a ∈ l(C)), or 2π
3 < θC(a) < π or (θC(a) = π and

0 > 2a ∈ l(C)). Assume that U(C) �= {0}. If C � Z/2Z, then it has a 2-torsion element. If
U(C) � Z/2Z and C �� Z/2Z, then l(C) �= {0}, and there is a ∈ C such that (θC(a) = π

and 0 > 2a ∈ l(C)). If U(C) contains at least three elements, then it contains an element
in the interval [ 2π

3 , π[, and there is a ∈ C such that (θC(a) = 2π
3 and 0 ≤ 3a ∈ l(C)), or

2π
3 < θC(a) < π .

Now, we let ϕ be a w-homomorphism from C to C′. Note that ϕ satisfies the following
properties.

1) ϕ(l(C)) ⊆ l(C′). Indeed, let a ∈ l(C). If a ∈ ker ϕ, then ϕ(a) = 0′ ∈ l(C′). Assume
that a > 0 belongs to l(C)\ ker ϕ. Since ker ϕ is a convex subgroup of l(C), we have
a > ker ϕ, and for every positive integer k: ka /∈ ker ϕ. Therefore, for every positive
integer n, the elements 0′, ϕ(a), . . . , nϕ(a) are pairwise distinct. Since a belongs to the
positive cone of l(C), it satisfies R(0, a, . . . , na). Now, ϕ is a c-homomorphism, so
this implies R(0′, ϕ(a), . . . , nϕ(a)), which proves that ϕ(a) ∈ l(C′).

2) For every a ∈ C, we have θC′(ϕ(a)) = θC(a). Indeed, it follows that ϕ induces an
homomorphism from U(C) = C/l(C) to U(C′) = C′/l(C′). Since ker ϕ ⊆ l(C),
this homomorphism is one-to-one. Now, one can check that it is a c-homomorphism.
In particular, for every a ∈ C, we have θC′(ϕ(a)) = θC(a).

Lemma 3.11 There exists a unique unital order-preserving homomorphism f from (G, u)

to (G′, u′) such that f̄ = ϕ.

Proof 1) Let f1 and f2 be unital order-preserving homomorphisms from (G, u) to (G′, u′)
such that f̄1 = f̄2. By the definition of C = G/Zu, the restriction ρ to [0, u[ is
one-to-one. The same holds with G′ and [0′, u′[. Therefore, for every x ∈ [0, u[ we
have f1(x) = f2(x). Now, we have f1(u) = u′ = f2(u). Let y ∈ G. We know that
there is a unique k ∈ Z such that y − ku ∈ [0, u[. Then f1(y) = f1(y − ku) +
ku′ = f2(y − ku) + ku′ = f2(y). Consequently, we have f1 = f2. This proves that
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every w-homomorphism from C to C′ is induced by at most one unital order-preserving
homomorphism from (G, u) to (G′, u′).

2) We denote by I the interval [l(G), u + l(G)[:= l(G) ∪ {x ∈ G | ∀(y, z) ∈ l(G) ×
l(G) y < x < u + z}. We define the subset I ′ of G′ in the same way. For x ∈ I , we
let f (x) be the element of I ′ such that ρ′(f (x)) = ϕ(ρ(x)). For x ∈ G, there exists a
unique k ∈ Z such that x−ku ∈ I . We set f (x) = f (x−ku)+ku′ (see diagram below).
In particular, f (0) = 0′ and f (u) = u′. Furthermore, recall that ρ (resp. ρ′) induces a
one-to-one mapping from l(G) (resp. l(G′)) onto l(C) (resp. l(C′)). Furthermore recall
that, since ϕ is a w-homomorphism, for every a ∈ C we have θC′(ϕ(a)) = θC(a). So
θC′(ϕ(ρ(x))) = θC(ρ(x)). Hence:

f (x) ∈ l(G′) ⇔ ku′ + f (x − ku) ∈ l(G′)
⇔ k = 0 & f (x) ∈ l(G′)
⇔ x ∈ I & ρ′(f (x)) ∈ l(C′)
⇔ x ∈ I & ϕ(ρ(x)) ∈ l(C′)
⇔ x ∈ I & θC′(ϕ(ρ(x))) = 0
⇔ x ∈ I & θC(ρ(x)) = 0
⇔ x ∈ I & ρ(x) ∈ l(C)

⇔ x ∈ l(G).

3) We prove that f is a group homomorphism. It suffices to consider two elements x, y in
I . We already noticed that x + y ∈ I ⇔ θC(ρ(x)) + θC(ρ(y)) < 2π . In the same way,
for every x′, y′ in I ′ we have x′+y′ ∈ I ′ ⇔ θC′(ρ′(x′))+θC′(ρ′(y′)) < 2π . It follows:

x + y ∈ I ⇔ θC(ρ(x)) + θC(ρ(y)) < 2π

⇔ θC′(ϕ(ρ(x))) + θC′(ϕ(ρ(y))) < 2π

⇔ θC′(ρ′(f (x))) + θC′(ρ′(f (y))) < 2π

⇔ f (x) + f (y) ∈ I ′.
The restriction of ρ′ to I ′ is a one-to-one mapping onto C′. We denote by τ ′ its

inverse. Then the restriction of f to I is equal to the restriction of τ ′ ◦ ϕ ◦ ρ to I .

I (G, u) (G′u′) I ′

C = G/Zu C′ = G′/Zu′

U

inclusion f

ρ ρ′

inclusion

ϕ

τ

θC

τ ′

θC′

For a′, b′ in C′ we have τ ′(a′) + τ ′(b′) = τ ′(a′ + b′) if, and only if, τ ′(a′) + τ ′(b′) ∈ I ′.
Otherwise, we have τ ′(a′) + τ ′(b′) = τ ′(a′ + b′) + u′.

Let x, y in I such that x + y ∈ I . Since ρ and ϕ are homomorphisms of groups, we have

f (x + y) = τ ′ ◦ ϕ ◦ ρ(x + y) = τ ′(ϕ ◦ ρ(x) + ϕ ◦ ρ(y)) = τ ′(ρ′(f (x)) + ρ′(f (y))).

Now, τ ′(ϕ◦ρ(x))+τ ′(ϕ◦ρ(y)) = τ ′(ρ′(f (x)))+τ ′(ρ′(f (y))) = f (x)+f (y) belongs
to I ′, because x+y ∈ I . Therefore, f (x+y) = τ ′ ◦ϕ ◦ρ(x)+τ ′ ◦ϕ ◦ρ(y) = f (x)+f (y).

Assume that x, y belong to I , and x + y /∈ I (which implies f (x) + f (y) /∈ I ′). Then
x + y − u ∈ I , so

f (x+y) = f (x+y−u)+u′ = τ ′ ◦ϕ◦ρ(x+y−u)+u′ = τ ′ ◦ϕ◦ρ(x+y)+u′ = τ ′(ϕ◦ρ(x)+ϕ◦ρ(y))+u′.
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Now, τ ′(ϕ ◦ ρ(x)) + τ ′(ϕ ◦ ρ(y)) = f (x) + f (y) /∈ I ′. Hence

τ ′(ϕ ◦ ρ(x)) + τ ′(ϕ ◦ ρ(y)) = τ ′(ϕ ◦ ρ(x) + ϕ ◦ (y)) + u′ = τ ′(ϕ ◦ ρ(x + y)) + u′.

Therefore, f (x + y) = f (x) + f (y).

4) To prove that f is order preserving, it is sufficient to show that for every x > 0
in G we have f (x) ≥ 0′. If x > I , then f (x) ≥ u′ > 0′. If x ∈ I\l(G), then
f (x) ∈ I ′\l(G′), since 0 < θC(ρ(x)) = θC′(ϕ(ρ(x))) = θC′(ρ′(f (x))). Hence
f (x) > 0′. Now, assume that x ∈ l(G). Saying that x > 0 is equivalent to saying that
R(ρ(0), ρ(x), 2ρ(x)) holds. If x ∈ ker f , then f (x) = 0′. Now, if f (x) �= 0′, then
since f (x) ∈ l(G′), we have 0′ �= f (x) �= 2f (x) �= 0′. Now, ρ′ is a one-to-one map-
ping from l(G′) onto l(C′). So ρ′(0′) �= ρ′(f (x)) �= 2ρ′(f (x)) �= ρ′(0′). Therefore
R′(ρ′(0′), ρ′(f (x)), 2ρ′(f (x))) = R′(ϕ ◦ ρ(0), ϕ ◦ ρ(x), 2ϕ ◦ ρ(x)) holds, since ϕ is
a c-homomorphism. This proves that f (x) > 0′.

5) It follows that f is a unital order-preserving homomorphism. Furthermore, by the
definition of f we have f̄ = ϕ.

So, Rieger’s Theorem 3.4 can be generalized to a functorial mapping.

Proposition 3.12 The wound-round mapping defines a full and faithful functor from the
category of unital linearly ordered groups, together with unital order-preserving group
homomorphisms, to the category of co-groups, together with w-homomorphisms. The
unwound mapping defines a full and faithful functor from the category of co-groups,
together with w-homomorphisms, to the category of unital linearly ordered groups, together
with unital order-preserving group homomorphisms. The composites of these two functors
are equivalent to the identities of respective categories (where the structures are considered
up to isomorphism).

3.3.3 �-groups

If C is the wound-round of an �-group, one can wonder if any two elements have a minimum
and a maximum with respect to some partial order. For this purpose, we restrict to the
elements that we call non-isolated.

Definition 3.13 Let C be a pco-group, and denote by A(C) the set whose elements are 0
and all the elements x ∈ C\{0} such that there exists y ∈ C\{0} satisfying x <0 y or
y <0 x. The elements of A(C) are called the non-isolated elements.

Note that if C is the wound-round of an �-group, then for every x, y in A(C), we have
the following:

• x ∧0 y exists (the infimum of x and y in (A(C),≤0)),
• 0 is the smallest element,
• x ∨0 y does not exist if, and only if, (−x)∧0 (−y) = 0, and if this holds, then for every

z ∈ A(C): x <0 z ⇒ y �<0 z.

Furthermore, for every x ∈ A(C) there exists a unique g ∈ G such that 0 ≤ g < u and
ρ(g) = x, where C � G/Zu, with u > 0 a strong unit of G. Now, assume that x ∈ C\A(C).
Then we have 0 <0 x, and x is not comparable with any other element. Therefore for every
y ∈ C, x ∧0 y = 0, and x ∨0 y does not exist.
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Let f be a c-homomorphism between wound-rounds of �-groups C and C′. We say that
f is an lc-homomorphism if for every x, y in A(C) we have f (x ∧0 y) = f (x) ∧0 f (y).

The wound-round mapping is not a functor from the category of �-groups to the category
of wound-rounds of �-groups together with �c-homomorphisms. Indeed, let G be the �-
group R × R, u = (1, 1), G′ = R, u′ = 1, and f : R × R → R be the natural projection

onto the first component. Then, f is an �-homomorphism, and f (u) = u′. Let x =
(

1
2 , 2

)

and y =
(

1
4 , 4

)
. Let ρ (resp. ρ′) be the canonical epimorphism from G onto C = G/Zu

(resp. from G′ onto C′ = G′/Zu′). We sow that ρ(x) /∈ A(C) and ρ(y) /∈ A(C). Indeed,
let n be an integer. Then 0 ≤ 1

2 + n ≤ 1 ⇔ n = 0, and 0 ≤ 2 + n ≤ 1 ⇔ n ∈
{−2, −1}. Hence there is no n such that x + nu ∈ [0, u[. This implies ρ(x) /∈ A(C). In the
same way, ρ(y) /∈ A(C). Therefore ρ(x) ∧0 ρ(y) = ρ(0). Now, f (x) ∈ [0, u′[, f (y) ∈
[0, u′[ and f (x) ∧ f (y) = 1

4 . It follows that ρ′(f (x)) ∧0 ρ′(f (y)) = ρ′(f (y)) �= ρ′(0).
Consequently, the c-homomorphism f̄ : C → C′ induced by f (see Proposition 3.9) is not
an �c-homomorphism.

However, we have the following.

Proposition 3.14 Let (G, u) and (G′, u′) be unital �-groups, f be a one-to-one unital �-
homomorphism from (G, u) to (G′, u′) and f̄ be the c-homomorphism defined in the proof
of Proposition 3.9. Then, f̄ is an �c-homomorphism from C := G/Zu to C′ := G′/Zu′.

Proof The notations are the same as those of Proposition 3.9.
First we let x ∈ Gu, and we prove that ρ′(f (x)) ∈ A(C′) ⇔ ρ(x) ∈ A(C).
Recall that, since x ∈ Gu, we have that ρ(x) ∈ A(C) ⇔ x ∈ [0, u[. We saw in Lemmas

2.7 and 2.8 that there is a unique sequence x1, . . . , xn such that x = x1 + · · · + xn, x1 =
x ∧ u, x2 = (x − x1) ∧ u, and so on. Since f is a unital �-homomorphism, we have that
f (x1) = f (x) ∧ u′, f (x2) = (f (x) − f (x1)) ∧ u′, and so on. Now, f is one-to-one, so, for
1 ≤ i ≤ n, f (xi) = 0 ⇔ xi = 0. Hence f (x1), . . . , f (xn) is the sequence associated to
f (x) as in Lemmas 2.7 and 2.8. It follows that

ρ(x) ∈ A(C) ⇔ x ∈ [0, u[⇔ n = 1 ⇔ f (x) ∈ [0, u′[⇔ ρ′(f (x)) ∈ A(C′).

Let x, y in Gu. If x and y belong to [0, u[, then f (x) and f (y) belong to [0, u′[ and
f (x ∧ y) = f (x) ∧ f (y). Therefore

f̄ (ρ(x) ∧0 ρ(y)) = f̄ (ρ(x ∧ y)) = ρ′(f (x ∧ y)) = ρ′(f (x) ∧ f (y)) = ρ′(f (x)) ∧0 ρ′(f (y))

= f̄ (ρ(x)) ∧0 f̄ (ρ(y)).

If x /∈ [0, u[, then ρ(x) ∧0 ρ(y) = 0. Now, we have proved that f (x) /∈ [0, u′[, hence
ρ′(f (x)) ∧0 ρ′(f (y)) = 0. The case where y /∈ [0, u[ is similar.

4 From MV-algebras to Wound-rounds of �-groups

The correspondence between MV-algebras and pco-groups is defined as follows.
Let A be an MV-algebra and (GA, uA) be its Chang �-group.
We saw in Section 2 that � : A �→ (GA, uA) is a full and faithful functor from the

category of MV-algebras to the category of unital �-groups, where (GA, uA) is the Chang
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�-group of A. Through misuse of language, we say that it is one-to-one, since it induces a
one-to-one mapping between the classes of isomorphic structures.

Now, the wound-round functor �: (G, u) �→ G/Zu defined in Proposition 3.9 is a
functor from the category of unital �-groups to the category of wound-rounds of �-groups,
together with the c-homomorphisms. Trivially, (G, u) �→ �(G, u) is onto.

So, this gives rise to a functor �� from the category of MV-algebras to the category
of wound-rounds of �-groups, together with the c-homomorphisms. The mapping A �→
��(A) is onto.

Now, we will prove that the mapping A �→ ��(A) is one-to-one, by defining the inverse
mapping. Then we will extend this inverse mapping to a larger class of pco-groups.

Note that �� gives rise to a full and faithful functor when restricted to MV-chains and
co-groups.

4.1 The Inverse Mapping of ��

Let A be an MV-algebra. We denote by C(A) the wound-round of �-group GA/ZuA, instead
of ��(A).

First, we show that we can define a structure of MV-algebra which is isomorphic to
A, on the set of non-isolated elements of C(A). Then, by means of the same rules, we
define an MV-algebra in the set of non-isolated elements of any wound-round of �-group. It
follows that if C is the wound-round of an �-group, then we can construct a unital �-group
(G, u) such that C � G/Zu. We start setting some properties of the order ≤0 on the set of
non-isolated elements of a wound-round.

4.1.1 The Subset of Non-isolated Elements of a pco-group

Recall that, in a pco-group C, the set A(C) of non-isolated elements is the set whose ele-
ments are 0 and all the x ∈ C\{0} such that there exists y ∈ C\{0} satisfying x <0 y or
y <0 x (Definition 3.13).

Remarks 4.1 (1) Let C be a pco-group and x, y in A(C)\{0}. By Proposition 3.3 since
x <0 y ⇒ y − x <0 −x, if x <0 y in A(C) and z = y − x, then z ∈ A(C)\{0}. So
there exists z in A(C) such that y = x + z. We see that this is similar to condition (1)
in Remark 2.6.

(2) If −x <0 y, then x + y <0 x.
(3) Assume that C and C′ are pco-groups. It follows from Proposition 3.3 that they are

c-isomorphic if, and only if, there is a group isomorphism ϕ from C onto C′ such that
for every x, y in C:

x ∈ A(C) ⇔ ϕ(x) ∈ A(C′) & x <0 y ⇔ ϕ(x) <0 ϕ(y).

Note that x ∈ A(C) ⇔ −x ∈ A(C). We can say that A(C) is symmetric.

Proposition 4.2 Let (G, u) be a unital partially ordered group, N = {x ∈ ]0, u[ | ∃y ∈
]0, u[ x < y or y < x}, and C be the wound-round pco-group G/Zu. Then, (N,<) and
(A(C)\{0},≤0) are isomorphic ordered sets.

Proof It follows from (1) of Proposition 3.5 that the restriction of ρ to [0, u[ is one-to-one.
In particular, its restriction to N is one-to-one. If x ∈ N , then there exists y ∈ N such that
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0 < x < y or 0 < y < x. It follows that ρ(x) <0 ρ(y) or ρ(y) <0 ρ(x). In particular,
ρ(x) ∈ A(C), and ρ is an homomorphism of ordered sets from N to A(C). Now, let x ∈ G

such that ρ(x) ∈ A(C) and x /∈ Zu. Then, there exist y ∈ G and integers n, n′ such that
0 < x + nu < y + n′u < u or 0 < y + n′u < x + nu < u. In any case x + nu ∈ N .
Since ρ(x + nu) = ρ(x), it follows that the restriction of ρ from N to A(C)\{0} is onto.
Consequently, ρ is an isomorphism of ordered sets between (N,≤) and (A(C)\{0}).

We have already seen that an MV-algebra A is order-isomorphic to the subset [0, uA] of
its Chang �-group (GA, uA). We get a similar result in the case of wound-round of �-groups.

Corollary 4.3 Let (G, u) be a unital �-group, C = G/Zu and ρ be the canonical mapping
from G onto C. We assume that A(C) �= {0}. We add an element 1 to A(C) and we set
x <0 1 for every x ∈ A(C). Then the ordered sets ([0, u],≤) and (A(C) ∪ {1},≤0) are
isomorphic.

Proof By the definition of A(C) and of ≤0 in C = G/Zu, if A(C) �= {0}, then there is x,
y in G such that 0 < x < y < u or 0 < y < x < u. Hence, by Lemma 2.4, N =]0, u[.
Therefore the result follows from Proposition 4.2.

4.1.2 Interpretability of A in ��(A )

We denote by ρ the canonical epimorphism from GA onto C(A), where, for x ∈ GA,
ρ(x) ∈ C(A) is the class of x modulo ZuA. Without loss of generality, we assume that
A ⊂ GA and 1 = uA, we denote by ϕ the restriction of ρ to [0, uA[.

Assume that the set A(C(A)) of non-isolated elements of C(A) is nontrivial. Since ϕ

is an isomorphism of ordered sets between ([0, uA[, ≤) and (C(A),≤0), for every x, y in
[0, uA[, ϕ(x ∧ y) = ϕ(x) ∧0 ϕ(y), and if x ∨ y < uA, then ϕ(x ∨ y) = ϕ(x) ∨0 ϕ(y).

The set A(C(A)) is nontrivial if A �= {0, 1}, A �= {0, 1, x} and A �= {0, 1, x,¬x}, for
some x (Lemma 2.4). One can see that if A = {0, 1}, then C(A) = {0}. If A = {0, 1, x},
then C(A) � Z/2Z. If A = {0, 1, x,¬x} is not an MV-chain, then C(A) � Z/2Z × Z/2Z,
and in any case A(C(A)) = {0}. If A = {0, 1, x, ¬x} is an MV-chain, then C(A) � Z/4Z.

In the following, we assume that A �= {0, 1}, A �= {0, 1, x} and A �= {0, 1, x, ¬x}, for
some x.

Note that for every x in ]0, uA[, we have that ϕ(¬x) = −ϕ(x) (since ¬x = uA − x). So
we can set ¬ϕ(x) = −ϕ(x). We add an element 1 to A(C(A)), and we set ϕ(uA) = 1. We
let ¬ϕ(0) = 1 and ¬1 = ϕ(0). If x ∈ [0, 1[, we let ϕ(x) <0 1.

We turn to the image of x ⊕ y.

Proposition 4.4 Let x, y in [0, uA[, we have that ρ(x ⊕ y) = ϕ(x) ∧0 (¬ϕ(y)) + ϕ(y).

Proof We know that x ⊕ y = (x + y) ∧ uA, hence x ⊕ y = x ∧ (uA − y) + y. Assume that
x ∧ (uA − y) + y < 1 and y �= 0 (the case y = 0 being trivial). Hence

ρ(x ⊕ y) = ϕ(x ⊕ y)

= ϕ(x ∧ (uA − y) + y)

= ϕ(x ∧ (uA − y)) + ϕ(y)

= ϕ(x) ∧0 ϕ(uA − y) + ϕ(y)

= ϕ(x) ∧0 (¬ϕ(y)) + ϕ(y).
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If x ∧ (uA − y) + y = uA i.e. x ∧ (uA − y) = uA − y, then uA − y ≤ x and y �= 0. It
follows that 0 <0 ϕ(uA − y) = −ϕ(y) ≤0 ϕ(x) and

ϕ(x) ∧0 (¬ϕ(y)) + ϕ(y) = ϕ(x) ∧0 (−ϕ(y)) + ϕ(y)

= −ϕ(y) + ϕ(y)

= 0
= ρ(uA)

= ρ(x ⊕ y).

Corollary 4.5 The MV-algebra A, in the language LMV , is interpretable in the Llo-
structure A(C(A)). In particular, if A and A′ are MV-algebras such that A(C(A)) ≡
A(C(A′)), then A ≡ A′. The same holds with ≺ instead of ≡.

Proof For every x, y in A(C(A)) ∪ {1} we set ¬x = −x if 0 �= x �= 1, ¬0 = 1, ¬1 = 0,
and x ⊕y = x ∧0 ¬y +y if x ∧0 ¬y +y �= 0 or x = y = 0, and we set x ⊕y = 1 otherwise.
The remainder of the proof follows from Theorem 2.13.

4.1.3 Construction of the Inverse Mapping of ��

Notation 4.6 If C is a pco-group, then we add an element 1 to A(C) and we set, for every
x ∈ A(C), x <0 1 and 1 + x = x + 1 = x.

Let C = G/Zu be the wound-round of an �-group. Set ¬0 = 1, ¬1 = 0 and for
x ∈ A(C)\{0} set ¬x = −x. For every x, y in A(C) ∪ {1} set
x ⊕ y = x ∧0 (¬y) + y if x ∧0 (¬y) + y �= 0 or x = y = 0, and
x ⊕ y = 1 otherwise.

It follows from Proposition 4.4 that A(C) ∪ {1} is an MV-algebra which is isomorphic
to the MV-algebra �(G, u). By the uniqueness of the Chang �-group, (G, u) is isomorphic
to the Chang �-group of A(C) ∪ {1}. It follows that C � ��(A(C) ∪ {1}). So we defined
the inverse mapping of ��, which proves that it is-one-to-one (with the same misuse of
language as above).

4.1.4 The Unwound Construction

Recall that if (G, u) is a unital partially ordered group and C � G/Zu, then we say that
(G, u) is the unwound of C if whenever a unital partially ordered group (G′, u′) satisfies
C � G′/Zu′, then (G, u) � (G′, u′) (Definition 3.6). For example every co-group is an
unwound, that one can get by Rieger’s construction.

Turning to the wound-round C of an �-group, we show that it has an unwound, which is
obtained by the Chang �-group construction.

Proposition 4.7 If C is the wound-round of an �-group and A(C) is nontrivial, then C is
generated by A(C).

Proof Let (G, u) be a unital �-group such that C � G/Zu, and let x ∈ G. By properties of
�-groups, there exist x+ and x− in the positive cone of G such that x = x+ + x− (see, for
example, [1]). Now, by Lemma 2.7, this positive cone is generated by [0, u]. Therefore G is
generated by [0, u]. Since A(C) is nontrivial, by (2) of Lemma 2.4, for every x ∈ [0, u] we
have ρ(x) ∈ A(C). Consequently, C is generated by A(C).
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If C is the wound-round of an �-group and A(C) is nontrivial, then one can construct the
MV-algebra A = A(C) ∪ {1} associated to C. We can also construct the Chang �-group GA

of A. So, it suffices to prove that C � GA/ZuA and C � G′/Zu′ ⇒ (G′, u′) � (GA, uA).
This is the aim of the next proposition.

Proposition 4.8 Let C be the wound-round of an �-group. Then C has an unwound, which
is the Chang �-group of the MV-algebra A(C) ∪ {1}.

Proof Recall that the MV-algebra A(C)∪ {1} is first-order definable in C, by the following
rules.

• For x ∈ A(C)\{0} set ¬x = −x, ¬0 = 1, ¬1 = 0.
• For every x, y in A(C)∪{1} x ⊕y = x ∧0 (¬y)+y if x ∧0 (¬y)+y �= 0 or x = y = 0,

and x ⊕ y = 1 otherwise.

In particular, we can assume that ⊕ belongs to the language. Trivially, if C is isomorphic
to the wound-round of the Chang �-group of the MV-algebra A(C) ∪ {1}, then it is the
wound-round of an �-group.

Assume that C = G/Zu, where (G, u) is a unital �-group. Let A be the MV-algebra
A(C) ∪ {1}, (GA, uA) be the Chang �-group of A and C′ be the pco-group GA/ZuA.

We know that A � �(GA, uA), and we already noticed that A � �(G, u). By uniqueness
of the Chang �-group, it follows that there is a unital �-isomorphism between (G, u) and
(GA, uA). Hence the pco-groups C and C′ are isomorphic, and (GA, uA) is the unwound of
C.

Note that the wound-rounds of �-groups are infinite, as show the next proposition.

Proposition 4.9 If C is the wound-round of an �-group and is not a co-group, then it is
infinite.

Proof Let (G, u) be a unital �-group such that C � G/Zu. If C is not linearly ordered, then
G is not linearly ordered. Hence there exist x > 0 and y > 0 in G such that x � y and
y � x. So x∧y < x and x∧y < y. By taking x−x∧y instead of x, and y−x∧y instead of
y, we can assume that x > 0 and y > 0 and x ∧ y = 0. By properties of �-groups, for every
positive integer n we have nx ∧ y = 0 = x ∧ ny (this follows for example from 1.2.24 on
p. 22 of [1]). In particular, x and y are not strong units. It follows that, for every n ∈ N\{0},
nx �> u, hence x, 2x, . . . , nx, . . . belong to different classes modulo Zu, therefore G/Zu

is infinite.

4.2 MV-algebra Associated to a pco-group

We extend above construction of an MV-algebra in the set of non-isolated elements of the
wound-round of an �-group to a larger class of pco-groups which we define now. In [8],
the lattice-cyclically-ordered groups are defined to be pco-groups such that ≤0 defines a
structure of distributive lattice with first element. In the present paper we look at a larger
class of groups.

Definition 4.10 Let C be a pco-group. We will say that A(C) defines canonically an MV-
algebra if it satisfies the following.

(1) (A(C) ∪ {1}, ≤0) is a distributive lattice.
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(2) For every x, y in A(C), x + y = x ∧0 y + x ∨0 y.
(3) For every x, y, z in A(C)\{0}, we have that

x − y = (x ∧0 (−z) + z) ∧0 (−y) − (y ∧0 (−z) + z) ∧0 (−x).

We will denote by AC the class of pco-groups C such that A(C) defines canonically an
MV-algebra.

Our main purpose in this subsection is to define an MV-algebra in any element of
AC (Theorem 4.11), and to prove that AC contains the wound-rounds of �-groups (Theo-
rem 4.16). We will also prove that if C ∈ AC, then the subgroup generated by A(C) being
the wound-round of an �-group depends on the first-order theory of C (Theorem 4.17).

Theorem 4.11 Let C ∈ AC. Set ¬0 = 1, ¬1 = 0 and for x ∈ A(C)\{0} set ¬x = −x. For
every x, y in A(C) ∪ {1} set
x ⊕ y = x ∧0 (¬y) + y if x ∧0 (¬y) + y �= 0 or x = y = 0, and
x ⊕ y = 1 otherwise.

Then A(C) ∪ {1} is an MV algebra with natural partial order ≤0.

Corollary 4.12 Let C be a pco-group. If A(C) defines canonically an MV-algebra, then the
MV-algebra A(C) ∪ {1} defined in Theorem 4.11 is interpretable in C ∪ {1}, where 1 is a
new element.

Note that if A is an MV-algebra such that there exist x < y in ]0, 1[, then the MV-
algebra A(C(A))∪{1} (together with the operations defined in Theorem 4.11) is isomorphic
to A. Indeed, since ]0, 1[ contains x < y, we deduce from Corollary 2.5 that A(C(A))

is nonempty. By Corollary 4.3, the canonical epimorphism ρ from the Chang �-group
(GA, uA) of A induces an isomorphism ϕ between the lattices [0, uA] and A(C(A)) ∪ {1}.
Now, for g, h in ]0, uA[, ϕ(g)∧(−ϕ(h))+ϕ(h) = ϕ(g)∧ϕ(uA−h)+ϕ(h) = ϕ((g+h)∧uA).
Hence ϕ(g) ∧ (¬ϕ(h)) + ϕ(h) = 0 if, and only if, either g + h ≥ uA or g + h = 0.
Consequently, by Proposition 4.4, ϕ is an isomorphism of MV-algebras.

The proof of Theorem 4.11 is based on the following three lemmas.

Lemma 4.13 Let C be a pco-group such that, for every x and y in A(C), x ∧0 y exists. Let
x, y in A(C)\{0}. If −y �= x∧0 (−y), then y <0 x∧0 (−y)+y. In particular, x∧0 (−y)+y

belongs to A(C).

Proof Since −y �= x ∧0 (−y), we have that x ∧0 (−y) <0 −y. By hypothesis, this is
equivalent to y <0 −(x ∧0 (−y)). By Proposition 3.3, this is also equivalent to −x ∧0
(−y) − y <0 −y. By hypothesis, this in turn is equivalent to y <0 x ∧0 (−y) + y. The last
assertion follows easily.

Lemma 4.14 Let C be a pco-group. Let x, y in A(C) such that the infimum z = x ∧0 y of x

and y in (A(C),≤0) exists. Then x−z and y−z belong to A(C), the infimum (x−z)∧0(y−z)

exists and is equal to 0.

Proof If x ≤0 y, then z = x, y −z = y −x <0 −x (Proposition 3.3). Hence y −z ∈ A(C),
and (y −z)∧0 (x −z) = x −z = 0. The same holds if y ≤0 x. Now, assume that nor x ≤0 y

nor y ≤0 x. We have that z <0 x, hence x−z <0 −z. In particular, x−z ∈ A(C). Let t ∈ C

such that 0 <0 t <0 x − z. Then we have: R(0, t, x − z, −z). Hence R(z, t + z, x, 0) holds.
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Therefore R(0, z, t + z, x) holds, i.e. z <0 t + z <0 x. In the same way, 0 <0 t <0 y − z ⇒
z <0 t + z <0 y. Hence, since z = x ∧0 y, this yields a contradiction. Consequently, there
is no t ∈ A(C)\{0} such that t <0 x − z & t <0 y − z.

Let C be a pco-group such that, for every x and y in A(C), x ∧0 y exists. Then, the
supremum x ∨0 y exists if, and only if, (−x) ∧0 (−y) �= 0. If this holds, then x ∨0 y =
−((−x) ∧0 (−y)). Otherwise, there is no z ∈ A(C) such that x ≤0 z and y ≤0 z. If the
supremum of x and y does not exist, then we will set x ∨0 y = 1. So (A(C) ∪ {1}, ≤0) is a
lattice with smallest element 0 and greatest element 1.

Lemma 4.15 Let C ∈ AC. Then, for every x, y in A(C) ∪ {1}: x ⊕ y = 1 ⇔ (−y ≤0
x & (x, y) �= (0, 0)). In particular: ¬x ⊕ x = 1.

Proof We have that x ∧0 ¬y + y = 0 if, and only if, −y = x ∧0 (−y). So x ∧0 ¬y + y =
0 ⇔ −y ≤0 x. In particular, x ⊕ y = 1 ⇔ (−y ≤0 x and (x, y) �= (0, 0)).

Proof of Theorem 4.11 Note that if x ∨0 y does not exist in A(C), then x ∨0 y = 1. By
Lemma 4.13, if x and y belong to A(C)\{0} and x⊕y �= 1, then x⊕y = x∧0¬y+y ∈ A(C).
Let x, y in A(C)∪{1}. If y = 0, then x⊕y = x∧01+0 = x. If x = 0, then x⊕y = 0+y = y.
If y = 0, then x ⊕ y = x + 0 = x. If y = 1, then x ∧0 0 + 1 = 0, hence x ⊕ y = 1.
If x = 1, then 1 ∧ ¬y + y = ¬y + y = 0. Hence x ⊕ y = 1. It follows that in any case
x ⊕ y ∈ A(C) ∪ {1}.

We have to prove that ⊕ and ¬ satisfy the axioms of Definition 2.1.

MV4) Trivially, for every x ∈ A(C) ∪ {1}: ¬¬x = x.
MV3) and MV5) have already been proved (i.e. x ⊕ 0 = x, x ⊕ ¬0 = ¬0).
MV2) (x ⊕ y = y ⊕ x) The case where x ∈ {0, 1} or y ∈ {0, 1} follows from above
calculations. Assume that x and y belong to A(C)\{0}. By Lemma 4.15, x ⊕ y = 1 ⇔
−y ≤0 x ⇔ −x ≤0 y ⇔ y ⊕x = 1. Otherwise, x ⊕y −y ⊕x = x ∧0 (−y)+y − (y ∧0
(−x)+x) = x ∧0 (−y)−(y ∧0 (−x))−(x −y) = x ∧0 (−y)+(−y)∨0 x −(x −y) = 0,
by 2) of Definition 4.10.
MV6) (¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x) Trivially, we can assume that x �= y. Since
x ∨0 y = y ∨0 x, it is sufficient to prove that for all x, y in A(C) ∪ {1} we have that
¬(¬x ⊕ y) ⊕ y = x ∨0 y.

If y = 0, then ¬(¬x ⊕ y) ⊕ y = ¬(¬x ⊕ y) = ¬(¬x) = x = x ∨0 y. If x = 0, then
¬(¬x ⊕ y) ⊕ y = ¬(1 ⊕ y) ⊕ y = ¬1 ⊕ y = 0 ⊕ y = y = x ∨0 y.

If y = 1, then ¬(¬x⊕y)⊕y = ¬(¬x⊕y)⊕1 = 1 = x∨0y. If x = 1 and y ∈ A(C)\{0},
then ¬(¬x ⊕ y) ⊕ y = ¬y ⊕ y = 1 = x ∨0 y.
If x <0 y, then, by Lemma 4.15, ¬x ⊕ y = 1, and ¬(¬x ⊕ y) ⊕ y = 0 ⊕ y = y = x ∨0 y.

Otherwise, we have that ¬x ⊕ y = (−x) ∧0 (−y) + y �= 0, and

¬(¬x⊕y)⊕y = (−((−x)∧0 (−y)+y))⊕y = (x∨0y−y)⊕y = (x∨0y−y)∧0 (−y)+y.

Since y <0 x ∨0 y, we have that x ∨0 y − y <0 −y (by Proposition 3.3). Hence
(x ∨0 y − y) ∧0 (−y) + y = x ∨0 y − y + y = x ∨0 y.

MV1) (x ⊕ (y ⊕z) = (x ⊕y)⊕z). This is trivial if x, y or z belongs to {0, 1}. We assume
that x, y, z belong to A(C)\{0}. Assume that x ⊕ y = 1. Then, (x ⊕ y) ⊕ z = 1. By
Lemma 4.15, we have that −y ≤0 x. If y ⊕ z = 1, then (x ⊕ y) ⊕ z = 1 = x ⊕ (y ⊕ z).
We assume that y ⊕ z �= 1. By Lemma 4.13, y ≤0 y ⊕ z. Hence −(y ⊕ z) ≤0 −y ≤0 x.
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Therefore, x ∧0 (−(y ⊕ z)) + (y ⊕ z) = −(y ⊕ z) + (y ⊕ z) = 0. It follows that
(x ⊕ y) ⊕ z = 1 = x ⊕ (y ⊕ z).

Assume that x ⊕ y �= 1 �= y ⊕ z, so we have that −y �≤0 x and −y �≤0 z. Therefore:

(x ⊕ y) ⊕ z − x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z − (z ⊕ y) ⊕ x
= (x ∧0 (−y) + y) ∧0 (−z) + z − (z ∧0 (−y) + y) ∧0 (−x) − x
= (x ∧0 (−y) + y) ∧0 (−z) − (z ∧0 (−y) + y) ∧0 (−x) − (x − z).

Now, it follows from 3) of Definition 4.10 that (x ⊕ y) ⊕ z − x ⊕ (y ⊕ z) = 0.

A pco-group needs not define canonically an MV-algebra, as shows the following exam-
ple. Let n1 and n2 be integers, greater than 4, C1 be the co-group Z/n1Z and C2 be the
co-group Z/n2Z. C1 and C2 define MV-algebras. We can define a pco-group C1 × C2 by
setting R((x1, x2), (y1, y2), (z1, z2)) ⇔ R(x1, y1, z1) & R(x2, y2, z2). Then

A(C1×C2) = C1×C2\[((Z/n1Z) × {0}) ∪ ({0} × (Z/n2Z)) ∪ {(n1 − 1, 1), (1, n2 − 1)}] .

Now, −(3, 1) = (n1 − 3, n1 − 1) and (1, 3) belong to A(C1 × C2), (3, 1) �≤0 (1, 3),
(1, 3) �≤0 (3, 1), but (1, 3) − (3, 1) = (n1 − 2, 2) ∈ A(C1 × C2). Hence the rule x ∈
A(C), y ∈ A(C) ⇒ (x+y ∈ A(C) ⇔ x ≤0 −y or −y ≤0 x) does not hold. Consequently
C1 × C2 does not define canonically an MV-algebra.

We can define another partial cyclic order on C1 × C2 by setting (x1, x2) ≤0 (y1, y2) ⇔
(x1 ≤0 y1 & x2 ≤0 y2). In this case A(C1 × C2) = C1 × C2, and we conclude in the same
way that C1 × C2 does not define canonically an MV-algebra.

Now, Theorem 4.16 proves that the pco-group (Z×Z)/Z(n1, n2) defines canonically an
MV-algebra.

Theorem 4.16 Let C be the wound-round of an �-group. Then C ∈ AC.

Proof We have to prove that C satisfies conditions (1), (2), (3) of Definition 4.10.
Recall that we saw after Definition 3.13 that if C is the wound-round of an �-group, then

for every x, y in A(C), x ∧0 y exists. Furthermore, x ∨0 y does not exist if, and only if,
(−x) ∧0 (−y) = 0, and if this holds, then for every z ∈ A(C): x <0 z ⇒ y �<0 z.

(1) Let (G, u) be a unital �-group such that C � G/Zu and ρ be the natural mapping
from G onto C. By Lemma 3.7 the restriction of ρ is a one-to-one mapping from
Gu = {g ∈ G | 0 ≤ g & g �≥ 0} onto C. We saw in Proposition 4.2 that A(C)

can be identified with a subset of [0, u[. Let g, h in [0, u[ such that ρ(g) ∈ A(C) and
ρ(h) ∈ A(C). We have that g < h ⇔ ρ(g) <0 ρ(h). It follows that ρ(g ∧h) ∈ A(C),
ρ(g ∧ h) = ρ(g) ∧0 ρ(h), and if g ∨ h �= u, then ρ(g ∨ h) ∈ A(C), ρ(g ∨ h) =
ρ(g) ∨0 ρ(h). By setting ρ(u) = 1, we have that g ∨ h = u ⇔ ρ(g) ∨0 ρ(h) = 1,
hence A(C) ∪ {1} embeds into a sublattice of [0, u], so it is a distributive lattice, with
smallest element 0 and greatest element 1. Note that by Corollary 4.3, if A(C) �= {0},
then A(C) ∪ {1} is isomorphic to the lattice [0, u].

(2) Let x, y in A(C), and g, h be the elements of [0, u[ such that ρ(g) = x and ρ(h) = y.
Since G is an �-group, we have that g + h = g ∧ h + g ∨ h, with 0 ≤ g ∧ h < u and
0 ≤ g ∨ h ≤ u. We saw in Corollary 4.3 that ρ induces an isomorphism of ordered
sets between [0, u[ and A(C). Hence ρ(g ∧ h) = x ∧0 y, and if g ∨ h < u, then
ρ(g ∨ h) = x ∨0 y. If g + h ∈ Gu, then g ∧ h + g ∨ h ∈ Gu. Hence g ∨ h < u and
x + y = ρ(g + h) = ρ(g ∧ h + g ∨ h) = ρ(g ∧ h) + ρ(g ∨ h) = x ∧0 y + x ∨0 y.

347Order (2022) 39:323–359



Assume that g + h /∈ Gu, then g + h − u ∈ Gu. If g ∨ h < u, then we have that

x + y = ρ(g) + ρ(h)

= ρ(g + h − u)

= ρ(g ∧ h + g ∨ h − u)

= ρ(g ∧ h) + ρ(g ∨ h)

= x ∧0 y + x ∨0 y.

If g ∨ h = u, then x ∨0 y = 1. Hence x ∧0 y + x ∨0 y = x ∧0 y (see Notation 4.6).
Then:

x + y = ρ(g) + ρ(h)

= ρ(g + h − u)

= ρ(g ∧ h + g ∨ h − u)

= ρ(g ∧ h)

= x ∧0 y.
(3) Let x, y, z in A(C)\{0} and g, h, k in ]0, u[ such that ρ(g) = x, ρ(h) = y and

ρ(k) = z.

(x ∧0 (−z) + z) ∧0 (−y) − (y ∧0 (−z) + z) ∧0 (−x) =
(ρ(g) ∧0 ρ(u − k) + ρ(k)) ∧0 ρ(u − h) − (ρ(h) ∧0 ρ(u − k) + ρ(k)) ∧0 ρ(u − g) =
(ρ(g ∧ (u − k)) + ρ(k)) ∧0 ρ(u − h) − (ρ((h) ∧ (u − k)) + ρ(k)) ∧0 ρ(u − g) =

ρ(g ∧ (u − k) + k) ∧0 ρ(u − h) − ρ(h ∧ (u − k) + k) ∧0 ρ(u − g).

g∧(u−k) < u−k, hence g∧(u−k)+k < u−k+k = u, hence ρ(g∧(u−k)+k) ∈
A(C), and in the same way ρ(h ∧ (u − k) + k) ∈ A(C), so:

(x ∧0 (−z) + z) ∧0 (−y) − (y ∧0 (−z) + z) ∧0 (−x) =
ρ((g ∧ (u − k) + k) ∧ (u − h)) − ρ((h ∧ (u − k) + k) ∧ (u − g)) =

ρ((g + k) ∧ u ∧ (u − h)) − ρ((h + k) ∧ u ∧ (u − g)) =
ρ((g+k)∧(u−h)−(h+k)∧(u−g)) = ρ((g+k+h)∧u−h−(h+k+g)∧u+g) =

ρ(g − h) = ρ(g) − ρ(h) = x − y.

One can wonder if being the wound-round of an �-group can be characterized by first-
order sentences. We will see that this holds if the pco-group C is generated by A(C). This
characterization relies on good sequences.

If C is a pco-group, then we denote by 〈A(C)〉 the subgroup of C generated by A(C).

Theorem 4.17 Let C ∈ AC. The group 〈A(C)〉 being the wound-round of an �-group is
expressible by countably many first-order formulas of the language Lc.

Proof Assume that 〈A(C)〉 = G/Zu, where (G, u) is a unital �-group. Let A be the MV-
algebra A(C) ∪ {1}, (GA, uA) be the Chang �-group of A. By Proposition 2.11, every
element x of the positive cone of GA is a sum of elements x1, . . . , xn of A satisfying the
conditions of Lemmas 2.7 and 2.8, where x ≤ nu. Furthermore, if x � uA, then the xi’s are
different from uA. Let call the sequence (x1, . . . , xn, 0, . . . ) the good sequence associated
to x. By Lemma 3.7, the canonical epimorphism ρ : GA → GA/ZuA induces a one-to-one
mapping between GuA

= {x ∈ GA | x ≥ 0 & x � uA} and 〈A(C)〉. It follows that every
element x of 〈A(C)〉 can be represented by a unique good sequence of elements of A(C).
Furthermore, by Lemma 2.7, if x is a sum of n elements of A(C), then the good sequence
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associated to x contains at most n elements different from 0. So C satisfies the following
family of first-order formulas. For every n ∈ N\{0},

∀(x1, . . . , xn) ∈ A(C)n ∃(y1, . . . , yn) ∈ A(C)n
∧

1≤i<n

(yi+1 ∧0 −yi = 0 & yi = 0 ⇒ yi+1 = 0)

& x1+· · ·+xn = y1+· · ·+yn & (∀(z1, . . . , zn) ∈ A(C)n
∧

1≤i<n

(zi+1∧0−zi = 0 & zi = 0 ⇒ zi+1 = 0)

& x1 + · · · + xn = z1 + · · · + zn) ⇒ z1 = y1, . . . , zn = yn

Every element x of the positive cone of GA is equivalent modulo ZuA to an element x′
of GuA

, and the good sequence associated to x′ is obtained by dropping the uA’s from the
good sequence associated to x. Hence so is the good sequence associated to ρ(x). Now, if
x and y belong to GuA

, then the good sequence associated to z = x + y is obtained by the
rules zi = xi ⊕ (xi−1 � y1) ⊕ · · · ⊕ (x1 � yi−1) ⊕ yi . The good sequence associated to
ρ(x) is obtained by dropping the uA’s from the good sequence associated to z. Therefore,
C satisfies the following family of first-order formulas. For every n ∈ N\{0},

∀(x1, . . . , xn) ∈ A(C)n ∀(y1, . . . , yn) ∈ A(C)n ∀(z1, . . . , zn) ∈ A(C)n
∧

1≤i<n

(xi+1 ∧0 −xi = 0

& xi = 0 ⇒ xi+1 = 0) &
∧

1≤i<n

(yi+1 ∧0 −yi = 0 & yi = 0 ⇒ yi+1 = 0) &
∧

1≤i<n

(zi+1 ∧0 −zi = 0

& zi = 0 ⇒ zi+1 = 0) & x1 + · · · + xn + y1 + · · · + yn = z1 + · · · + zn ⇒
⋃

1≤i0<n

⋃

1≤i<i0

(xi ⊕(xi−1 �y1)⊕· · ·⊕(x1 �yi−1)⊕yi = 1) & xi0 ⊕(xi0−1 �y1)⊕· · ·⊕(x1 �yi0−1)⊕yi0 �= 1

&
⋃

i0≤i≤n

zi = xi ⊕ (xi−1 � y1) ⊕ · · · ⊕ (x1 � yi−1) ⊕ yi

Conversely, assume that C ∈ AC and that C satisfies above families of formulas (recall
that C ∈ AC is expressible by countably many first-order formulas). We prove that 〈A(C)〉
is isomorphic to the wound-round of GA/ZuA, where A is the MV-algebra A(C) ∪ {1}.
The group operation on 〈A(C)〉 is determined by A(C) and by above formulas, which are
also satisfied by the group C′ = GA/ZuA. It follows that the groups 〈A(C)〉 and C′ are
isomorphic. Furthermore, the ordered sets [0, u] and (A(C) ∪ {1},≤0) are isomorphic. By
Corollary 4.3 they are isomorphic to (A(C′)∪{1}, ≤0). By Remarks 4.1, the pco-groups C′
and 〈A(C)〉 are isomorphic. This proves that 〈A(C)〉 being the wound-round of an �-group
is expressible by countably many first-order formulas.

5 Case of MV-chains

Here we focus on the correspondence between MV-chains and co-groups.
We first give a direct description of the restriction of the functor �� to the class of MV-

chains. Then, we show that this correspondence preserves elementary equivalence. Thanks
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to this transfer principle, we deduce, in the case of MV-chains, similar results to those of
co-groups proved in [12].

5.1 Direct Description of the Functor ��

We proved in Proposition 3.12 that � induces a functorial one-to-one correspondence
between co-groups and unital linearly ordered groups.

We saw the description of the wound-round G/Zu of a unital linearly ordered group
(G, u) before Rieger’s Theorem 3.4. Now, given a co-group C, the linearly ordered group
uw(C) is the set Z×C together with the following order and operation. The linear order ≤ is
the lexicographic order of (Z,≤)×(C,≤0), uC = (1, 0) and (m, x)+(n, y) = (m+n, x+y)

if x = y = 0 or min0(x, y) <0 x + y, and (m, x) + (n, y) = (m + n + 1, x + y) otherwise
(see [5]).

Now, we turn to �. The one-to-one correspondence between unital linearly ordered
groups and MV-chains is the following. A unital linearly ordered group (G, u) is associ-
ated to the MV-chain �(G, u) = [0, u] (see [2, Lemma 6]). Conversely, an MV-chain A is
associated to its Chang �-group GA.

The construction of the Chang �-group of (A(C)∪{1}, 1), in the linearly ordered case, is
similar to the construction of the unwound of a co-group. Indeed, let A be an MV-chain. By
[2, Lemmas 5 and 6], GA is isomorphic to Z × (A\{1}) lexicographically ordered and with
the rules: (m, x)+(n, y) = (m+n, x⊕y) if x⊕y < 1 and (m, x)+(n, y) = (m+n+1, x�y)

otherwise.
Furthermore, this correspondence is a functorial one (see Section 2).
The functor �� induces a functorial one-to-one correspondence between MV-chains and

co-groups. If A is an MV-chain, then C(A) = GA/ZuA is a co-group. Note that if C is
a co-group with at least three elements, then A(C) = C. It follows that if C contains at
least three elements, then the unital linearly ordered group (uw(C), uC) is isomorphic to
the Chang �-group of (A(C) ∪ {1}, 1).

By the comments above, in the linearly ordered case, we can give a direct description of
the functor �� and the description of its inverse is simpler than in Theorem 4.11.

Before going into details, let us note the following fact.
If ρ is the natural mapping from uw(C) onto C � uw(C)/ZuC , then for g, h in [0, uC[

we have that ρ(g) <0 ρ(h) ⇔ g < h, and if g ≤ h �= 0, then g < g + h < g + uC .
So, ρ(g + h) = ρ(g) + ρ(h) if, and only if, g + h < uC , which in turn is equivalent to:
ρ(g) <0 ρ(g) + ρ(h). Otherwise, we have that ρ(g) + ρ(h) = ρ(g + h − uC).

Proposition 5.1 Let A be an MV-chain.

(1) In the MV-chain A, the set C(A) is interpreted by A\{1}, the cyclic order is given by
R(x, y, z) ⇔ x < y < z or y < z < x or z < x < y, the addition is given by
x + y = x ⊕ y if x � y = 0 and x + y = x � y otherwise.

(2) In C(A) ∪ {1}, the set A is interpreted by C(A) ∪ {1}, ¬x is interpreted by −x if
x /∈ {0, 1}, ¬0 = 1 and ¬1 = 0. ⊕ is interpreted by 1 ⊕ x = 1 and for x, y in C(A)

x ⊕ y = x + y if x + y �= 0 and min0(x, y) <0 x + y, x ⊕ y = 1 if x �= 0 �= y and
x + y ≤0 min0(x, y), and 0 ⊕ 0 = 0.

Proof (1) We saw in Section 2 that in GA x⊕y = (x+y)∧1, and x�y = (x+y−1)∨0.
Since GA is linearly ordered, x ⊕ y = min(x + y, 1), and x � y = max(x + y, 1)− 1.
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Let z ∈ [0, 1[ such that x+y−z ∈ Z ·1, then z = x+y if x+y < 1 and z = x+y−1
otherwise.

(2) We saw that if g, h are the elements of [0, uC[⊂ uw(C) such that ρ(g) = x and
ρ(h) = y, then g + h < uC ⇔ min0(x, y) <0 x + y.

5.2 Transfer Principles of Elementary Equivalence

We prove that the correspondence between MV-chains and co-groups in Proposition 5.1
also preserves elementary equivalence.

Proposition 5.2 Let A be an MV-chain.

• The co-group C(A), in the language Lc, is interpretable in the LMV -structure A.
• The LMV -structure A is interpretable in the Lc structure C(A) ∪ {1}.
• If A and A′ are MV-chains, then:

A ≡ A′ ⇔ C(A) ∪ {1} ≡ C(A′) ∪ {1} ⇔ C(A) ≡ C(A′), and
A ≺ A′ ⇔ C(A) ∪ {1} ≺ C(A′) ∪ {1} ⇔ C(A) ≺ C(A′).

Proof The first two items have been proved in Proposition 5.1.
It follows from Theorem 2.13 that A ≡ A′ ⇒ C(A) ≡ C(A′) and C(A) ∪ {1} ≡

C(A′) ∪ {1} ⇒ A ≡ A′. Now we see that C(A) ≡ C(A′) ⇒ C(A) ∪ {1} ≡ C(A′) ∪ {1}.
The last proposition can be proved in the same way.

Proposition 5.3 Let A and (Ai)i∈N\{0} be MV-chains, U be an ultrafilter on N\{0} and
�Ai be the ultraproduct of (Ai)i∈N\{0}. Then A ≡ �Ai ⇔ C(A) ≡ �C(Ai).

Proof Let � be an LMV -sentence and �c be the corresponding Lc-sentence. Then: A |=
� ⇔ C(A) |= �c, and for every i in N\{0}, Ai |= � ⇔ C(Ai) |= �c. Hence {i ∈ N\{0} |
Ai |= �} ∈ U ⇔ {i ∈ N\{0} | C(Ai) |= �c} ∈ U . The equivalence follows.

We saw in Section 3.2 that if (G, u) and (G′, u′) are unital linearly ordered groups, then
we have (G, u) ≡ (G′, u′) ⇔ G/Zu ≡ G′/Zu′ and (G, u) ≺ (G′, u′) ⇔ G/Zu ≺
G′/Zu′. In the same way we have a transfer principle of elementary equivalence between
the MV-chains and their Chang �-groups.

We consider the language LoMV = (0, +,−, ≤, ⊕, ¬). The Lo-structure Z will be seen
as an LoMV -structure where x ⊕ y = z ⇔ x = y = z = 0 and ¬x = y ⇔ x = y = 0. If
A is an MV-chain, then it will be seen as an LoMV -structure, where x + y = z ⇔ x = y =
z = 0 and x − y = z ⇔ x = y = z = 0.

Proposition 5.4 Let A be an MV-chain.

• The LMV -structure A is interpretable in the LloZu-structure (GA,ZuA) (resp. in the
Llou-structure (GA, uA)).

• The LloZu-structure (GA,ZuA) (resp. the Llou-structure (GA, uA)) is interpretable in
the LoMV -structure Z × A.

• If A and A′ are MV-chains, then:
(GA,ZuA) ≡ (GA′ ,ZuA′) ⇔ Z × A ≡ Z × A′ ⇔ A ≡ A′, and
(GA, uA) ≡ (GA′ , uA′) ⇔ Z × A ≡ Z × A′ ⇔ A ≡ A′.
The same holds with ≺ instead of ≡.
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Proof In (GA,ZuA) (resp. in (GA, uA)), 1 is the smallest positive element of Zu (resp.
1 = u), the set A is interpreted by {x ∈ GA | 0 ≤ x ≤ uA}, x ⊕ y = min(x + y, uA),
¬x = uA − x.

In Z×A, GA is interpreted by Z×(A\{u}), Zu is interpreted by Z×{0} (resp. u = (1, 0)).
The order relation is the lexicographic order: (m, x) ≤ (n, y) ⇔ m < n or (m = n and
x ≤ y). The sum is defined by (m, x) + (n, y) = (m + n, x ⊕ y) if x ⊕ y < 1, and
(m, x) + (n, y) = (m + n + 1, x � y) if x ⊕ y = 1.

It follows from Theorem 2.13) that (GA,ZuA) ≡ (GA′ ,ZuA′) ⇒ A ≡ A′, (GA, uA) ≡
(GA′ , uA′) ⇒ A ≡ A′, Z × A ≡ Z × A′ ⇒ (GA,ZuA) ≡ (GA′ ,ZuA′) and Z × A ≡
Z×A′ ⇒ (GA, uA) ≡ (GA′ , uA′) (the same holds with ≺). Now, we deduce from Theorem
2.12 that in the language LoMV : A ≡ A′ ⇒ Z × A ≡ Z × A′. Now, clearly, if A ≡ A′ in
LMV , then A ≡ A′ in LoMV (the same holds with ≺).

5.3 MV-chains Elementarily Equivalent to Archimedean Ones

We deduce from [12] similar results in the case of MV-chains. In particular we characterize
pseudofinite and pseudo-hyperarchimedean MV-chains.

First we list some results about co-groups, starting with definitions. Next, turning to MV-
chains, we also review some definitions. Then we will deduce characterizations of those
MV-algebras which are elementarily equivalent to archimedean ones.

Let C be a co-group.

(1) C is said to be c-archimedean if for every x and y in C\{0} there exists an integer
n > 0 such that R(0, nx, y) does not hold. Note that R(0, nx, y) is equivalent to
y ≤0 nx, since (C, ≤0) is linearly ordered. So one can say that C is c-archimedean if
the ordered set (C,≤0) is archimedean.

(2) C is said to be discrete if there is εC ∈ C\{0} such that for every x ∈ C\{0, εC}
we have R(0, εC, x). In the same way as above C being discrete is equivalent to the
ordered set (C,≤0) being discretely ordered.

(3) C is said to be dense if it is not discrete.
(4) C is said to be c-regular if for every integer n ≥ 2 and every 0 <0 x1 <0 · · · <0 xn in

C there exists x ∈ C such that x1 ≤0 nx ≤0 xn and x <0 2x <0 · · · <0 (n − 1)x <0
nx. This is equivalent to saying that its unwound is a regular linearly ordered group,
that is, for every n ≥ 2 and every 0 < x1 < · · · < xn in uw(C) there exists x ∈ uw(C)

such that x1 ≤ nx ≤ xn.
(5) C is said to be pseudo-c-archimedean if C belongs to the elementary class generated

by the c-archimedean co-groups.
(6) C is said to be pseudofinite if C belongs to the elementary class generated by the finite

co-groups.

One can prove that C is c-archimedean if, and only if, its unwound is archimedean, and C

is discrete if, and only if, its unwound is a discrete linearly-ordered group (that is, it contains
a smallest positive element). Furthermore, C is dense if, and only if, its unwound is densely
ordered, that is, for every x < y in uw(C) there exists z ∈ uw(C) such that x < z < y.

Now we state some main results of [12].
In the next theorem, the prime invariants of Zakon of an abelian group B are define as

follows. If p is a prime, then we define the p-th prime invariant of Zakon of B, denoted
by [p]B, to be the maximum number of p-incongruent elements in B. In the infinite case,
we set [p]B = ∞, without distinguishing between infinities of different cardinalities (see
[15]).
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Theorem 5.5 ([12] Theorem 1.9 and Lemma 4.16) (1) A dense co-group is pseudo-c-
archimedean if, and only if, it is c-regular. If this holds, then it is elementarily
equivalent to some c-archimedean dense co-group.

(2) Any two dense c-regular co-groups are elementarily equivalent if, and only if, their
torsion subgroups are isomorphic and they have the same family of prime invariants of
Zakon. This in turn is equivalent to: their torsion subgroups are isomorphic and their
unwounds have the same family of prime invariants of Zakon.

In the theorem below, if C is a discrete co-group, then for a prime p, integers n ∈ N\{0}
and k ∈ {0, . . . , pn − 1}, we denote by Dpn,k the formula: ∃x, R(0, x, 2x, . . . , (pn −
1)x) & pnx = kεC . Here, εC is the smallest positive element of C. Since it is definable, we
can assume that it lies in the language.

Theorem 5.6 ([12] Theorems 1.11, 4.33 and 4.42) (1) Any two non-c-archimedean c-
regular discrete co-groups are elementarily equivalent if, and only if, they satisfy the
same formulas Dpn,k .

(2) A co-group is pseudofinite if, and only if, it is discrete and c-regular.
(3) Let U be a nonprincipal ultrafilter on N\{0}, C be the ultraproduct of the co-groups

Z/nZ, p be a prime, n ∈ N\{0} and k ∈ {0, . . . , pn −1}. Then C satisfies the formula
Dpn,k if, and only if, the set pn

N\{0} − k := {pnj − k | j ∈ N\{0}} belongs to U .

We turn to the MV-chains. We start with definitions (see [3, Chapter 6]).

(1) In an ordered set, by an atom we mean an element x such that x > 0 and whenever
y ≤ x then either y = 0 or y = x ([3, Definitions 6.4.2 and 6.7.1]).

(2) An �-group is hyperarchimedean if for every positive x and y there exists n ∈ N\{0}
such that nx ∧ y = (n + 1)x ∧ y (see [1, Theorem 14.1.2]).

(3) An MV-algebra is atomic if for each x �= 0 there is an atom y with y ≤ x. It is
atomless if no element is an atom ([3, Definition 6.7.1]).

(4) An element x of an MV-algebra is archimedean if there exists n ∈ N\{0} such that
¬x ∨ n.x = 1. This is equivalent to saying that there exists n ∈ N such that n.x =
(n + 1).x ([3, Corollary 6.2.4]).

(5) An MV-algebra is hyperarchimedean if all its elements are archimedean ([3, Definition
6.3.1]).

(6) An MV-algebra is simple if it embeds in the interval [0, 1] of R ([3, Theorem 3.5.1]).

Note that if an MV-chain A is atomic, then it contains only one atom, and the underlying
ordered set is discretely ordered. If it is atomless, then the underlying ordered set is densely
ordered.

Saying that an MV-chain is hyperarchimedean is equivalent to saying that it is simple.
Recall the notations, for x in an MV-algebra, 2.x = x ⊕ x, x2 = x � x and so on.

Definition 5.7 Let A be an MV-chain.

(1) We say that A is regular if for every integer n ≥ 2 and every 0 < x1 < · · · < xn in A

there exists x ∈ A such that x1 ≤ n.x ≤ xn, and 0 < x < 2.x < · · · < (n−1).x < n.x.
(2) We say that A is pseudo-simple if A belongs to the elementary class generated by the

simple MV-chains.
(3) We say that A is pseudofinite if A belongs to the elementary class generated by the

finite MV-chains.
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Let A be an MV-chain, it is easy to see that A is regular if, and only if, C(A) is c-regular.
Since the unwound of C(A) is isomorphic to the Chang �-group GA of A, this is equivalent
to saying that GA is regular. One can also see that A is atomic if, and only if, C(A) is
discrete. Moreover, A is simple if, and only if, GA is archimedean. Note that a linearly
ordered group is hyperarchimedean if, and only if, it is archimedean.

In the MV-chain A(C), the formula R(0, x, 2x, . . . , (pn − 1)x) can be reformulated as
0 < x < 2.x < · · · < (pn − 1).x, (which is equivalent to x �= 0 and 0 = x2 = · · · =
xpn−1, since x2 = 0 ⇔ 2.x ≤ 1) hence we can define formulas Dpn,k in MV-chains in
the following way. If A is an atomic and not simple MV-chain, then the atom εA of A is
definable (it is the smallest positive element). We can assume that it lies in the language.
For a prime p, for n ∈ N\{0} and k ∈ {0, . . . , pn − 1}, we denote by Dpn,k the formula:
∃x, 0 < x < 2.x < · · · < (pn − 1).x) ∧ pn.x = k.εA.

In the same way, the torsion subgroup has an analogue in MV-chains. Let x be an element
of an MV-chain. We will say that x is a torsion element if there exists n ∈ N\{0}, such that
n.x = 1 and xn = 0.

One can see that x ∈ A\{1} is a torsion element in the MV-chain A if, and only if, it is a
torsion element in the group C(A).

Now, thanks to Proposition 5.3, Theorems 5.5 and 5.6 can be expressed in terms of
MV-chains.

Theorem 5.8 (1) Any atomless regular MV-chain is elementarily equivalent to some
simple atomless MV-chain.

(2) Any two atomless regular MV-chains are elementarily equivalent if, and only if, their
subchain of torsion elements are isomorphic and their Chang �-groups have the same
family of prime invariants of Zakon.

In particular, an atomless MV-chain is pseudo-simple if, and only if, it is regular.

Theorem 5.9 (1) Any two infinite atomic regular MV-chains are elementarily equivalent
if, and only if, they satisfy the same formulas Dpn,k .

(2) An infinite MV-chain is pseudofinite if, and only if, it is atomic and regular.
(3) Let U be a nonprincipal ultrafilter on N\{0}, A be the ultraproduct of the MV-chains

[0, n], p be a prime, n ∈ N\{0} and k ∈ {0, . . . , pn − 1}. Then A satisfies the formula
Dpn,k if, and only if, pn

N\{0} − k ∈ U .

6 Non-linearly Ordered Case

Let A be a finite MV-algebra. By [3, Proposition 3.6.5], A is isomorphic to a product of
finite MV-chains and its Chang �-group GA is isomorphic to some Z × · · · × Z. Now, an
ultraproduct of MV-chains need not be a product of a finite number of MV-chains. Hence
we will focus on the MV-algebras which are isomorphic to a product of n MV-chains, where
n ∈ N\{0}.

We will say that an MV-algebra is n-pseudofinite if it is elementarily equivalent to some
ultraproduct of a family of finite MV-algebras which are isomorphic to products of n MV-
chains.

In the case of hyperarchimedean MV-algebras, we will make a similar restriction. If an
MV-algebras A is isomorphic to a product of n MV-chains [0, 11], . . . , [0, 1n], then saying
that A is hyperarchimedean is equivalent to saying that each of [0, 11], . . . , [0, 1n] is simple.
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Recall that simple and hyperarchimedean MV-algebras have been defined and characterized
before Definitions 5.7. We will say that an MV-algebra is n-pseudo-hyperarchimedean if
it is elementarily equivalent to some ultraproduct of a family of hyperarchimedean MV-
algebras which are isomorphic to products of n simple MV-algebras.

By [3, Corollary 6.5.6], being hyperarchimedean is equivalent to being a boolean product
of simple MV-algebras. One can prove that if an hyperarchimedean MV-algebra is isomor-
phic to a finite product of simple MV-algebras, then every sub-MV-algebra is projectable,
hyperarchimedean and is isomorphic to a finite product of simple MV-algebras.

Our goal is to get characterizations of n-pseudofinite and n-pseudo-hyperarchimedean
MV-algebras, and to give necessary and sufficient conditions for two such MV algebras
being elementarily equivalent.

Let us list some properties of abelian �-groups (see [1]).
We let G be an �-group. We know that, for every x ∈ G, there exists a unique pair x+,

x− of elements of the positive cone of G such that x = x+ + x− and x+ ∧ x− = 0. We let
|x| := x+ + x−.

• Two elements x, y of G are said to be orthogonal if |x| ∧ |y| = 0. This is equivalent
to: x+ ∧ y+ = x+ ∧ y− = x− ∧ y+ = x− ∧ y− = 0. A subset A of G is said to be
orthogonal if its elements are pairwise orthogonal. Every orthogonal subset is contained
in a maximal orthogonal subset.

• If A ⊂ G, then the polar of A is the set A⊥ := {y ∈ G | ∀x ∈ A, |x| ∧ |y| = 0}; if
A = {x}, then we let x⊥ := {x}⊥. The set A⊥⊥ is called a bipolar. Every polar of G is
a convex �-subgroup of G. A polar A⊥ is said to be principal if A⊥ = x⊥⊥ for some
x ∈ G (see [1, Chapter 3]).

• An element x of G+ is said to be basic if x⊥⊥ is a linearly ordered group, which is
equivalent to saying that the set [0, x] is linearly ordered. If x and y are basic elements,
then either x ≤ y or y < x or x∧y = 0. If x∧y > 0, then x⊥ = y⊥, hence x⊥⊥ = y⊥⊥
(see [1, pp. 133-135]).

• The group G is said to be projectable if, for every x ∈ G, G is the direct sum of x⊥ and
x⊥⊥. Note that being projectable is a first-order property. Indeed, let x, y in G+. Then
y ∈ x⊥ ⇔ x ∧ y = 0, and y ∈ x⊥⊥ ⇔ ∀z (x ∧ z = 0 ⇒ y ∧ z = 0). Hence y ∈ x⊥
and y ∈ x⊥⊥ are first-order properties.

We will not characterize pseudofinite MV-algebras. However we can review basic prop-
erties that they satisfy. Since an MV-algebra embeds in the positive cone of its Chang
�-group, we have for every a: |a| = a. Hence we can define orthogonal elements and
polars in the following way. Let A be an MV-algebra. Two elements a, b are orthogonal if
a ∧ b = 0. The polar of a subset B of A is B⊥ = {a ∈ A | ∀b ∈ B a ∧ b = 0}. The MV-
algebra A is said to be projectable if, for every a, b in A, b can be written in a unique way
as b = b1 ⊕ b2, with b1 ∈ a⊥ and b2 ∈ a⊥⊥.

One can also prove that an MV-algebra is projectable if, and only if, its Chang �-group
is projectable.

Now, every finite MV-algebra is projectable, and every minimal principal polar is dis-
crete. Consequently, every pseudofinite MV-algebra is projectable, and its minimal principal
polars are discrete and regular.

Before characterizing n-pseudofinite and n-pseudo-hyperarchimedean MV-algebras, we
characterize those unital �-groups which are isomorphic to products of n linearly ordered
�-groups, and the MV-algebras which are isomorphic to products of n MV-chains.
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6.1 Products of n Linearly Ordered Groups

Lemma 6.1 If {x1, . . . , xn} is a maximal orthogonal set of an �-group G whose elements
are basic elements, then:

• for every x ∈ G there is some i ∈ {1, . . . , n} such that x⊥⊥
i ⊂ x⊥⊥,

• x > 0 is basic if, and only if, there exists i ∈ {1, . . . , n} such that x⊥⊥
i = x⊥⊥,

• the minimal principal polars of G are x⊥⊥
1 , . . . , x⊥⊥

n .

Proof Let 0 < x ∈ G. Since {x1, . . . , xn} is maximal orthogonal, there is some i ∈
{1, . . . , n} such that x∧xi > 0. Now, [0, xi] is linearly ordered, hence for every y ∈ G+, we
have that either xi ∧x ≤ xi ∧y or xi ∧y ≤ xi ∧x. If xi ∧y ≤ xi ∧x, then xi ∧y ≤ xi ∧(x∧y).
Hence y ∈ x⊥ ⇒ y ∈ x⊥

i . If xi ∧ x < xi ∧ y, then xi ∧ x ≤ xi ∧ (x ∧ y). Hence y ∧ x > 0.
It follows that x⊥ ⊂ x⊥

i . Therefore x⊥⊥
i ⊂ x⊥⊥.

Let x > 0 and i ∈ {1, . . . , n} such that x⊥ = x⊥
i . If x is basic, then we have that xi ≤ x or

x ≤ xi . Assume that xi ≤ x. For every y > 0 we have that y∧xi = y∧xi ∧x = y∧x∧xi =
min(y ∧ x, xi), since [0, x] is linearly ordered. Therefore: y ∧ xi = 0 ⇔ y ∧ x = 0, hence
x⊥ = x⊥

i . The case x ≤ xi is similar.
The last assertion follows trivially.

By [10, Théorème 6, Chapitre II], we know that an �-group G is a direct sum of linearly
ordered groups if, and only if, the following holds:

• for every x⊥⊥ which is minimal, G is the direct sum of x⊥ and x⊥⊥,
• every x⊥⊥ contains some y⊥⊥ which is minimal,
• there is at most a finite number of minimal y⊥⊥.

Therefore, G is the direct sum of n linearly ordered groups if, and only if, it contains
a maximal orthogonal set {x1, . . . , xn} whose elements are basic elements and, for every
i ∈ {1, . . . , n}, G is the direct sum of x⊥

i and x⊥⊥
i . This is equivalent to saying that G is

projectable and contains a maximal orthogonal set of n element which are basic.
Now, we also have the following result.

Proposition 6.2 Let (G, u) be a unital �-group. Then G is the product of n linearly ordered
groups if, and only if, G+ contains a maximal orthogonal set {u1, . . . , un}, whose elements
are basic, such that u = u1 + · · · + un.

Proof ⇒ is straightforward. Assume that G+ contains a maximal orthogonal set
{u1, . . . , un}, whose elements are basic, such that u = u1 + · · · + un. We know that if
x, y, z in G+ satisfy x ∧ y = 0, then x + y = x ∨ y and (x + z) ∧ y = z ∧ y

(see, for example, [7, Lemma 2.3.4]). Let x ∈ G+, and p ∈ N\{0} such that x ≤ pu.
We have that pu = pu1 + · · · + pun, where the pui’s are pairwise orthogonal. Hence
x = x ∧ pu = x ∧ pu1 + · · · + x ∧ pun ∈ u⊥⊥

1 + · · · + u⊥⊥
n . Note that, since

{u1, . . . , un} is a orthogonal, we have that x = (x ∧ pu1) ∨ · · · ∨ (x ∧ pun). Assume that
x = x1 + · · · + xn = x1 ∨ · · · ∨ xn with xi ∈ u⊥⊥

i (1 ≤ i ≤ n). Then xi = x ∧ pui ,
which proves the uniqueness of the decomposition. It follows that G is the direct sum of
u⊥⊥

1 , . . . , u⊥⊥
n .
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6.2 Products of n MV-chains

From [7, Lemma 2.3.4], which we recalled in the proof of Proposition 6.2, one deduces by
induction that for every orthogonal family {x1, . . . , xn} in the positive cone of an �-group
we have x1 + · · · + xn = x1 ∨ · · · ∨ xn. Now, in an MV-algebra, if {x1, . . . , xn} is an
orthogonal family, then x1 ⊕ · · · ⊕ xn = x1 ∨ · · · ∨ xn.

The following proposition is similar to Lemma 6.4.5 in [3].

Proposition 6.3 Let A be an MV-algebra. Then, the Chang �-group of A is isomorphic to a
product of n linearly ordered groups if, and only if, there exist nonzero elements u1, . . . , un

of A such that:

• 1 = u1 ⊕ · · · ⊕ un,
• for all i, j in {1, . . . , n}: i �= j ⇒ ui ∧ uj = 0,
• for all x, y in A, if x ≤ ui and y ≤ ui , then x ≤ y or y ≤ x.

If this holds, then the Chang �-group of A is interpretable in (Z × [0, u1[) × · · · ×
(Z × [0, un[), where (p1, x1, . . . , pn, xn) ≤ (q1, y1, . . . , qn, yn) if, and only if, for every
i ∈ {1, . . . , n}, pi < qi or (pi = qi and xi ≤ yi). The addition is defined componentwise,
(pi, xi) + (qi, yi) = (pi + qi, xi ⊕ yi) if xi ⊕ yi < ui , and (pi, xi) + (qi, yi) = (pi + qi +
1, xi � yi) if xi ⊕ yi = ui .

Proof The equivalence follows from Proposition 6.2. Now let x ∈ GA+. We know that there
exists a good sequence (x1, . . . , xp) of elements of [0, u] such that x = x1+· · ·+xp , where,
for 1 ≤ k ≤ p − 1, (u − xk) ∧ xk+1 = 0 (see Section 2). For j ∈ {1, . . . , n} let xj = x1,j +
· · ·+xn,j , with xi,j ∈ u⊥⊥

i (1 ≤ i ≤ n). We have that u−xj = (u1−x1,j )+· · ·+(un−xn,j ),
hence ui − xi,j > 0 ⇒ xi,j+1 = 0 i.e. xi,j �= ui ⇒ xi,j+1 = 0. Therefore we can write x

as x = k1u1 + x1 + · · · + knun + xn, with 0 ≤ ki ≤ p and xi ∈ [0, ui[ (1 ≤ i ≤ n). So,
every element of GA can be written in a unique way as x = k1u1 + x1 + · · · + knun + xn,
with ki ∈ Z and xi ∈ [0, ui[ (1 ≤ i ≤ n). Let x = k1u1 + x1 + · · · + knun + xn, and
y = l1u1 + y1 + · · · + lnun + yn in GA.

Trivially, x ≤ y if, and only if, for every i ∈ {1, . . . , n}, ki < li or (ki = li and xi ≤ yi).
Set x+y = z = m1u1 +z1 +· · ·+mnun+zn. Since kiui +xi + liui +yi ∈ u⊥⊥

i , we have
that miui +zi = (ki + li )ui +xi +yi , i.e. xi +yi −zi = (mi −ki − li )ui . If xi +yi < ui , then
−ui < xi +yi −zi < ui , hence xi +yi −zi = 0 and zi = xi +yi = xi ⊕yi and mi = ki + li .
Otherwise, in the same way we prove that zi = xi + yi − ui and mi = ki + li + 1. Now,
xi ⊕ yi = (xi + yi) ∧ u = (xi + yi) ∧ ui = ui and xi � yi = u − [(2ui − xi − yi) ∧ u] =
(xi + yi − u) ∨ 0 = xi + yi − ui .

Since in GA we have that A = [0, uA], saying that GA is isomorphic to a product of
n linearly ordered groups is equivalent to saying that A is isomorphic to a product of n

MV-chains.
It follows from Proposition 6.3 that being isomorphic to a product of n MV-chains is a

first-order property.

6.3 n-pseudofinite MV-algebras

We define the language LMV n = (0, ⊕, ¬, 11, . . . , 1n), with n new constant symbols.
Let (A1, 11), . . . , (An, 1n), (A′

1, 1′
1), . . . , (A′

n, 1′
n) be MV-chains. For i ∈ {1, . . . , n},

we assume that (A, 1i ) is an LMV n-structure, by setting, for j ∈ {1, . . . , n}, x = 1j if
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either i = j and x = 1i , or i �= j and x = 0. We define in the same way the LMV n-
structures (A′

1, 1′
1), . . . , (A

′
n, 1′

n). Let A be the LMV n-structure A1 × · · · × An and A′ be
the LMV n-structure A′

1 × · · · × A′
n.

Now, we consider families of MV-chains, (A1,α1 , 11,α1)α1∈I1 , . . . , (An,αn, 1n,αn)αn∈In

(we can do the same thing with families of linearly ordered groups (T1,α1)α1∈I1 , . . . ,

(Tn,αn)αn∈In ). For every (α1, . . . , αn) in I1 ×· · ·×In we set (A(α1,...,αn), 11,α1 , . . . , 1n,αn) =
(A1,α1 × · · · × A,nαn, 11,α1 , . . . , 1n,αn). We let U be an ultrafilter on I1 × · · · × In and
(A, 11, . . . , 1n) be the ultraproduct of the family (A(α1,...,αn), 11,α1 , . . . , 1n,αn). We know
that for i ∈ {1, . . . , n}, the canonical projection pi(U) on Ii is an ultrafilter on Ii . Denote
by Ai the ultraproduct of the family (Ai,αi

). Then one can prove that (A, 11, . . . , 1n) �
(A1 × · · · × An, 11, . . . , 1n), where 1i is the greatest element of Ai . Note that the maximal
element of A is 1 = 11 + · · · + 1n.

Theorem 6.4 Let (A, 1) and (A′, 1′) be MV-algebras.

(1) (A, 1) is n-pseudofinite if, and only if, A is projectable, it is isomorphic to a product of
n MV-chains [0, 11] × · · · × [0, 1n] and, for every i ∈ {1, . . . , n}, the MV-chain [0, 1i]
is either finite or infinite discrete regular.

(2) If (A, 1) and (A′, 1′) are n-pseudofinite, then (A, 11, . . . , 1n) ≡ (A′, 1′
1, . . . , 1′

n) if,
and only if, for every i ∈ {1, . . . , n} either the MV-chains [0, 1i], [0, 1′

i] are finite and
isomorphic, or they are infinite regular and satisfy the same formulas Dpm,k .

Proof (1) ⇒. Let (A1,α1 , 11,α1)α1∈I1 , . . . , (An,αn, 1n,αn)αn∈In be families of MV-chains.
For every (α1, . . . , αn) in I1×· · ·×In we set (A(α1,...,αn), 11,α1 , . . . , 1n,αn) = (A1,α1 ×
· · · × A,nαn, 11,α1 , . . . , 1n,αn). We let U be an ultrafilter on I1 × · · · × In and for
every i let Ai be the ultraproduct of the family (Ai,αi

) (associated to pi(U)). If A is
the ultraproduct of the family (A(α1,...,αn), 11,α1 , . . . , 1n,αn), then (A, 11, . . . , 1n) �
(A1 × · · · × An, 11, . . . , 1n). Now, by Theorem 5.9 every Ai is an MV-chain which is
either finite or infinite discrete regular.

⇐ If this holds, then in the language LMV n A is isomorphic to [0, 11]×· · ·×[0, 1n].
By Theorem 5.9, every [0, 1i] is isomorphic to an ultraproduct of a family of finite
MV-chains (Ai,αi

, 1i,αi
)αi∈Ii

. Hence, A is isomorphic to the ultraproduct of the family
(A1,α1 × · · · × A,nαn, 11,α1 , . . . , 1n,αn).

(2) We deduce from Theorem 2.12 that in the language LMV n we have: (A, 11, . . . , 1n) ≡
(A′, 1′

1, . . . , 1′
n) ⇔ (A1, 11) ≡ (A′

1, 1′
1), . . . , (An, 1n) ≡ (A′

n, 1′
n). Hence, the result

follows from Theorem 5.9.

6.4 n-hyperarchimedean MV-algebras

In the same way as Theorem 6.4, and by using Theorem 5.8, one can prove the following.

Theorem 6.5 Let (A, 1) and (A′, 1′) be MV-algebras.

(1) (A, 1) is n-pseudo-hyperarchimedean if, and only if, A is projectable, it is isomorphic
to a product of n MV-chains [0, 11] × · · · × [0, 1n] and, for every i ∈ {1, . . . , n}, the
MV-chain [0, 1i] is either finite or infinite and regular.

(2) If (A, 1) and (A′, 1′) are n-pseudo-hyperarchimedean, then (A, 11, . . . , 1n) ≡
(A′, 1′

1, . . . , 1′
n) if, and only if, for every i ∈ {1, . . . , n} either the MV-chains [0, 1i],

[0, 1′
i] are finite and isomorphic, or they are both discrete infinite regular and satisfy
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the same formulas Dpm,k , or they are infinite dense regular and their Chang �-groups
have the same prime invariants of Zakon.

Data Availability Data sharing not applicable to this article as no data-sets were generated or analyzed
during the current study.
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