
https://doi.org/10.1007/s11083-021-09559-2

Invariant Computation in a Poset

Convergence to a Chain

DJamel Talem1 ·Bachir Sadi1

Received: 6 October 2018 / Accepted: 18 February 2021 /
© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract
Kong and Ribemboim (1994) define for every poset P a sequence P = D0(P ), D(P ),
D2(P ), D3(P ) . . . of posets, where Di(P ) = D(Di−1(P )) consists of all maximal
antichains of Di−1(P ). They prove that for a finite poset P , there exists an integer i ≥ 0
such that Di(P ) is a chain. In this paper, for every finite poset P , we show how to calculate
the smallest integer i for which Di(P ) is a chain.

Keywords Partially ordered set · Chain · Antichain

1 Introduction

Let P be a partially ordered set. By D(P ), we denote the set of maximal antichains of P .
We define an order on D(P ) as follows: for A, B ∈ D(P ), A <D(P) B if and only if for
each a in A, there exists b in B such that a <P b. In the same way, we define an order
on the set of maximal antichains of D(P ), and so on. So, we generate a sequence of posets
P, D(P ),D2(P ), . . . , Di(P ), . . ., where Di(P ) = D(Di−1(P )) consists of all maximal
antichains of Di−1(P ).

T. Y. Kong and P. Ribemboim [4], proved that for a finite ordered set P , the above
sequence converges to a total order. More precisely, there exists a smallest natural num-
ber i, noted cdev(P ), such that Dcdev(P )(P ) is a chain. We have cdev(P ) ≤ 2ht(P ) + 1,
where ht(P ) denotes the height of P . In this paper, for a finite poset P which is neither an
antichain nor a linear sum, we show that the value of the parameter cdev(P ) is given by
the distance in the incomparability graph of P between two additional, artificial vertices 0P

and 1P , where 0P is adjacent to all minimal elements of P and 1P is adjacent to all maxi-
mal elements of P . We also show how to handle the latter two particular cases. Finally, we
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show that the parameter “cdev” is a comparability invariant, i.e orders with the same com-
parability graph have the same “cdev”. See [1, 2] for more information on comparability
invariants of finite orders.

2 Definitions and Notations

In this paper, (P, ≤P ) denotes a finite poset. We write x ∼P y and call the pair comparable
if either x <P y or y <P x. Otherwise, we write x‖P y and call them incomparable. We
denote ⊕1≤i≤hPi the linear sum of posets (P1, ≤1), (P2, ≤2), . . . , (Ph,≤h) [1].

For every x ∈ P , we define Succ(x) = {y ∈ P, x <P y}, Pred(x) = {y ∈ P, y <P x},
MaxP = {x, Succ(x) = ∅} and MinP = {x ∈ P,P red(x) = ∅}.

Denote by (D(P ), <D(P )) the poset on the set of maximal antichains of P which is
defined as follows: for A,B ∈ D(P ), A <D(P) B if and only if for each a in A, there exists
b in B such that a <P b. It has been shown in [4] that this definition is equivalent to this
one: A <D(P) B if and only if for each b in B, there exists a in A such that a <P b.

Lemma 1 If A and B are incomparable in D(P ), then ∀a ∈ A, ∃b ∈ B such that a‖P b

Proof If A ∩ B �= ∅, it is obvious.
If A∩B = ∅, by definition of D(P ), and since A and B are incomparable, then ∃a1, a2 ∈

A and ∃b1, b2 ∈ B such that a1 <P b1 and b2 <P a2.
Suppose that ∃a ∈ A such that a ∼P b, ∀b ∈ B. Since B is an antichain, it results that

a <P b, ∀b ∈ B or b <P a,∀b ∈ B.
If a <P b, ∀b ∈ B, then a <P b2, and so a <P a2 ; if b <P a, ∀b ∈ B, then

b1 <P a, and so a1 <P a. In both cases, we have a contradiction with the fact that A is an
antichain.

Given a poset P , we generate a sequence (Dn(P ))n≥0 of orders by setting D0(P ) = P ,
and Dn+1(P ) = D(Dn(P )) for every n ≥ 0. Kong and Ribenboim proved that for a finite
poset P , there exists n ≥ 0 such that Dn(P ) is a total order. We denote by “cdev(P )” the
smallest integer such that Dcdev(P )(P ) is a total order. Figure 1 shows how the sequence
of posets P,D(P ), D2(P ), . . . , Di(P ) is formed. In this example, D3(P ) is a chain. This
means that cdev(P ) = 3.

Remark 1 Note that for any poset P , MinP ∈ D(P ). Moreover, by definition of the
poset D(P ), ∀A ∈ D(P ), PredD(P )(A) = ∅ if and only if A ∩ MinP �= ∅. There-
fore MinD(P ) = {A ∈ D(P ),A ∩ MinP �= ∅}. Similarly, MaxD(P ) = {A ∈
D(P ), A ∩ MaxP �= ∅}.

Let P be a poset and let Inc(P ) be its incomparability graph. We define the graph G(P )

in adding to the graph Inc(P ) two vertices 0P and 1P such that 0P is adjacent to all elements
of MinP and 1P is adjacent to all elements of MaxP (see Fig. 2). For x, y ∈ G(P ),
dG(P )(x, y) denotes the distance between x and y in the graph G(P ).

Remark 2 Note that the graph Inc(P ) is connected if and only if P is not a linear sum of
posets and so the distance between vertices 0p and 1P in the graph G(P ) is defined if and
only if P is not a linear sum of posets. In this case, it is easy to see that if μ is a shortest
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Fig. 1 A sequence of posets obtained from order P

path between 0P and 1P in G(P ), then it satisfies |μ ∩ MinP | = |μ ∩ MaxP | = 1, since
the vertices 0P , 1P are adjacent to any vertex of MinP and MaxP respectively.

3 Characterization of the Parameter cdev(P)

The interest of the graph G(P ) is to show that cdev(P ) equals the distance between vertices
0P and 1P inG(P ) if P is neither an antichain nor a linear sum of posets (Theorem 2). Now,

Fig. 2 A poset P and its associated graphs

3Order (2022) 39:1–6



it is clear that cdev(P ) = 0 if P is a chain and cdev(P ) = 1 if P is an antichain having at
least two elements. However, if P is a linear sum of posets P1, P2 . . . Ph, Theorem 1 shows
that there exists i ∈ {1, . . . h} such that cdev(P ) = cdev(Pi).

Theorem 1 Given a poset P . If P is a linear sum of posets (P1,≤1), (P2,≤2), . . . , (Ph,

≤h), then:
cdev(P ) = max{cdev(Pi), 1 ≤ i ≤ h}.

Proof Let P = ⊕1≤i≤hPi and α = max{cdev(Pi), 1 ≤ i ≤ h}. Note that A ∈ D(P ) if
and only if ∃i ∈ {1, 2, . . . h} such that A ∈ D(Pi), so D(P ) = ⊕1≤i≤hD(Pi). It resultes
that Dα(P ) = ⊕1≤i≤hD

α(Pi) is a chain. Therefore, cdev(P ) = α = max{cdev(Pi), 1 ≤
i ≤ h}.

Remark 3 By definition of the graph G(P ), it is easy to see that dG(P )(0P , 1P ) = 2 if and
only if P contains at least one isolated element.

Lemma 2 Given a poset P which is not an antichain. Then dG(P )(0P , 1P ) = 2 if and only
if D(P ) is an antichain having at least two elements.

Proof By definition of the graph G(P ) and since P is not an antichain, dG(P )(0P , 1P ) =
2 implies, firstly MaxP �= MinP and so D(P ) contains at least two elements which
are MinP and MaxP , secondly there exists at least one isolated element x of P and so
x belongs to all maximal antichains of P , i.e. the maximal antichains of P are pairwise
incomparable in D(P ). Hence, D(P ) is an antichain having at least two elements.

Conversely, if D(P ) is an antichain having at least two elements then, firstly P is not
an antichain, otherwise D(P ) would be a chain, secondly P contains at least one isolated
element, otherwise MinP <D(P) MaxP and so D(P ) would not be an antichain. Hence,
dG(P )(0P , 1P ) = 2.

For n ≥ 2, let μ = (0D(P ), A1, A2 . . . An, 1D(P )) be a shortest path between 0D(P ) and
1D(P ) in G(D(P )). By definition, and according to Remark 2, we have A1 ∈ MinD(P )

and A2 /∈ MinD(P ). This shows that MinP <D(P) A2 (Remark 1), and so the maximal
antichain MinP can not belong to the shortest path between 0D(P ) and 1D(P ). For the same
reasons, the antichain MaxP does not belong to this shortest path.

Lemma 3 If P is a poset such that dG(P )(0P , 1P ) > 2, then:

dG(P )(0P , 1P ) = dG(D(P ))(0D(P ), 1D(P )) + 1.

Proof Let μ = (0P , a1 . . . an, 1P ) be a shortest path between 0P and 1P in G(P ). Then
n > 1 because dG(P )(0P , 1P ) > 2, and according to Lemma 2, D(P ) is not an antichain.
Furthermore, D(P ) is not a chain because a2 /∈ MinP (Remark 2) and so there exists an
antichain A in P such that {a1, a2} ⊆ A and the maximal antichains A, MinP are incompa-
rable inD(P ). It results thatμ′ = (0D(P ), A1, . . . , An−1, 1D(P )), where {ai, ai+1} ⊆ Ai for
i =1 . . . n−1 is a path in G(D(P )). Therefore, dG(D(P ))(0D(P ), 1D(P ))≤dG(P )(0P , 1P )−1.

Conversely, let μ′ = (0D(P ), A1, . . . , An−1, 1D(P )) be a shortest path between 0D(P )

and 1D(P ) in G(D(P )), and let a1 ∈ A1 ∩ MinP . Then, by Lemma 1, for i =
2, . . . n − 1, ∃ai ∈ Ai such that ai−1‖P ai . Note that an−1 /∈ MaxP , otherwise,
μ” = (0D(P ), B1, . . . , Bn−2, 1D(P )), where {ai, ai+1} ⊆ Bi for i = 1 . . . n − 2
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would be smaller than μ′. So, by Lemma 1, ∃an ∈ MaxP such that an−1‖P an, and
so (0P , a1, . . . , an−1, an, 1P ) is a path in G(P ). This implies that dG(P )(0P , 1P ) ≤
dG(D(P ))(0D(P ), 1D(P )) + 1. Hence, dG(P )(0P , 1P ) = dG(D(P ))(0D(P ), 1D(P )) + 1.

Theorem 2 Given a poset P . If P is neither an antichain nor a linear sum of posets, then:

cdev(P ) = dG(P )(0P , 1P )

Proof Note that for every poset P , cdev(P ) = 1 + cdev(D(P )).
We use induction on dG(P )(0P , 1P ). If dG(P )(0P , 1P ) = 2, and since P is not an

antichain then D(P ) is an antichain having at least two elements (Lemma 2), and so
cdev(D(P )) = 1. Therefore cdev(P ) = 1 + 1 = dG(P )(0P , 1P ).

Assume that for every order P such that dG(P )(0P , 1P ) = m ≥ 2, cdev(P ) =
dG(P )(0P , 1P ). Let Q be a poset such that dG(Q)(0Q, 1Q) = m + 1. By Lemma 3,
we have dG(Q)(0Q, 1Q) = 1 + dG(D(Q))(0D(Q), 1D(Q)), so dG(D(Q))(0D(Q), 1D(Q)) =
m = cdev(D(Q) (by hypothesis). It results that cdev(Q) = 1 + cdev(D(Q)) = 1 +
dG(D(Q))(0D(Q), 1D(Q)) = dG(Q)(0Q, 1Q).

Remark 4 According to Theorems 1 and 2, if P is a linear sum of posets P1, P2 . . . Ph such
that there exists i for which Pi is not an antichain, then :

cdev(P ) = max{dG(Pi)(0Pi
, 1Pi

), 0 ≤ i ≤ h},
where G(Pi) is the graph of Pi as defined already. If P is a linear sum of antichains
A1, . . . Ah (in this case P is called a weak order [6]), Theorem 1 implies that cdev(P ) =
cdev(A1) = . . . = cdev(Ah) = 1 (the same result was found in [5]).

It remains to show that “cdev” is a comparability invariant, i.e. if P and Q are two posets
with the same comparability graph, then cdev(P ) = cdev(Q). For that, it suffices to show
that P and Q differ only by the reversal of some order autonomous subset S (see [3]).

Remark 5 Let S be an order autonomous subset of the poset P , and let Q be the poset
resulting from the reversal of S in P .

1. By definition of S, if S ∩ MinP �= ∅ (resp. S ∩ MaxP �= ∅) then Sd ∩ MinQ �= ∅
(resp. Sd ∩ MaxQ �= ∅);

2. If S �= P and μ = (0P , a1, . . . , an, 1P ) is a shortest path from 0P to 1P in G(P ) then
|μ ∩ S| ≤ 1. In fact, for example, if ai, aj in S, with i < j then ai−1 and aj (or ai and
aj+1) are incomparable and so μ′ = μ \ {ai} ( or μ” = μ \ {aj } respectively ) would
be a path from 0P to 1P with length smaller.

Corollary 1 The parameter “cdev” is a comparability invariant.

Proof Let S be an order autonomous subset of the poset P , and let Q be the poset resulting
from the reversal of S in P . To show that cdev(P ) = cdev(Q), it suffices to show that for
any shortest path μ in G(P ) from 0P to 1P there is some path in G(Q) from 0Q to 1Q with
length at most the length of μ.

Let μ = (0P , a1 . . . an, 1P ) be a shortest path between 0P and 1P in G(P ). If S =
P , then Q = P d and so μ′ = (0Q, an, an−1 . . . a2, a1, 1Q) is a path from 0Q to 1Q in
G(Q). If S �= P , There are two cases: if μ ∩ S = ∅ or μ ∩ S = {ai}, with ai is neither
a minimal nor a maximal element in P (in other words, ai �= a1 and ai �= an ), then
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μ′ = (0Q, a1, . . . an, 1Q) forms a path in G(Q) ; if μ ∩ S = {a1} (resp. μ ∩ S = {an}),
then according to Remark 5, there is some element s in MinQ ∩ Sd (resp. in MaxQ ∩ Sd )
such that μ′ = (0Q, s, a2, . . . an, 1Q) (resp. μ” = (0Q, a1, . . . , s, 1Q)) forms a path in
G(Q).

Data Availability Data sharing is not applicable to this article as no datasets were generated or analysed
during the current study.
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