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Abstract

Kong and Ribemboim (1994) define for every poset P a sequence P = DY(P), D(P),
D%*(P), D3(P)... of posets, where DI(P) = D(D'~1(P)) consists of all maximal
antichains of D'~!(P). They prove that for a finite poset P, there exists an integer i > 0
such that D (P) is a chain. In this paper, for every finite poset P, we show how to calculate
the smallest integer i for which D (P) is a chain.
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1 Introduction

Let P be a partially ordered set. By D(P), we denote the set of maximal antichains of P.
We define an order on D(P) as follows: for A, B € D(P), A <p(py B if and only if for
each a in A, there exists b in B such that a <p b. In the same way, we define an order
on the set of maximal antichains of D(P), and so on. So, we generate a sequence of posets
P, D(P), D*(P), ..., D\(P), ..., where D'(P) = D(D'~!(P)) consists of all maximal
antichains of D'~1(P).

T. Y. Kong and P. Ribemboim [4], proved that for a finite ordered set P, the above
sequence converges to a total order. More precisely, there exists a smallest natural num-
ber i, noted cdev(P), such that D4¢VP)(P) is a chain. We have cdev(P) < 2ht(P) + 1,
where At (P) denotes the height of P. In this paper, for a finite poset P which is neither an
antichain nor a linear sum, we show that the value of the parameter cdev(P) is given by
the distance in the incomparability graph of P between two additional, artificial vertices O p
and 1p, where Op is adjacent to all minimal elements of P and 1p is adjacent to all maxi-
mal elements of P. We also show how to handle the latter two particular cases. Finally, we
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show that the parameter “cdev” is a comparability invariant, i.e orders with the same com-
parability graph have the same “cdev”. See [1, 2] for more information on comparability
invariants of finite orders.

2 Definitions and Notations

In this paper, (P, <p) denotes a finite poset. We write x ~p y and call the pair comparable
if either x <p y or y <p x. Otherwise, we write x| py and call them incomparable. We
denote @1 <;<; P; the linear sum of posets (P, <1), (P2, <2), ..., (Pn, <p) [1].

For every x € P, we define Succ(x) ={y € P,x <p y}, Pred(x) ={y € P,y <p x},
Max P = {x, Succ(x) =@} and MinP = {x € P, Pred(x) = }.

Denote by (D(P), <p(p)) the poset on the set of maximal antichains of P which is
defined as follows: for A, B € D(P), A <p(py B if and only if for each a in A, there exists
b in B such that a <p b. It has been shown in [4] that this definition is equivalent to this
one: A <p(py B if and only if for each b in B, there exists a in A such thata <p b.

Lemma 1 If A and B are incomparable in D(P), thenVa € A, 3b € B such that a||pb

Proof If AN B # @, it is obvious.

If ANB = ¢, by definition of D(P), and since A and B are incomparable, then Jay, a; €
A and 3b;, by € B suchthata; <p by and by <p ap.

Suppose that 3a € A such thata ~p b, Vb € B. Since B is an antichain, it results that
a<pb,YVbe Borb<pa,Vb € B.

Ifa <p b,Vb € B,thena <p by, and soa <p ap ;if b <p a,Vb € B, then
b1 <p a,and so a; <p a. In both cases, we have a contradiction with the fact that A is an
antichain. O

Given a poset P, we generate a sequence (D" (P)),>o of orders by setting DO%(P) =P,
and D"T1(P) = D(D"(P)) for every n > 0. Kong and Ribenboim proved that for a finite
poset P, there exists n > 0 such that D" (P) is a total order. We denote by “cdev(P)” the
smallest integer such that D4¢VP)(P) is a total order. Figure 1 shows how the sequence
of posets P, D(P), D2(P), ..., D'(P) is formed. In this example, D3(P) is a chain. This
means that cdev(P) = 3.

Remark 1 Note that for any poset P, MinP € D(P). Moreover, by definition of the
poset D(P), VA € D(P), Predppy(A) = @ if and only if A N MinP # {. There-
fore MinD(P) = {A € D(P),AN MinP # (}. Similarly, MaxD(P) = {A €
D(P), AN MaxP # #}.

Let P be a poset and let Inc(P) be its incomparability graph. We define the graph G (P)
in adding to the graph Inc(P) two vertices Op and 1 p such that Op is adjacent to all elements
of MinP and 1p is adjacent to all elements of MaxP (see Fig. 2). For x,y € G(P),
dg(py(x, y) denotes the distance between x and y in the graph G(P).

Remark 2 Note that the graph Inc(P) is connected if and only if P is not a linear sum of

posets and so the distance between vertices 0, and 1p in the graph G (P) is defined if and
only if P is not a linear sum of posets. In this case, it is easy to see that if u is a shortest
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Fig.1 A sequence of posets obtained from order P

path between Op and 1p in G(P), then it satisfies | N MinP| = |u N Max P| = 1, since
the vertices Op, 1p are adjacent to any vertex of Min P and Max P respectively.

3 Characterization of the Parameter cdev(P)

The interest of the graph G (P) is to show that cdev(P) equals the distance between vertices
Op and 1p in G(P) if P is neither an antichain nor a linear sum of posets (Theorem 2). Now,
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Fig.2 A poset P and its associated graphs
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it is clear that cdev(P) = 0 if P is a chain and cdev(P) = 1 if P is an antichain having at
least two elements. However, if P is a linear sum of posets P;, P ... Py, Theorem 1 shows
that there exists i € {1, ...h} such that cdev(P) = cdev(P;).

Theorem 1 Given a poset P. If P is a linear sum of posets (P1, <1), (P2, <2), ..., (Pp,
<pn), then:
cdev(P) = max{cdev(P;),1 <i < h}.

Proof Let P = @1<j<p P; and @« = max{cdev(P;),1 < i < h}. Note that A € D(P) if
and only if 3i € {1,2,...h} such that A € D(P;), so D(P) = ®1<i<p D(P;). It resultes
that D¥(P) = @1<i<; D*(P;) is a chain. Therefore, cdev(P) = o = max{cdev(P;),1 <
i <h}. O

Remark 3 By definition of the graph G(P), it is easy to see that dg(py(Op, 1p) = 2 if and
only if P contains at least one isolated element.

Lemma 2 Given a poset P which is not an antichain. Then dgpy(Op, 1p) = 2 if and only
if D(P) is an antichain having at least two elements.

Proof By definition of the graph G(P) and since P is not an antichain, dg(p)(Op, 1p) =
2 implies, firstly MaxP # MinP and so D(P) contains at least two elements which
are MinP and Max P, secondly there exists at least one isolated element x of P and so
x belongs to all maximal antichains of P, i.e. the maximal antichains of P are pairwise
incomparable in D(P). Hence, D(P) is an antichain having at least two elements.
Conversely, if D(P) is an antichain having at least two elements then, firstly P is not
an antichain, otherwise D(P) would be a chain, secondly P contains at least one isolated
element, otherwise MinP <ppy MaxP and so D(P) would not be an antichain. Hence,
dgpy(Op, 1p) =2. O

Forn > 2,let uw = (Op(py, A1, A2 ... Ay, 1 p(p)) be a shortest path between Op(py and
1pcpy in G(D(P)). By definition, and according to Remark 2, we have A € MinD(P)
and Ay ¢ MinD(P). This shows that MinP <p(py Az (Remark 1), and so the maximal
antichain Min P can not belong to the shortest path between Op(py and 1 p(p). For the same
reasons, the antichain Max P does not belong to this shortest path.

Lemma 3 If P is a poset such that dg(py(Op, 1p) > 2, then:

dgpy(Op, 1p) =dgpr))(Op(p), Ip(P)) + 1.

Proof Let 4 = (Op,ay...ay, 1p) be a shortest path between Op and 1p in G(P). Then
n > 1 because dg(p)(Op, 1p) > 2, and according to Lemma 2, D(P) is not an antichain.
Furthermore, D(P) is not a chain because ay ¢ MinP (Remark 2) and so there exists an
antichain A in P such that {a;, a2} € A and the maximal antichains A, Min P are incompa-
rable in D(P). Itresults that u’ = (Op(p), A1, ..., An—1, 1p(p)), where {a;, aj+1} C A; for
i=1...n—1lisapathin G(D(P)). Therefore, d(;(D(p))(OD(p), 1D(p)) SdG(p)(Op, 1p)—1.

Conversely, let ' = (Opp), A1, ..., As—1, I1p(p)) be a shortest path between Op(p)
and 1ppy in G(D(P)), and let a; € A; N MinP. Then, by Lemma 1, for i =
2,...n — 1, 3a; € A; such that a;_1||pa;. Note that a,_1 ¢ MaxP, otherwise,
M” = (OD(p), Bl,..., Bn—2» 1D(P))’ where {ai,ai+1} - Bi fori = 1...n — 2
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would be smaller than p'. So, by Lemma 1, Ja, € MaxP such that a,_1| pa,, and
so (Op,ai,...,an—1,a,, 1p) is a path in G(P). This implies that dgp)(Op, 1p) <
dcppP))Op(p), 1p(p)) + 1. Hence, dg(py(Op, 1p) = dG(p(p)) Op(p), LD(P)) + L. O

Theorem 2 Given a poset P. If P is neither an antichain nor a linear sum of posets, then:

cdev(P) =dgpy(Op, 1p)

Proof Note that for every poset P, cdev(P) = 1+ cdev(D(P)).

We use induction on dgp)(Op, 1p). If dGpy(Op,1p) = 2, and since P is not an
antichain then D(P) is an antichain having at least two elements (Lemma 2), and so
cdev(D(P)) = 1. Therefore cdev(P) = 1 + 1 =dgp)(Op, 1p).

Assume that for every order P such that dgpy(Op,1p) = m > 2, cdev(P)
d(;(P)(OP, 1p). Let Q be a poset such that d(;(Q)(OQ, 1Q) = m + 1. By Lemma
we have dG(0)(0g, 10) = 1 + dGw0)(Op(0): 1p(0); 30 dG(p(0)(Op(0): ID(0))
m = cdev(D(Q) (by hypothesis). It results that cdev(Q) = 1 4 cdev(D(Q)) = 1 +
d6(0)Op(0), 1n()) = dc(0)(0g 10)-

Rl

O

Remark 4 According to Theorems 1 and 2, if P is a linear sum of posets Py, P, ... P, such
that there exists i for which P; is not an antichain, then :

cdev(P) = max{dgp,)Op,, 1p,),0 < i < h},

where G(P;) is the graph of P; as defined already. If P is a linear sum of antichains
A1, ... Ay (in this case P is called a weak order [6]), Theorem 1 implies that cdev(P) =
cdev(Ay) = ... =cdev(Ay) = 1 (the same result was found in [5]).

It remains to show that “cdev” is a comparability invariant, i.e. if P and Q are two posets
with the same comparability graph, then cdev(P) = cdev(Q). For that, it suffices to show
that P and Q differ only by the reversal of some order autonomous subset S (see [3]).

Remark 5 Let S be an order autonomous subset of the poset P, and let Q be the poset
resulting from the reversal of S in P.

1. By definition of S, if SN MinP # ) (resp. SN MaxP # () then $4 N MinQ *0
(resp. S N Max Q # ¥);

2. If S# Pand u = Op,ay,...,ay, 1p)is ashortest path from Op to 1p in G(P) then
[N S| < 1.1In fact, for example, if a;, a; in §, with i < j then a;_1 and a; (or a; and
aj+1) are incomparable and so ' = p \ {a;} (or w” = p \ {a;} respectively ) would
be a path from Op to 1p with length smaller.

Corollary 1 The parameter “cdev” is a comparability invariant.

Proof Let S be an order autonomous subset of the poset P, and let O be the poset resulting
from the reversal of S in P. To show that cdev(P) = cdev(Q), it suffices to show that for
any shortest path & in G(P) from Op to 1p there is some path in G(Q) from Og to 1o with
length at most the length of w.

Let w = (Op,aj...an, 1p) be a shortest path between Op and 1p in G(P). If § =
P, then Q0 = P9 and so uo= (0g, an,an—1...a2,a1, 1g) is a path from Op to 1p in
G(Q).If S # P, There are two cases: if u NS = Por u NS = {a}, with g; is neither
a minimal nor a maximal element in P (in other words, a; # aj and a@; # a, ), then
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w = (0g,ai,...ay, 1p) forms a path in G(Q) ;if u NS = {a1} (resp. u N S = {an}),
then according to Remark 5, there is some element s in MinQ N sd (resp. in MaxQ N 59y
such that ' = 09, s,a2,...a,, 1g) (resp. u” = (0g,ai,...,s,1p)) forms a path in
G(Q). O

Data Availability Data sharing is not applicable to this article as no datasets were generated or analysed
during the current study.
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