

Convergence to a Chain

DJamel Talem1 · Bachir Sadi1

Received: 6 October 2018 / Accepted: 18 February 2021 / Published online: 10 March 2021 © The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract

Kong and Ribemboim [\(1994\)](#page-5-0) define for every poset *P* a sequence $P = D^0(P)$, $D(P)$, $D^2(P)$, $D^3(P)$... of posets, where $D^i(P) = D(D^{i-1}(P))$ consists of all maximal antichains of $D^{i-1}(P)$. They prove that for a finite poset P, there exists an integer $i \geq 0$ such that $D^{i}(P)$ is a chain. In this paper, for every finite poset P, we show how to calculate the smallest integer *i* for which $D^{i}(P)$ is a chain.

Keywords Partially ordered set · Chain · Antichain

1 Introduction

Let *P* be a partially ordered set. By $D(P)$, we denote the set of maximal antichains of *P*. We define an order on $D(P)$ as follows: for $A, B \in D(P), A <_{D(P)} B$ if and only if for each *a* in *A*, there exists *b* in *B* such that $a < p$ *b*. In the same way, we define an order on the set of maximal antichains of $D(P)$, and so on. So, we generate a sequence of posets *P*, $D(P)$, $D^2(P)$, ..., $D^i(P)$, ..., where $D^i(P) = D(D^{i-1}(P))$ consists of all maximal antichains of $D^{i-1}(P)$.

T. Y. Kong and P. Ribemboim [\[4\]](#page-5-0), proved that for a finite ordered set *P*, the above sequence converges to a total order. More precisely, there exists a smallest natural number *i*, noted *cdev(P)*, such that $D^{cdev(P)}(P)$ is a chain. We have $cdev(P) \leq 2ht(P) + 1$, where $ht(P)$ denotes the height of P . In this paper, for a finite poset P which is neither an antichain nor a linear sum, we show that the value of the parameter $cdev(P)$ is given by the distance in the incomparability graph of *P* between two additional, artificial vertices 0_P and 1_P , where 0_P is adjacent to all minimal elements of *P* and 1_P is adjacent to all maximal elements of *P*. We also show how to handle the latter two particular cases. Finally, we

- DJamel Talem [talemdja@yahoo.com](mailto: talemdja@yahoo.com)

> Bachir Sadi [sadibach@yahoo.fr](mailto: sadibach@yahoo.fr)

¹ Operation Research Laboratory and Mathematics of Decision, University Mouloud MAMMERI, Tizi Ouzou, Algeria

show that the parameter "*cdev*" is a comparability invariant, i.e orders with the same comparability graph have the same "*cdev*". See [\[1,](#page-5-1) [2\]](#page-5-2) for more information on comparability invariants of finite orders.

2 Definitions and Notations

In this paper, (P, \leq_P) denotes a finite poset. We write *x* ∼*P y* and call the pair comparable if either $x \leq_P y$ or $y \leq_P x$. Otherwise, we write $x \parallel_P y$ and call them incomparable. We denote ⊕_{1≤*i*≤*h*} P_i the linear sum of posets $(P_1, ≤_1)$, $(P_2, ≤_2)$, ..., $(P_h, ≤_h)$ [\[1\]](#page-5-1).

For every $x \in P$, we define $Succ(x) = \{y \in P, x \leq P, y\}$, $Pred(x) = \{y \in P, y \leq P, x\}$, $Max P = {x, Succ(x) = \emptyset}$ and $Min P = {x \in P, Pred(x) = \emptyset}.$

Denote by $(D(P), <_{D(P)})$ the poset on the set of maximal antichains of P which is defined as follows: for $A, B \in D(P), A \leq_{D(P)} B$ if and only if for each *a* in *A*, there exists *b* in *B* such that $a < p$ *b*. It has been shown in [\[4\]](#page-5-0) that this definition is equivalent to this one: $A <_{D(P)} B$ if and only if for each *b* in *B*, there exists *a* in *A* such that $a < p b$.

Lemma 1 *If A and B are incomparable in D(P), then* $\forall a \in A$ *,* $\exists b \in B$ *such that* $a \| p b$

Proof If $A \cap B \neq \emptyset$, it is obvious.

If $A \cap B = \emptyset$, by definition of $D(P)$, and since *A* and *B* are incomparable, then $\exists a_1, a_2 \in$ *A* and $\exists b_1, b_2 \in B$ such that $a_1 \leq p, b_1$ and $b_2 \leq p, a_2$.

Suppose that $\exists a \in A$ such that $a \sim_P b$, $\forall b \in B$. Since *B* is an antichain, it results that *a* $\lt P$ *b*, ∀*b* \in *B* or *b* $\lt P$ *a*, ∀*b* \in *B*.

If $a < p$ $b, \forall b \in B$, then $a < p$ b_2 , and so $a < p$ a_2 ; if $b < p$ $a, \forall b \in B$, then b_1 \lt *p a*, and so a_1 \lt *p a*. In both cases, we have a contradiction with the fact that *A* is an antichain. \Box

Given a poset *P*, we generate a sequence $(D^n(P))_{n>0}$ of orders by setting $D^0(P) = P$, and $D^{n+1}(P) = D(D^n(P))$ for every $n \ge 0$. Kong and Ribenboim proved that for a finite poset *P*, there exists $n \geq 0$ such that $D^n(P)$ is a total order. We denote by "*cdev(P)*" the smallest integer such that $D^{cdev(P)}(P)$ is a total order. Figure [1](#page-2-0) shows how the sequence of posets *P*, $D(P)$, $D^2(P)$, ..., $D^i(P)$ is formed. In this example, $D^3(P)$ is a chain. This means that $cdev(P) = 3$.

Remark 1 Note that for any poset *P*, $MinP \in D(P)$. Moreover, by definition of the poset $D(P)$, $\forall A \in D(P)$, $Pred_{D(P)}(A) = \emptyset$ if and only if $A \cap MinP \neq \emptyset$. Therefore $MinD(P) = \{A \in D(P), A \cap MinP \neq \emptyset\}$. Similarly, $MaxD(P) = \{A \in D(P), A \cap MinP \neq \emptyset\}$. $D(P)$, $A \cap MaxP \neq \emptyset$.

Let *P* be a poset and let $Inc(P)$ be its incomparability graph. We define the graph $G(P)$ in adding to the graph $Inc(P)$ two vertices 0_P and 1_P such that 0_P is adjacent to all elements of *MinP* and 1_P is adjacent to all elements of *MaxP* (see Fig. [2\)](#page-2-1). For $x, y \in G(P)$, $d_{G(P)}(x, y)$ denotes the distance between x and y in the graph $G(P)$.

Remark 2 Note that the graph $Inc(P)$ is connected if and only if P is not a linear sum of posets and so the distance between vertices 0_p and 1_p in the graph $G(P)$ is defined if and only if *P* is not a linear sum of posets. In this case, it is easy to see that if μ is a shortest

Fig. 1 A sequence of posets obtained from order *P*

path between 0_P and 1_P in $G(P)$, then it satisfies $|\mu \cap Min P| = |\mu \cap Max P| = 1$, since the vertices 0_P , 1_P are adjacent to any vertex of $Min P$ and $Max P$ respectively.

3 Characterization of the Parameter *cdev***(***P***)**

The interest of the graph $G(P)$ is to show that $cdev(P)$ equals the distance between vertices 0_P and 1_P in $G(P)$ if P is neither an antichain nor a linear sum of posets (Theorem 2). Now,

Fig. 2 A poset *P* and its associated graphs

it is clear that $cdev(P) = 0$ if P is a chain and $cdev(P) = 1$ if P is an antichain having at least two elements. However, if *P* is a linear sum of posets P_1, P_2, \ldots, P_h , Theorem 1 shows that there exists $i \in \{1, \ldots h\}$ such that $cdev(P) = cdev(P_i)$.

Theorem 1 *Given a poset P. If P is a linear sum of posets* (P_1, \leq_1) , (P_2, \leq_2) , ..., (P_h, \leq_h) \leq_h)*, then:*

$$
cdev(P) = \max\{cdev(P_i), 1 \le i \le h\}.
$$

Proof Let $P = \bigoplus_{1 \leq i \leq h} P_i$ and $\alpha = \max\{cdev(P_i), 1 \leq i \leq h\}$. Note that $A \in D(P)$ if and only if $\exists i \in \{1, 2, \ldots, h\}$ such that $A \in D(P_i)$, so $D(P) = \bigoplus_{1 \le i \le h} D(P_i)$. It resultes that $D^{\alpha}(P) = \bigoplus_{1 \leq i \leq h} D^{\alpha}(P_i)$ is a chain. Therefore, $cdev(P) = \alpha = \max\{cdev(P_i), 1 \leq i \leq h\}$ $i \leq h$.

Remark 3 By definition of the graph $G(P)$, it is easy to see that $d_{G(P)}(0_P, 1_P) = 2$ if and only if *P* contains at least one isolated element.

Lemma 2 *Given a poset P which is not an antichain. Then* $d_{G(P)}(0_P, 1_P) = 2$ *if and only if D(P) is an antichain having at least two elements.*

Proof By definition of the graph $G(P)$ and since *P* is not an antichain, $d_{G(P)}(0_P, 1_P) =$ 2 implies, firstly $MaxP \neq MinP$ and so $D(P)$ contains at least two elements which are *M inP* and *MaxP*, secondly there exists at least one isolated element *x* of *P* and so *x* belongs to all maximal antichains of *P*, i.e. the maximal antichains of *P* are pairwise incomparable in $D(P)$. Hence, $D(P)$ is an antichain having at least two elements.

Conversely, if *D(P)* is an antichain having at least two elements then, firstly *P* is not an antichain, otherwise $D(P)$ would be a chain, secondly P contains at least one isolated element, otherwise $MinP <_{D(P)} MaxP$ and so $D(P)$ would not be an antichain. Hence, $d_{G(P)}(0_P, 1_P) = 2.$ \Box

For $n \geq 2$, let $\mu = (0_{D(P)}, A_1, A_2 \dots A_n, 1_{D(P)})$ be a shortest path between $0_{D(P)}$ and $1_{D(P)}$ in $G(D(P))$. By definition, and according to Remark 2, we have $A_1 \in MinD(P)$ and $A_2 \notin MinD(P)$. This shows that $MinP <_{D(P)} A_2$ (Remark 1), and so the maximal antichain *M* in P can not belong to the shortest path between $0_{D(P)}$ and $1_{D(P)}$. For the same reasons, the antichain *MaxP* does not belong to this shortest path.

Lemma 3 *If P is a poset such that* $d_{G(P)}(0_P, 1_P) > 2$ *, then:*

$$
d_{G(P)}(0_P, 1_P) = d_{G(D(P))}(0_{D(P)}, 1_{D(P)}) + 1.
$$

Proof Let $\mu = (0_P, a_1 \dots a_n, 1_P)$ be a shortest path between 0_P and 1_P in $G(P)$. Then $n > 1$ because $d_{G(P)}(0_P, 1_P) > 2$, and according to Lemma 2, $D(P)$ is not an antichain. Furthermore, $D(P)$ is not a chain because $a_2 \notin MinP$ (Remark 2) and so there exists an antichain *A* in *P* such that $\{a_1, a_2\} \subseteq A$ and the maximal antichains *A*, *MinP* are incomparable in *D(P)*. It results that $\mu' = (0_{D(P)}, A_1, \ldots, A_{n-1}, 1_{D(P)})$, where $\{a_i, a_{i+1}\} \subseteq A_i$ for $i = 1 ... n-1$ is a path in $G(D(P))$. Therefore, $d_{G(D(P))}(0_{D(P)}, 1_{D(P)}) \leq d_{G(P)}(0_P, 1_P) - 1$.

Conversely, let $\mu' = (0_{D(P)}, A_1, \ldots, A_{n-1}, 1_{D(P)})$ be a shortest path between $0_{D(P)}$ and $1_{D(P)}$ in $G(D(P))$, and let $a_1 \in A_1 \cap MinP$. Then, by Lemma 1, for $i =$ 2,... *n* − 1, ∃*a*_{*i*} ∈ *A*_{*i*} such that a_{i-1} *|| pa*_{*i*}. Note that a_{n-1} ∉ *MaxP*, otherwise, $\mu'' = (0_{D(P)}, B_1, \ldots, B_{n-2}, 1_{D(P)})$, where $\{a_i, a_{i+1}\} \subseteq B_i$ for $i = 1 \ldots n-2$

would be smaller than μ' . So, by Lemma 1, $\exists a_n \in MaxP$ such that $a_{n-1} \| pa_n$, and so $(0_P, a_1, ..., a_{n-1}, a_n, 1_P)$ is a path in *G(P)*. This implies that $d_{G(P)}(0_P, 1_P)$ ≤ $d_{G(D(P))}(0_{D(P)}, 1_{D(P)}) + 1$. Hence, $d_{G(P)}(0_P, 1_P) = d_{G(D(P))}(0_{D(P)}, 1_{D(P)}) + 1$. □ $d_{G(D(P))}(0_{D(P)}, 1_{D(P)}) + 1$. Hence, $d_{G(P)}(0_P, 1_P) = d_{G(D(P))}(0_{D(P)}, 1_{D(P)}) + 1$.

Theorem 2 *Given a poset P. If P is neither an antichain nor a linear sum of posets, then:*

$$
cdev(P) = d_{G(P)}(0_P, 1_P)
$$

Proof Note that for every poset *P*, $cdev(P) = 1 + cdev(D(P))$.

We use induction on $d_{G(P)}(0_P, 1_P)$. If $d_{G(P)}(0_P, 1_P) = 2$, and since P is not an antichain then $D(P)$ is an antichain having at least two elements (Lemma 2), and so $cdev(D(P)) = 1$. Therefore $cdev(P) = 1 + 1 = d_{G(P)}(0_P, 1_P)$.

Assume that for every order *P* such that $d_{G(P)}(0_P, 1_P) = m \ge 2$, $cdev(P) =$ $d_{G(P)}(0_P, 1_P)$. Let Q be a poset such that $d_{G(O)}(0_O, 1_O) = m + 1$. By Lemma 3, we have $d_{G(O)}(0_0, 1_0) = 1 + d_{G(D(O))}(0_{D(O)}, 1_{D(O)})$, so $d_{G(D(O))}(0_{D(O)}, 1_{D(O)}) =$ $m = cdev(D(Q)$ (by hypothesis). It results that $cdev(Q) = 1 + cdev(D(Q)) = 1 +$
 $d_{C(D(Q))}(0_{D(Q)} 1_{D(Q)}) = d_{C(Q)}(0_{Q} 1_{Q})$ $d_{G(D(Q))}(0_{D(Q)}, 1_{D(Q)}) = d_{G(Q)}(0_Q, 1_Q).$

Remark 4 According to Theorems 1 and 2, if *P* is a linear sum of posets P_1, P_2, \ldots, P_h such that there exists i for which P_i is not an antichain, then :

$$
cdev(P) = max{d_{G(P_i)}(0_{P_i}, 1_{P_i}), 0 \le i \le h},
$$

where $G(P_i)$ is the graph of P_i as defined already. If P is a linear sum of antichains A_1, \ldots, A_h (in this case *P* is called a weak order [\[6\]](#page-5-3)), Theorem 1 implies that $cdev(P) =$ $cdev(A_1) = \ldots = cdev(A_h) = 1$ (the same result was found in [\[5\]](#page-5-4)).

It remains to show that "*cdev*" is a comparability invariant, i.e. if *P* and *Q* are two posets with the same comparability graph, then $cdev(P) = cdev(Q)$. For that, it suffices to show that *P* and *Q* differ only by the reversal of some order autonomous subset *S* (see [\[3\]](#page-5-5)).

Remark 5 Let *S* be an order autonomous subset of the poset *P*, and let *Q* be the poset resulting from the reversal of *S* in *P*.

- 1. By definition of *S*, if $S \cap Min P \neq \emptyset$ (resp. $S \cap Max P \neq \emptyset$) then $S^d \cap Min Q \neq \emptyset$ $(\text{resp. } S^d \cap Max \ Q \neq \emptyset);$
- 2. If $S \neq P$ and $\mu = (0_P, a_1, \ldots, a_n, 1_P)$ is a shortest path from 0_P to 1_P in $G(P)$ then $|\mu \cap S|$ ≤ 1. In fact, for example, if a_i , a_j in *S*, with $i < j$ then a_{i-1} and a_j (or a_i and *a_{j*+1}) are incomparable and so $\mu' = \mu \setminus \{a_i\}$ (or $\mu'' = \mu \setminus \{a_i\}$ respectively) would be a path from 0_P to 1_P with length smaller.

Corollary 1 *The parameter "cdev" is a comparability invariant.*

Proof Let *S* be an order autonomous subset of the poset *P*, and let *Q* be the poset resulting from the reversal of *S* in *P*. To show that $cdev(P) = cdev(Q)$, it suffices to show that for any shortest path μ in $G(P)$ from 0_P to 1_P there is some path in $G(Q)$ from 0_Q to 1_Q with length at most the length of μ .

Let $\mu = (0_P, a_1, \ldots, a_n, 1_P)$ be a shortest path between 0_P and 1_P in $G(P)$. If $S =$ *P*, then $Q = P^d$ and so $\mu' = (0_Q, a_n, a_{n-1} \dots a_2, a_1, 1_Q)$ is a path from 0_Q to 1_Q in $G(Q)$. If $S \neq P$, There are two cases: if $\mu \cap S = \emptyset$ or $\mu \cap S = \{a_i\}$, with a_i is neither a minimal nor a maximal element in P (in other words, $a_i \neq a_1$ and $a_i \neq a_n$), then $\mu' = (0_0, a_1, \ldots, a_n, 1_0)$ forms a path in $G(Q)$; if $\mu \cap S = \{a_1\}$ (resp. $\mu \cap S = \{a_n\}$), then according to Remark 5, there is some element *s* in $MinQ \cap S^d$ (resp. in $MaxQ \cap S^d$) such that $\mu' = (0_Q, s, a_2, \dots, a_n, 1_Q)$ (resp. $\mu'' = (0_Q, a_1, \dots, s, 1_Q)$) forms a path in $G(O)$ *G(Q)*.

Data Availability Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

- 1. Caspard, N., Leclerc, B., Monjardet, B.: Finite Ordered Sets: Concepts, Results and Uses. Springer, New York (2007)
- 2. Habib, M.: Comparability invariants. Ann. Discrete Math. **23**, 371–386 (1984)
- 3. Kelly, D.: Invariants of finite comparability graphs. Order **3**, 155–158 (1986)
- 4. Kong, T.Y., Ribemboim, P.: Chaining of Partially Ordered Sets. C. R. Acad. Sci. Paris, t. 319, Serie I ´ 533–537 (1994)
- 5. Sadi, B.: Suite d'Ensembles Partiellement Ordonnés. Arima 4, 66–71 (2006)
- 6. Schröder, B. Ordered Sets, 2nd edn. Springer, New York (2016)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.