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Jean-Philippe Labbé1 ·Carsten E. M. C. Lange2

Received: 7 May 2018 / Accepted: 4 December 2019 /
© Springer Nature B.V. 2020

Abstract
We study the size of certain acyclic domains that arise from geometric and combinato-
rial constructions. These acyclic domains consist of all permutations visited by commuting
equivalence classes of maximal reduced decompositions if we consider the symmetric group
and, more generally, of all c-singletons of a Cambrian lattice associated to the weak order
of a finite Coxeter group. For this reason, we call these sets Cambrian acyclic domains.
Extending a closed formula of Galambos–Reiner for a particular acyclic domain called Fish-
burn’s alternating scheme, we provide explicit formulae for the size of any Cambrian acyclic
domain and characterize the Cambrian acyclic domains of minimum or maximum size.

Keywords Acyclic sets · Enumeration · Generalized permutahedra · Pseudoline
arrangements · Sortable elements · Coxeter groups

1 Introduction

Examples of c-singletons include certain acyclic domains in social choice theory, natural
partial orders of crossings in pseudoline arrangements as well as certain vertices of partic-
ular convex polytopes called permutahedra and associahedra in discrete geometry. We first
describe these objects and outline the relationship between these incarnations.

Acyclic domains are of great interest in social choice theory because of their importance
for the following voting process: voters choose among a given collection of linear orders
on m candidates and the result of the ballot obeys the order imposed by the majority for
each pair of candidates. As already mentioned by the Marquis de Condorcet in 1785 [6],
not every collection of linear orders yields a transitive order on the candidates in every
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election. Collections that do guarantee transitivity are called acyclic domains or Condorcet
domains. According to Fishburn [11, Introduction], the fundamental problem to determine
the maximum cardinality of an acyclic domain for a given number of candidates is one
of most fascinating and intractable combinatorial problems in social choice theory. Abello
as well as Chameni-Nembua describe different constructions of “large” acyclic sets. They
use maximal chains of the weak order on the symmetric group �m [1] and study covering
distributive sublattices of the weak order on �m [5].

Galambos and Reiner [13] prove that maximal acyclic domains constructed by Abello
coincide with those of Chameni-Nembua and describe them in terms of higher Bruhat
orders. Moreover, they show that acyclic domains obtained from Fishburn’s alternating
scheme [10] are a special case of Chameni-Nembua’s construction and prove that the
cardinality of Fishburn’s acyclic domain is given by

fb(m) = 2m−3(m + 3) −

⎧
⎪⎨

⎪⎩

m−1
2

(m−1
m−1

2

)
for odd m,

2m−3
2

(m−2
m−2

2

)
for even m.

(1)

Weakening a conjecture of Fishburn [10, Conjecture 2], Galambos and Reiner conjecture
that fb(m) is a tight upper bound on the cardinality of acyclic sets described in terms of
higher Bruhat orders [13, Conjecture 1]. We notice that Knuth had a conjecture related
to the one of Galambos and Reiner discussing his Equation (9.8) [22, p. 39]. Felsner and
Valtr as well as Danilov, Karzanov and Koshevoy mention counterexamples to these con-
jectures [7, 9]. Galambos and Reiner base the formula for fb(m) and their conjecture on
counting extensions of a certain pseudoline arrangement by adding a new pseudoline and
relate these extensions to elementarily equivalent maximal chains in the weak order on �m.

Planar pseudoline arrangements with contact points as well as pseudo- and multitri-
angulations are systematically studied by Pilaud and Pocchiola using the framework of
networks [31]. Subsequently, Pilaud and Santos construct polytopes from a given network
and relate their combinatorics to the combinatorics of triangulations of point configura-
tions [32]. For well-chosen networks, they construct associahedra (or Stasheff polytopes)
which essentially coincide with a family of realizations obtained from the permutahedron
by Hohlweg and Lange [17]. This family provides a geometric interpretation of Reading’s
Cambrian lattices [36]. Cambrian lattices are remarkable as they generalize the Tamari lat-
tice as lattice quotient of the weak order on �m in two ways. First, distinct lattice quotients
are obtained by choosing different Coxeter elements c and yield distinct realizations of the
associahedron from the permutahedron. Second, the construction of distinct lattice quotients
extends from the symmetric group �m to the weak order of any finite Coxeter group W .
Hohlweg, Lange and Thomas then identify c-singletons as fundamental objects of Cambrian
lattices and use them to derive distinct polytopal realizations of generalized associahedra
from W -permutahedra [18]. Generalized associahedra are CW-complexes defined in the
context of cluster algebras of finite type [12] that coincide with associahedra in type A.
Finally, Pilaud and Stump extend the construction of polytopes from Pilaud and Santos to
any finite Coxeter group and, analogous to type A, essentially reobtain realizations of gener-
alized associahedra discovered by Hohlweg, Lange and Thomas [33] which was generalized
and further studied by Hohlweg, Pilaud and Stella [19].

Two interpretations of c-singletons described in [18] are fundamental for our work. First,
the geometric construction of generalized associahedra from W -permutahedra exhibits
c-singletons as the common vertices of both polytopes and, second, c-singletons are com-
binatorially described as prefixes of a certain reduced expression for the longest element
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w◦ ∈ W up to commutations. For Coxeter groups of type A, the latter interpretation trans-
lates to higher Bruhat orders: the set of c-singletons for a fixed Coxeter element c ∈ �m is
precisely the set of all elements w ∈ �m visited by the maximal chains contained in a certain
equivalence class of elementarily equivalent maximal chains determined by c. Galambos
and Reiner showed in type A that these elements coincide with certain maximal acyclic
domains and for this reason we define a Cambrian acyclic domain as the set of c-singletons
for a given Coxeter element c of a finite Coxeter group W . The main results of this article
are

– Theorem 3 that provides a combinatorial description for the cardinality of a Cambrian
acyclic domain for any finite Coxeter system (W, S) and any Coxeter element c.

– Theorem 4 that characterizes the possible choices of c to minimize and maximize the
cardinality of a Cambrian acyclic domain for any finite Coxeter system (W, S).

These results solve Problem 3.1 of [16]. Even though we mentioned above that the conjec-
ture of Galambos and Reiner is not true in general, Theorem 4 proves that the conjecture
holds if it is restricted to the large subclass of acyclic domains: Fishburn’s alternating
scheme yields the maximum cardinality for Cambrian acyclic domains of type A.

The article is organized as follows. In Section 2, we summarize and discuss the objects
and results in type A. Sections 2.1–2.3 provide a unified description of Cambrian acyclic
domains as geometric entities in terms of vertices of convex polytopes, as pseudoline
arrangements, and as certain order ideals for type A. Moreover, we derive formulae for
the cardinality of Cambrian acyclic domains and give a new proof of Eq. 1 using hyper-
geometric sums in Section 2.4. Section 3 generalizes the discussion from type A to other
finite types. We introduce and discuss relevant notions in Sections 3.1–3.5 before proving
Theorem 3 in Section 3.6. More precisely, a poset called natural partial order by Galam-
bos and Reiner [13] as well as heap by Viennot [43] and Stembridge [41] is introduced in
Section 3.1. In Section 3.2 we introduce c-singletons of a finite Coxeter system (W, S) and
show that the weak order on c-singletons is isomorphic to the lattice of order ideals of a
well-chosen natural partial order. In Section 3.3, Hasse diagrams of natural partial orders
are embedded in a cylindrical oriented graph that we call 2-cover. The 2-cover replaces the
network used in type A as framework to count c-singletons in arbitrary type. The extension
of a pseudoline arrangements considered by Galambos and Reiner in type A is replaced by
cut paths introduced in Section 3.3. It turns out that the total number of cut paths in the
2-cover exceeds the size Sc of Cambrian domains and the difference can be expressed in
terms of “crossing” cut paths discussed in Section 3.4. In Section 4, we illustrate Theo-
rem 3: we explicitly compute the cardinality of Cambrian acyclic domains for various finite
types and different choices of Coxeter elements. In Section 5, we finally derive lower and
upper bounds for the cardinality of Cambrian acyclic domains. The examples discussed in
Section 4 cover all possibilities to minimize and maximize the size Sc of Cambrian domains.

We assume familiarity with basic notions of convex polytopes and of Coxeter group
theory and refer to [45] as well as [20] for details.

2 Associahedra, Pseudoline Arrangements and c-singletons in Type A

This section presents c-singletons in three different ways as well as a counting strategy for
them in type A. It should be thought as a preparation for the general definitions in Sections 3
and 5.

573



Order (2020) 37:571–603

2.1 Associahedra and c-singletons

An associahedron is a simple convex polytope of a particular combinatorial type. The under-
lying combinatorial structure relates to various branches of mathematics as mentioned in
[27, 42] or [40]. We follow Lee and consider triangulations of a convex (n+3)-gon to define
the combinatorics of an n-dimensional associahedron [24]. A plethora of distinct polytopal
realizations is known for the associahedron, e.g. [3, 8, 14, 15, 17, 32], we focus on a family
of realizations described by Hohlweg and Lange [17, 23] that generalizes [25] and relates
directly to triangulations of a labeled (n + 3)-gon P and to the symmetric group �n+1. The
resulting n-dimensional associahedra and the labelings of P are parametrized by Coxeter
elements c ∈ �n+1. We refer to the labeled polygons as Pc and to the various polytopal
realizations of associahedra as Assoc.

Assume that P is a convex (n + 3)-gon in the plane with no two vertices on a ver-
tical line. To obtain the labeled polygon Pc, we label the vertices of P from smallest to
greatest x-coordinate using the integers 0 to n + 2. Without loss of generality, we assume
that the vertices labeled 0 and n + 2 lie on a horizontal line. This induces a partition of
the (n + 1)-element set {1, 2, . . . , n + 1} into a down set Dc = {d1 < d2 < · · · < dk}
and an up set Uc = {u1 < u2 < · · · < u�} where the vertices in Uc lie in the upper
hull of Pc and the vertices in Dc in the lower hull. We have special notation in the fol-
lowing two situations. If Uc = ∅ then we replace the subscript c by Lod to remind of
Loday who gave a combinatorial interpretation of the vertex coordinates of AssoLod [25]. If
Uc = {d ∈ N | 0 < d < n + 2 and d even} then we replace the subscript c by “alt”. This
reminds of alternating (or bipartite) Coxeter elements and relates to Fishburn’s alternating
scheme.

The labeled (n + 3)-gons Pc are characterized by certain permutations πc with one peak
which describe a relabeling to obtain Pc from PLod, see Fig. 1 for two examples.

Moreover, the set of labeled (n + 3)-gons Pc is in bijection with orientations of Coxeter
graphs of type A and all Coxeter elements c of �n+1 [38]. This bijection is crucial to extend
the construction of associahedra to generalized associahedra for arbitrary finite Coxeter
groups [18].

Any proper diagonal δ of Pc yields a facet-defining inequality Hδ≥ for Assoc

as follows. Let Bδ be the label set of vertices of Pc which lie strictly below
the line supporting δ and include the endpoints of δ which are in Uc and set[
Hδ≥ :=

{
x ∈ R

n+1
∣
∣
∣

∑
i∈Bδ

xi ≥ (|Bδ |+1
2

)}]
.

Fig. 1 Two examples of labeled heptagons Pc
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Theorem 1 ([17, Proposition 1.3],[23, Theorem 7])
For every labeled (n + 3)-gon Pc, the polytope

Assoc =
{

x ∈ R
n+1

∣
∣
∣
∣
∣

∑
i∈[n+1] xi = (n+1)(n+2)

2 and

x ∈ Hδ≥ for any proper diagonal δ of Pc

}

is a particular realization of an n-dimensional associahedron.

Each associahedron Assoc is an instance of a generalized permutahedron, introduced by
Postnikov, as it is obtained from the classical permutahedron

Permn = conv
{
(π(1), . . . , π(n + 1))� ∈ R

n+1
∣
∣
∣ π ∈ �n+1

}

=
{

x ∈ R
n+1

∣
∣
∣
∣
∣

∑
i∈[n+1] xi = (n+1)(n+2)

2 and
∑

i∈I xi ≥ (|I |+1
2

)
for any nonempty I ⊂ [n + 1]

}

by discarding some facet-defining inequalities [34, 35]. Following [18, Section 2.3], a c-
singleton is a common vertex of Permn and of Assoc.

From Fig. 2, where the 3-dimensional polytopes Perm4, AssoLod and Assoalt are shown,
it is immediate that the number of c-singletons as well as the number of paths from
(1, 2, 3, 4)� to (4, 3, 2, 1)� in the 1-skeleton of Assoc visiting only c-singletons depends
on c. For later use, we remark that the realization of Assoc is completely determined by
Uc ∩ {2, 3, . . . , n + 1} and assume without loss of generality

Dc = {d1 = 1 < d2 < · · · < dk} and Uc = {u1 < u2 < · · · < u�}.

2.2 Pseudoline Arrangements and c-singletons

Using the duality of points and lines in the Euclidean plane, we now describe Assoc

and c-singletons in terms of pseudoline arrangements, see [31] and [32] for details. We
visualize pseudoline arrangements on an alternating sorting network Nc that encodes the
combinatorics of the point configuration of Pc: Nc consists of n + 3 horizontal lines and(
n+3

2

) = (n+3)(n+2)
2 commutators which are vertical line segments connecting consecutive

horizontal lines in an alternating way. A commutator is at level i if it connects the horizon-
tal lines i and i + 1 of Nc (counted from bottom to top starting with 0). Additionally, we

Fig. 2 The permutahedron Perm4 and the associahedra Assoalt and AssoLod. Red vertices of the associahe-
dra indicate c-singletons and maximal paths from (1, 2, 3, 4)� to (4, 3, 2, 1)� along red zig-zag edges of
associahedra correspond to elementarily equivalent maximal chains in the weak order
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label the ends of the horizontal lines from 0 to n + 2 bottom to top at the left end of Nc

and from 0 to n + 2 top to bottom at the right end of Nc. Figure 3 illustrates these notions
for NLod and Nalt which correspond to PLod and Palt of Fig. 1.

Now, a pseudoline (supported by Nc) is an abscissa monotone path on Nc starting on the
left at some label and ending right at the same label, i.e. traversing the path yields monotone
x-coordinates. A pseudoline supported by Nc is labeled i if it starts on the left on the
horizontal line i. A pseudoline arrangement on Nc is a collection of pseudolines such that
any pair of pseudolines intersects precisely along one commutator. A commutator traversed
by two pseudolines of a pseudoline arrangement is called a crossing. For example, there is
a unique pseudoline arrangement with n + 3 pseudolines on Nc and every commutator is a
crossing of this arrangement. This arrangement induces a labeling of all commutators of Nc

by the two unique pseudolines that traverse it, see Fig. 3. A pseudoline arrangement on Nc

with fewer than n + 3 pseudolines has commutators that are traversed by no pseudoline but
touched in its end points by at most two pseudolines. A commutator that is touched by two
pseudolines and traversed by none is called a contact. The reader may prove the following
facts:

i) labeled commutators of Nc at levels 0 and n + 1 are in bijection to boundary diagonals
of Pc.

ii) Nc is determined by NLod and πc. The inversions of πc label commutators in the
bottom right of NLod which can be moved to the upper left part if we temporarily con-
sider NLod as Möbius strip by identifying its sides. Relabeling the commutators by πc

yields Nc.

The 1-kernel Kc of the network Nc is the network obtained from Nc by deletion of the
horizontal lines 0 and n + 2 as well as all commutators touching these lines. On Kc, we use
notions induced by Nc, for example, the level of a commutator, its label or the label of a
pseudoline are inherited from Nc. Triangulations of Pc are now in bijection to pseudoline
arrangements with n + 1 pseudolines supported by Kc: diagonals of a triangulation corre-
spond to the contacts of a unique pseudoline arrangement on Kc [31, Theorem 23]. The
simple fact that a commutator labeled by the endpoints of a proper diagonal δ of Pc is at
level |Bδ| extends [17, Proposition 1.4] and [23, Proposition 20] by statement c) below:

Fig. 3 Two networks for pseudoline arrangements with labeled commutators: NLod (left) and Nalt (right)
correspond to the labeled heptagons of Fig. 1. The 1-kernels KLod and Kalt are obtained by deletion of the
dotted line segments
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Proposition 1 Let v be a vertex of Assoc with corresponding triangulation Tv of Pc and
let Cv be the set of commutators of Nc labeled by proper diagonals of Tv . The following
statements are equivalent:

a) v is a vertex of Permn.
b) The proper diagonals δi of Tv can be ordered such that

∅ ⊂ Bδ1 ⊂ . . . ⊂ Bδn ⊂ [n + 1].
c) Cv contains one commutator from each level of Kc and commutators from consecutive

levels are adjacent.

Proposition 1 shows that a c-singleton for Assoc corresponds to a path which traverses
the 1-kernel Kc from bottom to top and ascents whenever possible, that is the y-coordinates
are monotone increasing. We call such a path a greedy ordinate monotone path on Kc. In
the theory of pseudoline arrangements, a greedy ordinate monotone path is an instance of
a “cut” or “pseudoline from the south pole to the north pole” which extends the original
arrangement by a new pseudoline. We avoid the term “cut” in this context and emphasize
tha a greedy ordinate monotone path corresponds to a cut path in Section 3.

2.3 Order Ideals and c-singletons

Combining Proposition 1 with [18, Theorem 2.2], c-singletons can be described using
neighbouring transpositions si = (i i + 1) for 1 ≤ i ≤ n. A permutation π ∈ �n+1 is a
c-singleton of Assoc if and only if there is a reduced word for π in the generators s1, . . . , sn
that is a prefix up to commutation of a particular reduced expression wwwc◦◦◦ of the reverse per-
mutation w◦ = [n + 1, n, . . . , 1] (given in one-line notation). This point of view will be
used in Definition 2 of Section 3.2 to define c-singletons for arbitrary irreducible finite Cox-
eter systems (W, S). According to Proposition 3, the poset of c-singletons (ordered by the
weak order on �n+1) is isomorphic to the lattice of order ideals of (Lwwwc◦◦◦ , ≺wwwc◦◦◦) associated
to a Coxeter triple (W, S, c) in type A defined in Section 3.1. To illustrate this aspect of
c-singletons in type A, we describe the poset (S, ≺c) that is isomorphic to (Lwwwc◦◦◦ , ≺wwwc◦◦◦) in
type A and can be constructed directly from Kc.

The set S corresponds to the bounded regions of Kc: we first count the bounded regions
at level i left-to-right starting with 1 and label the j th bounded region of level i by (si , j).
Then S is defined as the set of all such pairs and the partial order ≺c on S is the transitive
closure of the covering relation (si , j) → (sk, l) that satisfies the following three conditions:

i) |i − k| = 1;
ii) the bounded regions (si , j) and (sk, l) intersect in a (nonempty) horizontal line

segment;
iii) the commutator that bounds region (si , j) to the left is on the left of the region

associated to (sk, l).

Although closely related, the undirected Hasse diagram of (S, ≺c) differs essentially from
the adjacency graph of all bounded regions of Kc. The Hasse diagram of (S, ≺c) does not
contain edges (si , j) → (si , j + 1) but all edges of this type are edges of the adjacency
graph.

Two Hasse diagrams for (S,≺c) associated to Kalt are illustrated in Fig. 4. To simplify
Fig. 4 and later illustrations, we identify each bounded region of Kc at level i not with a
pair (si , j) but simply with the corresponding generator si , since j can be easily retrieved
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Fig. 4 The Hasse diagram of (S,≺alt). An ordinate monotone path p (dashed red line) determines an order
ideal Sp of (S,≺alt) (shaded region)

from the 1-kernel. Each greedy ordinate monotone path p in Kc is a cut of the Hasse dia-
gram (S,≺c) that partitions the vertex set S of this oriented graph in two sets and the
set Sp ⊆ S below p is an order ideal of (S,≺c). Such an order ideal Sp corresponds to a
c-singleton according to Proposition 3 if we believe (S,≺c) ∼= (Lwwwc◦◦◦ , ≺wwwc◦◦◦).

We briefly indicate the relation to the work of Galambos and Reiner as well as Manin
and Schechtmann. For a given Coxeter element c, each c-singleton w determines a unique
greedy ordinate monotone path pw in the 1-kernel Kc as well as a unique pseudoline
arrangement Aw supported by Kc (where contacts are the commutators traversed by pw).
The arrangements Aw differ only by their embedding in Kc. They describe a unique pseu-
doline arrangement Ac that depends only on c. Galambos and Reiner consider the “natural
partial order” PA on the crossings of Ac which coincides with (S,≺c) described above.
Moreover, they show that the order ideals of PA encode an equivalence class of elementarily
equivalent maximal chains in the weak order on �n+1 as defined by Manin and Schecht-
mann [26]. Hence the set of c-singletons for a given Coxeter element c corresponds to an
equivalence class of elementarily equivalent admissible permutations of

([n+1]
2

)
also studied

by Ziegler [44].

2.4 Counting c-singletons

This section provides the fundamental idea how the enumeration problem for c-singletons
is approached and should be thought of as a preparation for the general definitions in Sec-
tions 3 and 5. The focus on c-singletons in type A allows us to circumvent some technical
details and we are able to provide a complete alternative proof of Formula (1) for the cardi-
nality of Fishburn’s acyclic domain. The fundamental idea is to embed the 1-kernel Kc in
a larger alternating sorting network, called trapeze network Tc, for which the total number
of greedy ordinate monotone paths is easily determined and then count all greedy ordinate
monotone paths that do not remain in Kc. Then the number of c-singletons is simply the
difference of these two quantities.

To count c-singletons for general types in Section 3, we shall switch the point of view and
consider c-singletons as order ideals of (Lwwwc◦◦◦ , ≺wwwc◦◦◦) instead of greedy ordinate monotone
paths in Kc. The poset (Lwwwc◦◦◦ ,≺wwwc◦◦◦) generalizes (S,≺c) that corresponds to Kc in type A.
The trapeze network that extends Kc will then be replaced by the 2-cover C2

c , a directed
graph that extends the Hasse diagram of (Lwwwc◦◦◦ ,≺wwwc◦◦◦), and greedy ordinate monotone paths
in Kc and Tc will be replaced by cut paths of the 2-cover C2

c . Similar to the total number
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of greedy ordinate monotone paths of Tc, the total number of cut paths of C2
c are easily

counted. Moreover, this number depends not on the choice of the Coxeter element c but
it does depend on the type. It will turn out that c-singletons correspond to cut paths that
“remain” in (Lwwwc◦◦◦ , ≺wwwc◦◦◦) and that their number is the difference between the number of all
cut paths of C2

c and the cut paths of C2
c that do not “enter” (Lwwwc◦◦◦ ,≺wwwc◦◦◦). Taking a symmetry

of the 2-cover into account, the final enumeration problem will be solved in Section 3 by
counting cut paths of C2

c that cross the primary or secondary cut path. The primary and
secondary cut paths are special cut paths that characterize (Lwwwc◦◦◦ ,≺wwwc◦◦◦) within C2

c .
We now derive a general formula for the number Sc of c-singletons in type A by enumer-

ation of greedy ordinate monotone paths of Kc with n + 1 horizontal lines. To this respect,
we define the trapeze network Tc associated to Kc as an extension of Kc by adding commu-
tators at levels 1 to n−1 (called trapeze commutators) such that every commutator at level n

is contained in precisely 2n−1 ordinate monotone paths starting at a commutator located at
level 1. More precisely, we define the trapeze network Tc as the maximal alternating sorting
network with n + 1 horizontal lines that satisfies:

i) Tc contains Kc and has the same commutators at level n as Kc,
ii) Tc is an alternating network, i.e. commutators at level i and i + 1 alternate,

iii) every commutator of Tc is included in a greedy ordinate monotone path in Tc that
contains a commutator of Kc at level n.

A commutator in Tc which is not in Kc is called a trapeze commutator. If Kc = KLod
then TLod = KLod, so TLod contains no trapeze commutators. When Kc = Kalt, the trapeze
network Talt contains 8 trapeze commutators for n = 4 and contains 10 trapeze commutators
for n = 5, see Fig. 5.

Clearly, any greedy ordinate monotone path in Tc ends at some commutator of Kc at
level n and is a greedy ordinate monotone path in Tc that either traverses only commuta-
tors of Kc or traverses at least one trapeze commutator. As there are |Uc| + 2 commutators
of Kc at level n and since there are precisely 2n−1 distinct ordinate monotone paths in Tc

that end at any given commutator at level n, we conclude that the number of greedy ordinate
monotone paths in Tc equals (|Uc| + 2)2n−1. To determine the number of greedy ordinate
monotone paths that remain in Kc, we aim to subtract the number of ordinate monotone
paths that traverse at least one trapeze commutator. Clearly, the paths that traverse at least
one trapeze commutator are naturally partitioned by the last (top-most) trapeze commuta-
tor traversed. Let �c denote the set of trapeze commutators that appear as last (top-most)
trapeze commutator of some greedy ordinate monotone path in Tc. For every t ∈ �c, we

Fig. 5 The trapeze network Talt with trapeze commutators drawn dashed or zig-zag. The trapeze commutators
in �alt are drawn zig-zag
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denote by γt the number of greedy ordinate monotone paths in Tc (traversing Tc bottom-
to-top) that start at t and stay in Kc after traversing t at level �t . There are γt2�t−1 greedy
ordinate monotone paths in Tc with t ∈ �c as last trapeze commutator as there are 2�t−1

greedy ordinate monotone paths that start at level 1 and end in t . We conclude

Sc = (|Uc| + 2)2n−1 −
∑

t∈�c

γt2
�t−1.

A trivial consequence is SLod = 2n as �Lod = ULod = ∅ and DLod = [n + 1]. For a less
trivial example, we prove Salt = fb(n + 1). Assume first that n = 2k. Then

|Ualt| = n

2
and (|Ualt| + 2)2n−1 = (n + 4)2n−2.

For 0 ≤ r ≤ k−1 there are exactly two distinct commutators in �alt at odd level �t = 2r+1
and no commutator at even level �t = 2r + 2, see Fig. 5. For t ∈ �alt to the left of Kalt
at level �t = 2r + 1, any greedy ordinate monotone path p with last trapeze commutator t

contains a greedy ordinate monotone path p̃ from t to a commutator of Kalt at level n that
uses only commutators in Kalt. The path p̃ traverses n − �t commutators (after t), where
the first commutator (at level �t + 1) is determined since p̃ must take an “east” step after t .
Moreover, at any position p̃ must have taken strictly more “east” steps than “west” steps.
The number of such paths p̃ is

(2(k−r−1)
k−r−1

)
, see [29, Corollary 6] for details.

A similar argument applies if t ∈ �alt with �t = 2r + 1 is located to the right of Kalt, so
γt = (2(k−r−1)

k−r−1

) = (
n−�t−1

(n−�t−1)/2

)
for all t ∈ �alt relates to the sequence of central binomial

coefficients A000984 of [28]. Setting p := k − r − 1 and using Gosper’s algorithm to
obtain a closed form for the hypergeometric sum [30, Chapter 5], we conclude

∑

t∈�alt

γt2
�t−1 = 2

k−1∑

r=0

(
2(k − r − 1)

k − r − 1

)

22r

= 2n−1
k−1∑

p=0

(
2p

p

)

2−2p = k

(
2k

k

)

= n

2

(
n
n
2

)

.

If we now assume n = 2k − 1 then

|Ualt| = n − 1

2
and (|Ualt| + 2)2n−1 = (n + 3)2n−2.

For 0 ≤ r ≤ k − 2 there is precisely one commutator in �alt at even level �t = 2r + 2.
Since n − �t is odd, we get γt = (

n−�t−1
(n−�t−1)/2

) = (2(k−r−2)
k−r−2

)
. Further there is precisely one

commutator in �alt at odd level �t = 2r + 1, a similar argument yields γt = (2(k−r−2)+1
(k−r−2)+1

)
.

Thus γt = ( n−�t−1
 n−�t −1

2 �
)

relates to sequence A001405 of [28]. Setting p := k − r − 2 and

again using Gosper’s algorithm we conclude

∑

t∈�alt

γt2
�t−1 = 2n−3

k−2∑

p=0

(4p + 3)

p + 1

(
2p

p

)

2−2p = −2n−2 + 2n − 1

2

(
n − 1
n−1

2

)

.

Finally, we set n = m − 1 to prove the claim Salt = fb(n + 1). This provides an alternative
proof for the cardinality of Fishburn’s acyclic domain (1).

Of course, it is possible to avoid Gosper’s algorithm and prove the closed form for the
hypergeometric sums by induction if candidates for the closed form of the hypergeometric
sums are known. The strength of Gosper’s algorithm is to provide a desired closed formula
and the algorithm can be used for different choices of the Coxeter element c. As we again
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need (non-obvious) closed formulae for certain hypergeometric sums in Section 4.1, we
decided to mention the general tool, i.e. Gosper’s algorithm, here explicitly.

3 Enumeration of c-singletons – General Case

In order to provide formulae to enumerate singletons in the general case of arbitrary finite
Coxeter systems, we first generalize the poset (S, ≺c) of Section 2.3 for type A to general
type, and present a planar drawing of its Hasse diagram in Section 3.2. In Section 3.2,
we describe two equivalence relations on words and their class representatives indexed by
Coxeter elements. In Section 3.3, we present a graph called the 2-cover that we embed on a
cylinder. In Section 3.4, we count cut paths in this embedding and provide a correspondence
to Coxeter elements. In Section 3.5, we define when two cut paths are crossing. Finally, we
obtain a formula for the cardinality Sc of a Cambrian acyclic domain by counting certain
cut path that do not cross the cut path corresponding to c in Section 3.6

Consider an irreducible finite Coxeter system (W, S) of rank n with generators s1, . . . , sn
and length function �. A Coxeter element c ∈ W is the product of n distinct generators
of S in some order and Cox(W, S) is the set of all Coxeter elements of (W, S). The Coxeter
number h is the smallest positive integer such that ch is the identity of W and is independent
of the choice of c. As proposed by Shi [38], we identify Coxeter elements c ∈ W and
orientations �c of the Coxeter graph � associated to W : an edge {s, t} of � is directed
from s to t if and only if s, t ∈ S do not commute and s comes before t in (any reduced
expression of) c. A word w in S is a concatenation σ1 . . . σk for some nonnegative integer k

and σi ∈ S, a subword of w = σ1 . . . σk is a word σi1 . . . σir with 1 ≤ i1 < . . . < ir ≤ k and
the support supp(w) of w is the set of generators that appear in w. Of particular interest is
the unique element w◦ ∈ W of maximum length �(w◦) = N := nh

2 which is called longest
element. A reduced expression w◦ = σ1 . . . σN is called longest word.

3.1 Natural Partial Order

A Coxeter triple (W, S,w) is an irreducible finite Coxeter system (W, S) together with a
word w in S such that supp(w) = S. Any Coxeter triple (W, S,w) induces a unique reduced
expression cw of a Coxeter element cw where the elements of S appear according to their
first appearance in w. In particular, w induces a canonical orientation on �. We define now
the natural partial order ≺w on the set Lw := [k] = {1, 2, . . . , k} of positions of letters
of the word w = σ1 . . . σk . The map σ : Lw → S assigns to each position i ∈ Lw the
letter σi ∈ S of w at position i. Often we identify Lw with the set {(i, σi) | 1 ≤ i ≤ k},
replace (i, σi) by the generator sj ∈ S equal to σi and keep its original position i in mind.
The natural partial order appeared in [43, Section 2], [41, Section 2.2], [13, Definition 6].

Definition 1 (Natural partial order)
The natural partial order ≺w on Lw is defined for any Coxeter triple (W, S,w) as fol-

lows: r ≺w s if and only if there is a subword σi1 . . . σik of w such that i1 = r , ik = s and
σij σij+1 �= σij+1σij for all 1 ≤ j ≤ k − 1. The Hasse diagram of (Lw,≺w) is an oriented
graph denoted by Gw.

Example 1 Let (�5, S,w) be the Coxeter triple with generators si = (i i + 1) and

w := s3s2s1s2s3s4s2s3s2s1s2s3s4s3s2s1s3s2s3s4.
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The induced reduced word for the Coxeter element cw is cw = s3s2s1s4 and Lw has 20
elements. Moreover, (Lw,≺w) consists of 21 covering relations that determine the graph
Gw illustrated in Fig. 6.

Remark 1

a) Let (W, S,w1) and (W, S,w2) be Coxeter triples for (W, S) with w1 �= w2, and assume
that w1 is obtained from w2 by a sequence of commutation relations (and no deletions).
Then cw1 �= cw2 are reduced expressions for the same Coxeter element c ∈ W and the
posets (Lw1 ,≺w1) and (Lw2 ,≺w2) are isomorphic.

b) To simplify the drawing of Hasse diagrams of natural partial orders, we prefer to indi-
cate vertices by generators sj ∈ S, rather than indicating positions explicitly. See Fig. 6
where positions and generators are used.

The next result gives a crossing-free straight-line planar drawing of the Hasse dia-
gram Gw for any Coxeter triple (W, S,w) where w = ck is a concatenation of k copies
of c. A crossing-free straight-line planar drawing of the Hasse diagram Gw for an arbitrary
Coxeter triple (W, S,w) will be obtained in Section 3.2.

Proposition 2 Let k be a positive integer and (W, S, c) be a Coxeter triple where c is a
reduced expression for c ∈ Cox(W, S). The graph Gck is connected and has a crossing-free
straight-line planar drawing using integer vertex coordinates such that the x-coordinate is
strictly increasing in direction of every oriented edge.

Proof If k = 1 then Gc is isomorphic (as oriented graph) to the Coxeter graph �c and the
isomorphism is induced by the bijection g : Lw = [n] → [n] where g(i) is defined by
σi = sg(i). The classification of finite Coxeter groups implies that � is a planar tree. Without
loss of generality, we assume that s1, . . . , sp ∈ S of � are successive vertices of � along
a path of maximum length. We have p = n − 1 if (W, S) is of type D or E and p = n

otherwise. If p = n − 1 we may additionally assume that the path is labeled such that the
remaining vertex sn is adjacent to sr where r = n − 2 (type D) or r = n − 3 (type E). We
now construct a particular crossing-free straight-line planar drawing of Gc. First locate s1 at
(0, 0) and determine coordinates (xj , yj ) for sj with j ≤ p inductively from (xj−1, yj−1)

for sj−1 via

xj :=
{

xj−1 + 1 if g−1(j − 1) ≺c g−1(j),

xj−1 − 1 if g−1(j) ≺c g−1(j − 1),
and yj := yj−1 + 1.

Fig. 6 Hasse diagram of the natural partial order for the word w of Example 1
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If p = n − 1, then coordinates for the remaining point sn are

xn :=
{

xr + 1 if g−1(r) ≺c g−1(n),

xr − 1 if g−1(n) ≺c g−1(r),
and yn := yr .

The construction is illustrated for (W, S) of type D5 and k = 1 in Example 2.
We now inductively construct a planar drawing of Gck+1 from a drawing of Gck . From

ck+1 = ckσnk+1 · · · σn(k+1), we have S = {σnk+1, . . . , σn(k+1)} and

Lck+1 \ Lck = {nk + 1, nk + 2, . . . , n(k + 1)}.
Any covering relation j ≺·ck+1j ′ of (Lck+1 , ≺ck+1) is now characterized by one of the
following three statements:

i) j, j ′ ∈ Lck and j ≺·ck j ′;
ii) j, j ′ ∈ Lck+1 \ Lck and (σj , σj ′) is an oriented edge of �c;

iii) j ′ ∈ Lck+1 \ Lck , j ∈ Lck \ Lck−1 and (σj ′ , σj ) is an oriented edge of �c.

To obtain a drawing of Gck+1 , we choose (xj , yj ) as in Gck for j ∈ [nk], set

(xnk+j , ynk+j ) := (xn(k−1)+j + 2, yn(k−1)+j ) for all nk + j ∈ Lck+1 \ Lck

and add oriented edges according to the covering relation of ≺ck+1 .

Example 2 If W = D5, c = s3s2s4s5s1 then

σ1 = s3, σ2 = s2, σ3 = s4, σ4 = s5 and σ5 = s1

and the inductive construction sequence for Gc is

and the construction sequence from Gck to Gck+1 is illustrated for k = 2

This example extends easily to all possible situations in type D and E.
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3.2 Equivalence Classes and c-sortingWords

As in [41], we now define the equivalence relations ≈ and ∼ on words in S as well as
representatives for the equivalence classes [w]≈ and [w]∼ that are determined by a reduced
expression c for c ∈ Cox(W, S).

First, we write u ≈ v if and only if u, v are reduced words that represent the same ele-
ment w ∈ W . The equivalence class [u]≈ depends only on w, so we often write [w]≈
instead of [w]≈. Following Reading [37], we define the c-sorting word wwwc of w as the lex-
icographically first subword of the infinite word c∞ = ccc . . . (as a sequence of positions)
which belongs to [w]≈.

Second, u ∼ v if and only if u, v are words that coincide up to commutations, that is, one
is obtained from the other by a sequence of commutation relations (and no deletions). The
c-sorting word wc of w is defined as the element of [w]∼ that appears first lexicographically
as a subword of the infinite word c∞ = ccc . . . (as a sequence of positions).

Due to the similar definition, wwwc and wc are both called c-sorting word. We emphasize
that wwwc represents [w]≈ while wc represents [w]∼ and, by definition, �(u) = �(v) if u ∼ v
but u and v are not necessarily reduced. Although the definition of wwwc depends on a reduced
expression c for c, we have wwwc1 ∼ wwwc2 if c1 ∼ c2.

Example 3 The words u = s1s2s1 and v = s2s1s2 are reduced words for the longest element
w◦ ∈ �3 of the Coxeter system (�3, S) with generators si = (i i + 1) for i ∈ {1, 2}. Thus
u ≈ v. As both words do not coincide up to commutations, we have u �∼ v. More precisely,
if c = s1s2 we have

wwwc◦◦◦ = s1s2|s1, uc = s1s2|s1 and vc = s2|s1s2,

and if c = s2s1 then

wwwc◦◦◦ = s2s1|s2, uc = s1|s2s1, and vc = s2s1|s2.

We write | to distinguish between copies of c in c∞.

Example 4 (Example 1 continued)
Recall that cw = s3s2s1s4. The cw-sorting word of w is [wcw = s3s2s1|s2|s3s2s4|s3s2

s1|s2|s3s4|s3s2s1|s3s2|s3s4].

Lemma 1 Let (W, S,w) be a Coxeter triple. The oriented graph Gw is the Hasse diagram
of a subposet of Lcmw for some positive integer m.

Proof Let w̃ be the subword of cwcwcw . . . that is lexicographically first (as a sequence of
positions) among all subwords of cwcwcw . . . that coincide with w up to commutations and
let m be the minimum integer such that w̃ is a subword of cm

w = (cw)m. Then (Lw̃,≺w̃) and
(Lw,≺w) are isomorphic, so their Hasse diagrams coincide and Gw is the Hasse diagram of
a subposet of Lcmw .

We often write Gw for the graph Gw embedded according to Lemma 1.

Example 5 (Example 1 continued)
As w is a subword of c9

w, we obtain a planar drawing of Gw induced from the planar
drawing of Gc9

w
as shown in Fig. 7.
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Fig. 7 The crossing-free straight-line drawing of Gc9
w

described in Proposition 2 together with Gw as a
subposet according to Lemma 1 which is also a subgraph in this case

Remark 2

a) If u ∼ v then (Lu,≺u) and (Lv,≺v) are isomorphic posets and Gu and Gv are
isomorphic directed graphs.

b) Let (W, S, c) be a Coxeter triple of type A and w ∈ [wwwc◦◦◦]∼. Then (Lw,≺w) is
isomorphic to (S,≺c) described in Section 2.3.

c) The Auslander–Reiten quiver associated to c ∈ Cox(W, S) is isomorphic to the
graph Gwwwc◦◦◦ and Gck is a finite truncation of the repetition quiver described by
Keller [21, Section 2.2] for all positive integers k.

A word σ1 . . . σr is a prefix up to commutations of a word w if and only if there is a
word w′ ∼ w such that the first r letters of w′ are σ1 . . . σr . The following characterization
of c-singletons serves as definition and does not depend on c but on c ∈ Cox(W, S).

Definition 2 (c-singletons [18, Theorem 2.2])
Let (W, S, c) be a Coxeter triple. An element w ∈ W is a c-singleton if and only if some

reduced expression of w is a prefix of wwwc◦◦◦ up to commutations. The number of c-singletons
is denoted by Sc.

Definition 3 (Cambrian acyclic domains)
Let (W, S, c) be a Coxeter triple. The set Acycc of c-singletons is called Cambrian

acyclic domain and its cardinality is Sc.

The set of c-singletons, endowed with the weak order inherited from (W, S), forms a
distributive lattice Lc, [18, Proposition 2.5]. Any distributive lattice L is isomorphic to the
lattice of order ideals of a poset (P,≤) which is unique up to isomorphism, [39, Theo-
rem 3.4.1]. Before we show that (Lwwwc◦◦◦ ,≺wwwc◦◦◦) is such a poset (P,≤) for Lc, we recall that
an order ideal (or down-set or semi-ideal) of (P,≤) is a subset I ⊆ P such that t ∈ I and
s ≤ t implies s ∈ I and that antichains of a finite poset P are in bijection with order ideals
of P [39, Section 3.1]. A generator s ∈ S is called initial (resp. final) in w ∈ W if and only
if �(sw) < �(w) (resp. �(ws) < �(w)).
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Proposition 3 Let (W, S, c) be a Coxeter triple. The lattice of order ideals of (Lwwwc◦◦◦ ,≺wwwc◦◦◦)
is isomorphic to the poset of c-singletons ordered by the weak order.

Proof If w ∈ W is a c-singleton then w is represented by a prefix σi1 . . . σik of the c-sorting
word wwwc◦◦◦ = σ1 . . . σN up to commutations and the set Fw ⊆ {σi1 , . . . , σik } of final letters
for w is an antichain of (Lwwwc◦◦◦ , ≺wwwc◦◦◦). Conversely, if {a1, . . . , ak} is an antichain of (Lwwwc◦◦◦ ,≺wwwc◦◦◦)
then let Ij be the order ideal of (Lwwwc◦◦◦ ,≺wwwc◦◦◦) generated by aj for 1 ≤ j ≤ k and consider

the order ideal I := ⋃k
j=1 Ij of (Lwwwc◦◦◦ ,≺wwwc◦◦◦) together with some linear extension of ≺wwwc◦◦◦

on I . The product of elements of I with respect to this linear order yields a prefix up to
commutations of wwwc◦◦◦ = σ1 . . . σN with final letters {a1, . . . , ak}.

3.3 2-covers

The longest element w◦ of (W, S) defines an automorphism ψ : W → W defined via
w �→ w−1◦ ww◦ that preserves length and adapts to words w = σ1 . . . σr via [ψ(w) :=
ψ(σ1) . . . ψ(σr)]. Let rev(w) := σr . . . σ1 denote the reverse word of w and let wwwc◦◦◦ψ(wwwc◦◦◦)
denote the concatenation of wwwc◦◦◦ and ψ(wwwc◦◦◦). By Remark 7.6 of [4],

www
ψ(c)◦◦◦ ∼ rev

(
wwwrev(c)◦◦◦

)
and ch ∼ wwwc◦◦◦www

ψ(c)◦◦◦ = wwwc◦◦◦ψ(wwwc◦◦◦).

In combination with Remark 2, we obtain the next lemma.

Lemma 2 Let (W, S, c) be a Coxeter triple. The graphs Gch and Gwwwc◦◦◦ψ(wwwc◦◦◦) are isomor-
phic as oriented graphs. In particular, Gwwwc◦◦◦ψ(wwwc◦◦◦) depends on c ∈ Cox(W, S) but not on the
reduced expression c.

In the rest of the article, we make use of the above isomorphism between (Lch ,≺ch) and
(Lwwwc◦◦◦ψ(wwwc◦◦◦),≺wwwc◦◦◦ψ(wwwc◦◦◦)) without mentioning it explicitly.

Example 6 (Example 1 continued)
Consider the longest word w̃◦ := s3s2s1s2s3s4s2s3s2s1 of (�5, S). Then w is the

concatenation w̃◦ψ(w̃◦) and a direct computation yields

w̃cw◦◦◦ = s3s2s1|s2|s3s2s4|s3s2s1 and ψ(w̃cw) = s2s3s4s3s2s3s1s2s3s4.

Hence, Gch and Gw̃cw◦◦◦ ψ(w̃cw◦◦◦ ) are not isomorphic as oriented graphs. On the other hand,

wwwcw◦◦◦ = s3s2s1s4|s3s2s1s4|s3s4 and ψ(wwwcw◦◦◦ ) = s2s3s4s1s2s3s4s1s2s1

show that c5 ∼ www
cw◦◦◦ ψ(www

cw◦◦◦ ). Thus Gc5 and Gwww
cw◦◦◦ ψ(www

cw◦◦◦ ) are isomorphic as oriented graphs.

Definition 4 (2-cover)
Let (W, S, c) be a Coxeter triple.

a) The 2-cover C2
c is a directed graph with vertex set Lch and two types of directed edges.

The first type of edges are the edges of Gch and the second type consists of edges given
by (j ′, j) where (σj ′ , σj ) is an oriented edge of �c, j ∈ [n], and j ′ ∈ [nh] \ [n(h− 1)].

b) Let Vwwwc◦◦◦ be the vertices of C2
c that correspond to the first nh

2 letters of wwwc◦◦◦ψ(wwwc◦◦◦)
and Vψ(wwwc◦◦◦) be the vertices of C2

c that correspond to the last nh
2 letters of wwwc◦◦◦ψ(wwwc◦◦◦).

Then Cwwwc◦◦◦ is the subgraph of C2
c induced by Vwwwc◦◦◦ and Cψ(wwwc◦◦◦) is the subgraph of C2

c
induced by Vψ(wwwc◦◦◦).
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Fig. 8 The 2-cover for (�5, S, c = s2s4s1s3) with the second type of edges used to define the 2-cover are
shown with dotted edges and two shaded tiles as defined in Definition 5

The second type of edges of the 2-cover are illustrated in Fig. 8.
The planar drawing for Gch described in Proposition 2 and the simple observation that Gch

is isomorphic to some induced subgraph of Gc̃∞ for all c, c̃ ∈ Cox(W, S) imply the following
lemma.

Lemma 3 Let (W, S, c) and (W, S, c̃) be Coxeter triples.

a) The 2-cover C2
c has a crossing-free drawing on the open cylinder S1 × R.

b) The 2-covers C2
c and C2

c̃ are isomorphic as directed graphs.

We refer to a particular embedding of C2
c ⊂ S1 × R ⊂ R

2 × R which can be visualized
as ‘wrapping the plane drawing of Gck around a cylinder’. Without loss of generality, the
y-direction for the plane drawing of Gck is parallel to the z-axis of R3 = R

2 ×R which coin-
cides with the axis of the cylinder S1×R ⊂ R

3. For this reason, we identify y-coordinates in
the plane drawing of Gck with third coordinates in R

3. This cylindrical embedding C2
c ⊂ R

3

has the following obvious properties:

i) copies of si have strictly smaller third coordinate than copies of sj for 1 ≤ i < j ≤ p

(where p is defined in the proof of Proposition 2);
ii) for fixed i ∈ [n], the third coordinate of all copies of si coincide;

iii) if p < n then the third coordinate of sr and sn coincide.

We say that copies of the generator s1 are located at the bottom of C2
c while the copies of the

generator sp are located at the top of C2
c . Lemma 3 makes the following definition possible.

Definition 5 (Tiles and their boundary)
Let (W, S, c) be a Coxeter triple. A tile of C2

c is the closure of a bounded connected
component of S1 × R \ C2

c , see Fig. 8. The boundary of T is denoted by ∂T .

The following lemma is a direct consequence of Definition 5 and Lemma 3.

Lemma 4 Let T be a tile of C2
c for a Coxeter triple (W, S, c). The boundary ∂T defines an

induced subgraph of C2
c with four vertices; one vertex is a source of out-degree 2 and one

vertex is a sink of in-degree 2. In particular, the source and sink of this subgraph are letters
of ch of consecutive copies of c that represent the same generator of S.
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3.4 Cut Paths

Definition 6 (Cut paths, primary and secondary cut paths)
Let (W, S, c) be a Coxeter triple and C2

c the associated 2-cover.

a) A cut path κ of C2
c is a set of edges of C2

c such that every directed cycle of C2
c contains

precisely one edge of κ . The set of all cut paths of C2
c is denoted by CP(C2

c ).
b) The primary cut path κc of C2

c is the cut path that consists of all edges of the 2-cover
pointing from Vψ(wwwc◦◦◦) to Vwwwc◦◦◦ . The secondary cut path κ∗

c is the cut path that consists of
all edges of C2

c that point from Vwwwc◦◦◦ to Vψ(wwwc◦◦◦).

The primary and secondary cut paths are disjoint because we have supp(wc◦) =
supp(ψ(wc◦)) = S. Primary and secondary cut paths relate to cuts of a graph as κc ∪ κ∗

c
partitions the 2-cover C2

c into two connected components induced by Vwwwc◦◦◦ and Vψ(wwwc◦◦◦).

Example 7 The notions of Definition 6 are illustrated in Fig. 9 for c1 = cLod and c2 = calt
in (�5, S). The 2-covers C2

c coincide in both situations and are shown in a planar drawing
where vertex i ∈ Lwwwc◦◦◦ψ(wwwc◦◦◦) of C2

c is labeled by the corresponding generator σi ∈ S and
oriented edges of C2

c contained in a cut path are indicated by �. The primary and secondary
cut paths κci and κ∗

ci for i ∈ {1, 2} are edges � intersected by a dashed red line.

Every cut path of C2
c that avoids edges of Cψ(wwwc◦◦◦), equivalently every cut path of C2

c that
avoids edges of the Hasse diagram of (Lψ(wwwc◦◦◦),≺ψ(wwwc◦◦◦)), defines an antichain of (Lwwwc◦◦◦ ,≺wwwc◦◦◦).
Thus, we obtain the following characterization of order ideals of (Lwwwc◦◦◦ ,≺wwwc◦◦◦).

Lemma 5 Let (W, S, c) be a Coxeter triple. The set of c-singletons is in bijection with the
set of cut paths of C2

c that avoid edges of Cψ(wwwc◦◦◦).

In particular, if the number of all cut paths and the number of cut paths that contain
edges of Cψ(wwwc◦◦◦) are known, Lemma 5 implies a formula for the cardinality Sc. A formula
for |CP(C2

c )| is obtained from the next theorem in Corollary 3 and a formula for Sc will be
derived in Section 3.5.

Moreover, the next theorem shows that every cut path κ induces a sequence (‘path’)
of tiles that cuts the 2-cover C2

c from bottom to top: consider the set of tiles such that
consecutive tiles have at least one common edge in κ .

Fig. 9 The primary and secondary cut paths κci , κ
∗
ci depicted in a planar drawing of the 2-cover C2

c for
c1 = s1s2s3s4 and c2 = s2s4s1s3. For better readability, we denote κi for κci in the figures
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Theorem 2 Let (W, S, c) be a Coxeter triple, with Coxeter graph �, and κ ∈ CP(C2
c ).

a) If e = {si , sj } is an edge of �, then there exists a unique directed edge eκ = (a, b) ∈ κ

with {σa, σb} = {si , sj }.
b) Let sj be a vertex of degree 2 of � with incident edges

e = {si , sj } and ẽ = {sj , sk}.
There is a unique tile T that contains the corresponding directed edges

eκ = (a, b) and ẽκ = (
ã, b̃

)
,

of κ with {σa, σb} = {si , sj } and σã, σb̃
= {sj , sk} from a).

c) Let sr be a vertex of degree 3 of � with incident edges

e = {sr−1, sr }, ẽ = {sr , sr+1} and e = {sr , sn}
and corresponding directed edges of κ from i)

eκ = (a, b), ẽκ = (
ã, b̃

)
and eκ = (

a, b
)

.

There is a unique pair of tiles T1, T2 such that eκ , eκ ∈ ∂T1, ẽκ , eκ ∈ ∂T2 and ∂T1∩∂T2
consists of two edges of C2

c .

Proof a) For every edge {si , sj } of the Coxeter graph � there exists a directed cycle in C2
c

that visits all and only vertices corresponding to si and sj . This implies for every edge
{si , sj } of � that a cut path κ must contain precisely one oriented edge (a, b) of C2

c such
that {σa, σb} = {si , sj }.

b) By i), there are unique oriented edges eκ = (a, b), ẽκ = (
ã, b̃

) ∈ κ with [{σa, σb} =
{si , sj } and {σã, σb̃

} = {sj , sk}]. Suppose there is no tile T with eκ , ẽκ ∈ ∂T . Without
loss of generality, let T be the unique tile such that eκ ∈ ∂T and the two other vertices
of T correspond to the generators sj and sk . Then consider the directed cycle that only
uses edges (a, b) of C2

c with {σa, σb} = {si , sj } where the two edges of ∂T are replaced
by the other two edges of ∂T . Clearly, no edge of this cycle is an edge of κ . This
contradicts the assumption that κ is a cut path.

c) The argument to prove ii) can be used to show that there are unique tiles T1 and T2
such that eκ , eκ ∈ ∂T1 and ẽκ , eκ ∈ ∂T2. But ∂T1 and ∂T2 clearly share a directed edge
(c, d) of C2

c with {σc, σd} = {sr , sn} that is distinct from eκ .

Corollary 1 Each cut path κ ∈ CP(C2
c ) determines a unique set of n − 2 tiles:

tile(κ) =
{
T1, . . . , Tk

∣
∣
∣

∂Ti contains
2 edges of κ

}
.

We tacitly order the tiles Ti ∈ tile(κ) from bottom to top in C2
c ⊂ S1 × R: if zi denotes

the smallest third coordinate of all points in Ti then 1 ≤ i < j ≤ n − 2 implies zi ≤ zj .
Lemma 3 states that C2

c is isomorphic to C2
c̃ for all c, c̃, so it is impossible to recover

c ∈ Cox(W, S) from C2
c . As any cut path κ provides one oriented edge for every edge of �,

we have an induced Coxeter element cκ , its reduced expressions are uniquely determined
up to commutations.

Corollary 2 Let (W, S, c) be a Coxeter triple, κc be the associated primary cut path and cκc

be the Coxeter element obtained from κc. For any reduced expression w of cκ , we have
w ∼ rev(c).

Proof The edges of C2
c pointing from Vψ(wwwc◦◦◦) to Vwwwc◦◦◦ define a Coxeter element that

correspond to the equivalence class [rev(c)]∼.
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Example 8 (Example 7 continued)
Figure 9 also illustrates Corollaries 1 and 2. First, the set of tiles tile(κ1) and tile(κ2)

associated to κ1 and κ2 according to Corollary 1 are illustrated. This example shows that
the set of tiles can coincide even if κ1 �= κ2. Moreover, the Coxeter element cκ1 is repre-
sented by s4s3s2s1 and s4s3s2s1 ∈ [rev(cLod)]∼. Similarly, cκ2 is represented by s1s3s2s4
and s1s3s2s4 ∈ [rev(calt)]∼.

Corollary 3 The map  : CP(C2
c ) → Cox(W, S) sending a cut path κ to its corresponding

Coxeter element cκ is surjective and satisfies |−1(c)| = h for each c ∈ Cox(W, S). In
particular, |CP(C2

c )| = 2n−1h.

Proof We only prove |−1(c)| = h. There are h choices in C2
c to pick a vertex a with

σa = s1. Now a determines a unique tile T1 with a ∈ ∂T1 and there is a unique directed
edge eκ

1 of ∂T1 that reflects the order of s1 and s2 in c. Now consider the unique tile T2 whose
vertices map to s2, s3 and s4 under σ such that the orientation of T1 ∩ T2 reflects the order
of s2 and s3 in c and proceed similarly with the following generators until all generators
have been considered. This process determines a unique cut path κ with (κ) = c after
choosing one of the h possible initial vertices σ at the bottom of C2

c .

3.5 Crossings of Cut Paths

Definition 7 (crossing of cut paths, initial and final side, crossing tile)
Let (W, S, c) be a Coxeter triple and κc, κ

∗
c ∈ CP(C2

c ) be the associated primary and
secondary cut paths.

a) A cut path κ crosses κc if tile(κ) ∩ tile(κc) �= ∅ and there are edges e1, e2 ∈ κ with
e1 ∈ Cwc◦ and e2 ∈ Cψ(wc◦).

b) Let κ be a cut path that crosses κc. The initial side of κ is the connected component of
C2
c \ (κc ∪ κ∗

c ) that contains the edge of κ \ (κc ∪ κ∗
c ) whose midpoint has minimal third

coordinate. The final side of κ is the connected component of C2
c \ (κc ∪ κ∗

c ) that is not
the initial side of κ .

c) Let κ be a cut path that crosses κc. The crossing tile T κ,c of κ in C2
c is the first tile of

tile(κ) (with respect to the bottom-to-top order) that contains an edge of κ in the final
side of κ .

Example 9 (Example 7 continued)
We illustrate Definition 7 in Fig. 10. The cut path κ̃1 crosses κ1 while κ̃2 does not cross κ2.

In both cases, the shared tiles are shaded. The two edges in κ̃1 and κ̃2 on the boundary of
the shared tiles are indicated by �. In the first case, the two edges lie in different connected
components of C2

c1
\(κ1 ∪κ∗

1 ), hence the cut paths cross. The initial side of κ̃1 is located over
the brace, and coincidentially the crossing tile is exactly the shaded region. In the second
case, (s2, s1), (s2, s3) ∈ κ̃2 do not lie on different connected components, hence the cut
paths κ̃2 does not cross κ2.

Definition 8 (Initial and final segments)
Let (W, S, c) be a Coxeter triple, κc ∈ CP(C2

c ) be the associated primary cut path, T c ∈
tile(κc) and κ ∈ CP(C2

c ) with tile(κ) = {T1, . . . , Tn−2}.
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Fig. 10 The cut path κ̃1 crosses the primary cut path κ1 (left) and the cut path κ̃2 does not cross the primary
cut path κ2 (right)

a) Let i ∈ [n − 1]. The initial segment of κ up to Ti is defined as

{
e ∈ κ

∣
∣ e ∈ ∂Tj for j ∈ [i − 1]} ∪

{
(a, b) ∈ κ

∣
∣
∣ σa = s1 or σb = sA

1

}

and the final segment of κ starting at Ti is defined as

{
e ∈ κ

∣
∣ e ∈ ∂Tj with j > i

} ∪
{
(a, b) ∈ κ

∣
∣
∣ σa = sp or σb = sA

p

}

where s1, . . . , sp are successive vertices of � along a path of maximum length.
b) Let e1 = (a1, b1) and e2 = (a2, b2) be the distinct edges of ∂T c \ κc such that the

midpoint of e1 has smaller third coordinate than the midpoint of e2. The connected
component of C2

c \ (κc ∪ κ∗
c ) that contains e2 is denoted by out(T c).

c) Let I (T c) be the number of distinct initial segments of cut paths κ up to T c with edges
contained in C2

c \ out(T c).
d) Let F(T c) be the number of distinct final segments of cut paths κ starting at T c that

contain e2.

In Definitions 7 and 8, any cut path κ ∈ CP(C2
c ) can replace the primary cut path κc.

Moreover, concatenation of an initial segment counting towards I (T c) that differs from the
initial segment of κc and a final segment counting towards F(T c) yields a cut path that
crosses κc.

Example 10 (Example 7 continued)
We illustrate Definition 8 in Fig. 11. The edge in the initial segment of κ̃1 up to T

κ̃1
1 is

indicated by �. The two edges in the final segment of κ̃1 starting at T
κ̃1

1 are represented by
dashed arrows. A straightforward counting of crossing cut paths then verifies

I (T
κ1

1 ) = 2 and I (T
κ1

2 ) = 4 as well as I (T
κ2

1 ) = 1 and I (T
κ2
2 ) = 2.

The reasoning of Section 2.4 yields formulae for all positive integers i:

I (T
cLod
i ) = I (T

rev(cLod)
i ) = 2i and I (T

calt
i ) =

⎧
⎨

⎩

(2j
j

)
, if i = 2j ,

1
2

(2j
j

)
, if i = 2j − 1.
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Fig. 11 Two planar drawings of the 2-cover for �5. The cut path κ̃1 crosses the primary cut path κ1 (left) and
the cut path κ̃2 does not cross the primary cut path κ2 (right)

3.6 Enumerating c-singletons

Theorem 3 Let (W, S, c) be a Coxeter triple with associated primary cut path κc and set
of tiles tile(κc) = {T c

1 , . . . , T c
n−2}. The cardinality of the Cambrian acyclic domain Acycc is

Sc = 2n−2(h + 1) −
∑

i∈[n−2]
2n−2−i I (T c

i ).

Proof We count the cut paths of CP(C2
c ) twice. First, the cardinality of CP(C2

c ) equals
2n−1h, by Corollary 3. On the other hand, κ ∈ CP(C2

c ) satisfies precisely one of the
following statements:

i) κ crosses κc or κ∗
c , but not both;

ii) κ ⊆ Cwc◦ ∪ κc ∪ κ∗
c or κ ⊆ Cψ(wc◦) ∪ κc ∪ κ∗

c but κ �∈ {κc, κ
∗
c };

iii) κ ∈ {κc, κ
∗
c }.

We first claim that the number Qc of cut paths that cross κc equals the number of cut paths
that cross κ∗

c . Indeed, the automorphism ψ maps c to ψ(c) and induces an involution ϕ

between tile(κc) and tile(κ∗
c ) that extends to an involution between cut paths that cross κc and

cut paths that cross κ∗
c (where ϕ(T κ,c) is the crossing tile of ϕ(κ)). Thus, the number of cut

paths satisfying i) equals 2Qc. Moreover, this involution extends to an involution on CP(C2
c )

that maps cut paths contained in Cwc◦ ∪ κc ∪ κ∗
c to cut paths contained in Cψ(wc◦) ∪ κc ∪ κ∗

c .
As κc and κ∗

c are the only cut paths that correspond simultaneously to a c-singleton and a
ψ(c)-singleton, the number of cut paths satisfying ii) equals 2Sc − 4 by Lemma 5. Thus we
established

2Qc + (2Sc − 4) + 2 = 2n−1h or equivalently Sc = 2n−2h − Qc + 1. (2)

To analyze Qc, we partition the cut paths that cross κc according to their crossing tile T c
i

and observe that I (T c
i ) exceeds the number of cut paths with crossing tile T c

i by one (the
initial segment of κc is counted by I (T c

i ) but it is not the initial segment of a cut path with
crossing tile T c

i ). The number of final segments F(Ti) of cut paths starting at T c
i satisfies

F(Ti) = 2n−2−i because each final segment consists of n − 2 − i tiles (not counting T c
i )

and there are 2 valid choices to exit each tile. This gives

Qc =
∑

i∈[n−2]

(
I (T c

i ) − 1
)
F(T c

i ) =
∑

i∈[n−2]
2n−2−i I (T c

i ) −
(

2n−2 − 1
)

.

Substitution in Eq. (2) yields the claim.
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In Section 4, we first provide explicit formulae for Sc for two families of Cambrian
acyclic domains, and then characterize in Section 5 the Coxeter elements of (W, S) that
minimize and maximize Sc. These results are based on the following corollary obtained in
the previous proof.

Corollary 4 Let (W, S) be an irreducible finite Coxeter system of rank n and c ∈
Cox(W, S). Then the number of cut paths κ that cross κc is

Qc =
∑

i∈[n−2]
2n−2−i I (T c

i ) −
(

2n−2 − 1
)

.

Remark 3 For reducible finite Coxeter groups, the cardinality of a Cambrian acyclic domain
is the product of the cardinalities of the acyclic domains for each irreducible component
with respect to the corresponding parabolic Coxeter elements.

4 Examples

In this section, we determine explicit formulae for the cardinality Sc of a Cambrian acyclic
domain Acycc when c is a Coxeter element that minimizes or maximizes the total number
of sources and sinks of �c.

Definition 9 (Coxmax,Coxmax, path-like Coxeter system)
Let Coxmin denote the subset of Coxeter elements c ∈ Cox(W, S) whose oriented Coxeter
graph �c minimizes the total number of sources and sinks. Similarly, let Coxmax denote the
subset of Coxeter elements c ∈ Cox(W, S) whose oriented Coxeter graph �c maximizes the
total number of sources and sinks. We call a Coxeter system path-like if � is a path.

4.1 Maximum Total Number of Sources and Sinks

If c provides a bipartition of � then every node of �c is a source or a sink and there are n

sources and sinks in total. Theorem 2.3 of [2] implies that Sc does not depend on c as the
associated associahedra Assoc are isometric. In particular, Sc depends only on the type and
rank of (W, S).

Proposition 4 Let (W, S) be an irreducible Coxeter system of rank n > 1 and c ∈ Coxmax.

a) If (W, S) is path-like then

Sc =
⎧
⎨

⎩

2n−2(h + 3) − n · (n−1
n
2

)
, n even,

2n−2(h + 3) − 2n−1
2 · ( n−1

n−1
2

)
, n odd.

b) If (W, S) is of type Dn then

Sc =

⎧
⎪⎨

⎪⎩

2n−2(h + 3) − n · (n−1
n
2

) + 1
2 · ( n−2

n−2
2

)
, n even,

2n−2(h + 3) − (n − 1)
( n−1

n−1
2

) − ( n−3
n−3

2

)
, n odd.
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c) If (W, S) is of type E6, E7 or E8 then

Sc =

⎧
⎪⎨

⎪⎩

2n−2(h + 3) − 2(n − 2)
( n−2

n−2
2

) − 2 · ( n−4
n−4

2

) − (n − 3)(n − 4), n even,

2n−2(h + 3) − (n − 1)
( n−1

n−1
2

) + ( n−3
n−3

2

) − (n − 3)(n − 4), n odd.

Proof We aim for explicit formulae for I (T c
i ), 1 ≤ i ≤ n−2, apply Theorem 3 and simplify

the result using the closed form of a hypergeometric sum used in Section 2.4.
Suppose that (W, S) is path-like and recall from Example 10 that

I (T c
i ) =

(
2j

j

)

if i = 2j , and I (T c
i ) = 1

2

(
2j

j

)

if i = 2j − 1.

We prove the claim for n = 2k − 1, the proof is along the same lines if n = 2k. Theorem 3
and 22n+1 ∑n

i=0 2−2i
(2i

i

) = (n + 1)
(2n+2

n+1

)
imply

Sc = 2n−2(h + 1) −
∑

i∈[n−2]
2n−2−i I (T c

i )

= 2n−2(h + 1) − 2n−1

⎛

⎝
∑

j∈[k−2]

(
2−2j I (T c

2j−1)+2−(2j+1)I (T c
2j )

)
+2−(n−1)I (T c

n−2)

⎞

⎠

= 2n−2(h + 1) − 2n−1

⎛

⎝
∑

j∈[k−2]
2−2j

(
2j

j

)

+ 2−(2k−1)

(
2(k − 1)

k − 1

)

+ 1 − 1

⎞

⎠

= 2n−2(h + 3) − 2n−1
(

2−(2k−3)(k − 1)

(
2(k − 1)

k − 1

)

+ 2−(2k−1)

(
2(k − 1)

k − 1

))

= 2n−2(h + 3) − 2n − 1

2

(
n − 1
n−1

2

)

.

Suppose that (W, S) is of type Dn. Then I (T c
n−2) = I (T c

n−3) as well as

I (T c
i ) =

(
2j

j

)

if i = 2j , and I (T c
i ) = 1

2

(
2j

j

)

if i = 2j − 1,

for 1 ≤ i ≤ n − 3. Substitution of I (T c
i ) in the formula for Sc of Theorem 3 and a

computation similar to the previous case yields the claim.
Finally, we assume that (W, S) is of type En for n ∈ {6, 7, 8}. If i ∈ [n − 4] then

I (T c
i ) =

(
2j

j

)

if i = 2j , and I (T c
i ) = 1

2

(
2j

j

)

if i = 2j − 1,

as well as I (T c
n−3) = I (T c

n−4) and I (T c
n−2) = (n − 3)(n − 4). Theorem 3 implies the

claim.

Remark 4

a) Notice that Proposition 4 yields Eq. (1) of Galambos and Reiner if (W, S) is of type A

as W ∼= �n+1, calt ∈ Coxmax and h = n + 1 = m.
b) For the Coxeter groups of type I2(m) we obtain Sc = m + 1 for c ∈ Coxmax.
c) Substitution of the relevant Coxeter numbers yields Sc for exceptional finite Coxeter

groups and c ∈ Coxmax:
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(W, S) H3 H4 F4 E6 E7 E8

Sc 21 120 48 182 546 1840

4.2 Minimum Total Number of Sources and Sinks

Since � is a tree with at most one branching point, the minimum number of sources and
sinks of �c is two or three: if � is a path then |Coxmin| = 2 while |Coxmin| = 6 if � has
a branching point. In the latter case, we partition Coxmin into Coxa, Coxb and Coxc where
each set consists of the Coxeter element shown in Fig. 12 together with rev(c).

The characterization of isometry classes of associahedra Assoc in [2] implies that if
(W, S) is of type D or E then there are three distinct isometry classes of associahedra Assoc

that correspond to the sets Coxa, Coxb and Coxc unless

– (W, S) is of type D4, where Coxmin provides one isometry class;
– (W, S) is of type Dn with n ≥ 5, where Coxa and Coxb ∪ Coxc provide two isometry

classes;
– (W, S) is of type E6, where the Coxa ∪ Coxb and Coxc provide two isometry classes.

The next proposition provides explicit formulae for Sc and c ∈ Coxmin.

Proposition 5 Let (W, S) be an irreducible Coxeter system of rank n > 1 and c ∈ Coxmin.

a) Suppose that (W, S) is path-like then

Sc = 2n−2(h − n + 3).

b) Suppose (W, S) is of type Dn and n ≥ 4 then

Sc =
{

2n−2
(
h − n + 7

2

)
, c ∈ Coxa,

2n−2
(
h − n + 4

) − 2, c ∈ Coxb ∪ Coxc.

Fig. 12 Oriented Coxeter graphs �c with branching point and minimum total number of sources and sinks
(r = n − 2 in type D and r = n − 3 in type E)
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c) Suppose (W, S) is of type E6, E7 or E8. Then

Sc =

⎧
⎪⎪⎨

⎪⎪⎩

2n−2(h − n + 4) − 2n−4, c ∈ Coxa,

2n−2(h − n + 4) − 4, c ∈ Coxb,

2n−2(h − n + 4) + 2n−2 − 2n, c ∈ Coxc.

Proof Again, all claims follow from Theorem 3 together with the following formulae
for I (T c

i ).
First, if (W, S) is path-like then I (T c

i ) = 2i for all i ∈ [n − 2] and all c ∈ Cmin.
Second, if (W, S) is of type Dn and n ≥ 4. Then I (T c

i ) = 2i for all i ≤ [n − 4] and
c ∈ Coxmin as well as

I (T
ca
i ) =

{
2n−3, i = n − 3,

2n−3, i = n − 2,
I (T

cb
i ) =

{
1, i = n − 3,

2n−2, i = n − 2,
and I (T

cc
i ) =

{
2n−3, i = n − 3,

2, i = n − 2

where ca ∈ Coxa, cb ∈ Coxb and cc ∈ Coxc.
Third, if (W, S) is of type En ∈ {E6, E7, E8}. Then I (T c

i ) = 2i for i ∈ [n − 5] and all
c ∈ Coxmin as well as

I (T
ca
i ) =

⎧
⎨

⎩

2n−4, i = n − 4,

2n−4, i = n − 3,

3 · 2n−4, i = n − 2
I (T

cb
i ) =

⎧
⎨

⎩

1, i = n − 4,

2n−3, i = n − 3,

2n−2, i = n − 2
and I (T

cc
i ) =

⎧
⎨

⎩

2n−4, i = n − 4,

2, i = n − 3,

2n − 4, i = n − 2,

where ca ∈ Coxa, cb ∈ Coxb and cc ∈ Coxc.

Remark 5

a) If (W, S) is of type I2(m) then Coxmin = Coxmax. Notice that Proposition 4 and 5 yield
Sc = m + 1 in both cases for all m.

b) Consider (W, S) for D4. Then the formula for Coxb ∪ Coxc satisfies

2n−2(h − n + 4
) − 2 = 2n−2(h − n + 4 − 1

2

)
,

so both formulae of Proposition 5 yield Sc = 22. Moreover, if n ≥ 5 and c ∈ Coxmin

then Sc is minimal if and only if c ∈ Coxa.
c) Let (W, S) be of type En. The number of singletons Sc are:

n Coxa Coxb Coxc
6 156 156 164
7 472 476 498
8 1648 1660 1904

d) The minimum numbers of Sc for all exceptional finite Coxeter groups and c ∈ Coxmin

are:

(W, S) H3 H4 F4 E6 E7 E8

Sc 20 116 44 156 472 1648
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5 Lower and Upper Bounds

In this section, we use Theorem 3 and Corollary 4 to prove upper and lower bounds for
the cardinality Sc of a Cambrian acyclic domain Acycc by identification of minimizers and
maximizers for

∑n−2
i=1 2n−2−i I (T c

i ). As done in the proof of Proposition 2, we fix a Coxeter
triple (W, S, c) and label the generators of S along a longest path of � such that s1, . . . , sp
with p ∈ {n − 1, n} are successive vertices and in types D and E we have p = n − 1 and
the vertex sn is connected to sr where r = n − 2 (type Dn) or r = n − 3 (type E).

5.1 Cut Functions

Definition 10 (Cut function)
A function f : S → Z is a cut function of (W, S) if |f (s) − f (t)| = 1 for all non-

commuting pairs s, t ∈ S and f (s1) is odd. We write (f (s1), . . . , f (sn)) for the cut function
f and denote the set of all cut functions of (W, S) by CF(W, S). A generator s ∈ S is an
extremum of the cut function f if f (s) − f (t) has the same sign for all t ∈ S that do not
commute with s.

Since |f (s) − f (t)| = 1 for all non-commuting pairs s, t ∈ S, any cut function f

determines a unique Coxeter element cf ∈ Cox(W, S) such that f (s) < f (t) if and only
if (s, t) is a directed edge of �cf

and every Coxeter element determines a cut function up
to an even constant. Moreover, sources and sinks of �cf

correspond to extrema of f and,
among the h cut paths of −1

(
rev(cf )

)
from Corollary 3, the cut function f determines

a unique cut path κf as follows. Let b be the vertex of C2
c with σb = s2 such that the x-

coordinate xb of b as vertex of Gch satisfies xb ≡ f (s1) mod 2h and let (a, b) and (b, ã)

be the two edges of C2
c with σa = σã = s1. Now κf contains (a, b) if f (σa) > f (σb) and

(b, ã) if f (σb) < f (σã). We say that the cut path κf represents the cut function f .

Example 11 Consider (W, S) of type A4, the 2-cover C2
c with c = s2s1s4s3. The cut func-

tions f and g with f (s1, s2, s3, s4) = (−1, 0, 1, 2) and g(s1, s2, s3, s4) = (1, 0, 1, 0)

determine the Coxeter elements cf = s1s2s3s4 and cg = s2s1s4s3 indicated as shaded
subgraphs in the planar drawing of C2

c in Fig. 13. As f (s1) = −1 ≡ 9 mod 10 and
f (s1) < f (s2) as well as g(s1) = 1 ≡ 1 mod 10 and g(s1) > g(s2), we obtain the cut

Fig. 13 The cut functions f and g and their associated cut paths κf and κg and Coxeter elements cf and cg

in type A4
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paths κf and κg that represent the cut functions f and g as indicated. The extrema of f are
s1 and s4, while all generators in S are extrema of g.

Definition 11 (equivalence and crossing of cut functions)
Let f, g : S → Z be cut functions of the finite and irreducible Coxeter system (W, S).

a) f and g are equivalent, f � g, if and only if f (s) ≡ g(s) mod 2h for all s ∈ S.
b) f and g cross if and only if there exist s, t ∈ S and f̃ � f such that f̃ (s) < g(s) and

f̃ (t) > g(t).

Before showing that the notion of crossing cut functions f and g coincides with the
crossing of cut paths κf and κg that represent f and g in the next lemma, we illustrate the
definition with an example.

Example 12 (Example 11 continued)
Consider f ′(s1, s2, s3, s4) = (19, 20, 21, 22) and f ′′(s1, s2, s3, s4) = (0, 1, 2, 3). Then

f � f ′ and f �� f ′′. Moreover, f ′ crosses g as f ′ � f and f (s1) < g(s1) and f (s4) >

g(s4). Further, notice that the edges a and b required by Definition 7 show that κg crosses
κf while the edges c and d show that κf crosses κg .

Lemma 6 Let (W, S, c) be a Coxeter triple with associated 2-cover C2
c as well as cut

paths κf and κg representing cut functions f and g. The cut paths κf and κg cross if and
only if the cut functions f and g cross.

Proof Assume that the cut path κf crosses κg on C2
c . Since κf and κg are crossing, they

have a common tile T and there are edges e1 ∈ κg in the initial side of κf and e2 ∈ κg

in the final side of κf . These edges are also in C2
c \ κf . The common tile T allows us to get

specific representatives f̃ and g̃ for f and g by going down to the first tiles of κf and κg .
Indeed, consider the (unoriented) edge {a, b} ∈ κf such that σb = s2 and σa = s1 and
use the x-coordinate xb of b as the value f̃ (s1) = f̃ (σa) := xb ≡ f (s1) mod 2h. This
determines f̃ � f . Proceed similarly to obtain g̃. Further, since we have edges e1 and e2 on
distinct connected components of C2

c \ (
κf ∪ κ∗

f

)
, there exist s, t ∈ S such that

f̃ (s) < g̃(s) and f̃ (t) > g̃(t) or f̃ (s) > g̃(s) and f̃ (t) < g̃(t)

depending if the initial side of κf is “on the right” or “on the left” of κf .
Now suppose that f and g are crossing cut functions with equivalent cut functions f̃ � f

and g̃ � g such that f̃ (s) < g̃(s) and f̃ (t) > g̃(t) for some s, t ∈ S. Since the Coxeter
graph � is a tree and since a cut function h satisfies |h(a) − h(b))| = 1 for non-commuting
a, b ∈ S, every integral value between f̃ (s) and f̃ (t) is in the image of f̃ . Because of the
latter inequalities for f̃ (s) and g̃(s), this implies that there exists a generator u ∈ S such
that f̃ (u) = g̃(u). Following the procedure to obtain the cut path κh from a cut function h,
this implies that the representing cut paths κf and κg will have a common tile once we get
to a tile with vertex label u. Further, the inequalities guarantee that there will be one edge in
the initial side of κf and one edge in the final side of κf taken by κg .

5.2 Upper and Lower Bounds for the Cardinality of Cambrian Acyclic Domains

To obtain lower and upper bounds for Sc = |Acycc|, the next lemma about the minimum
and maximum number of extrema of a cut function f is essential. Recall that the maximum
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number of extrema is equal to n while the minimum number of extrema is equal to 2 if
(W, S) is path-like and equal to 3 if (W, S) is of type D or E.

Lemma 7 Let f be a cut function of the finite irreducible Coxeter system (W, S).

a) The number of cut functions that cross f is minimum if and only if the number of
extrema of f is maximum.

b) If (W, S) is path-like, then the number of cut functions that cross f is maximum if and
only if the number of extrema of f is minimum.
If (W, S) is of type D or E, then the number of cut functions that cross f is maximum
implies that the number of extrema of f is minimum.

Proof a) For m ∈ Z, the m-reflectionRm : CF(W, S) → CF(W, S) is the bijection

Rm(f )(s) := m − (f (s) − m) = 2m − f (s) for all s ∈ S.

If f ∈ CF(W, S) has less than n extrema then set

f ′ : S −→ Z via s �−→
{

f (s), if f (s) < maxt∈S f (t),

f (s) − 2, if f (s) = maxt∈S f (t).

Clearly, every extremum of f is an extremum of f ′ and there is at least one s ∈ S that
is extremal for f ′ but not for f , see Fig. 14. Now define

F := {g ∈ CF(W, S) | g crosses f } and F ′ := {
g ∈ CF(W, S)

∣
∣ g crosses f ′} .

We first prove |F ′| < |F | by showing that |F ′ \ F | < |F \ F ′|. To see this, let
μ := maxt∈S f (t) and notice that

Rμ−1(g) ∈ F \ F ′ for all g ∈ F ′ \ F ,

so the reflection Rμ−1 is an injection F ′ \F ↪→ F \F ′ which is not surjective because
f �∈ F ′ \F and Rμ−1(f ) ∈ F \F ′. Thus |F ′| < |F | and iterating this process yields
a cut function where every generator of S is extremal. To complete the proof, we show
that |F | = |G| if f and g are cut functions where every s ∈ S is extremal. This follows

Fig. 14 F ⊃ F ′ for cut functions f and f ′ as in the proof of Lemma 7. We have Rμ−1(f ) ∈ F \F ′ as well
as g ∈ F ′ \ F implies Rμ−1(g) ∈ F \ F ′
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from the observation that two cut functions where every s ∈ S is extremal differ only
by translation and reflection.

b) For n = 1 and n = 2 there is nothing to prove, as all generators are extremal for each
cut function. We therefore assume n ≥ 3 and prove the claim first if (W, S) is path-like.
A cut function f determines the Coxeter element cf and the number of cut functions
that cross f is equal to the number Qrev(cf ) of cut paths that cross κrev(cf ) in C2

c by
Lemma 6. By Corollary 4, we have

Qrev(cf ) =
∑

i∈[n−2]
2n−2−i I

(
T

rev(cf )

i

) − (
2n−2 − 1

)
,

where T
rev(cf )

i is tile i of κrev(cf ) and I
(
T

rev(cf )

i

)
is the number of distinct initial seg-

ments of cut paths κ up to T
rev(cf )

i with edges contained in C2
c \ out

(
T

rev(cf )

i

)
. The

reasoning of Example 10 shows

rev(cf ) ∈ {s1s2 · · · · · sn, snsn−1 · · · · · s1}
implies

I
(
T

rev(cf )

i

)
= 2i for all i ∈ [n − 2].

These are clearly the only Coxeter elements with I
(
T

rev(cf )

i

) = 2i for all i ∈ [n − 2]
and these values are maximum. Thus I

(
T

rev(cf )

i

)
attains its maximum value for each

i ≤ n − 2 if and only if f is strictly monotone on [i + 2]. In particular, Qrev(cf ) is
maximum if and only if the cut function f is strictly monotone. Thus, we conclude for
any path-like Coxeter system (W, S) that f has precisely two extrema if and only if the
number of cut functions that cross f is maximum.

To analyze type D, we first consider D4. Without loss of generality, we analyze
the following four cases for cf and κrev(cf ) as they (together with their reverse words)
represent all cut functions f in type D4:

Corollary 4 implies

Qca = 6 − 3 Qcb
= 6 − 3 Qcc = 6 − 3 Qcmax = 3 − 3.

This shows that if the number of crossing cut functions of f ∈ CF(D4, S) is maximum
then f has three extrema which is the minimum number of extrema in this situation.

We now consider an extension from (Dn, S) to (Dn+1, S̃) with n ≥ 4 by adding
a new vertex adjacent to the leaf s1 of �Dn and appropriate relabeling of generators.
Thus �Dn corresponds to the subgraph of �Dn+1 induced by S̃ \ {s1} and every Cox-
eter element cn ∈ Cox(Dn, S) can be extended in precisely two ways to a Coxeter
element cn+1 ∈ Cox(Dn+1, S̃). Clearly, we have

I (T
cn+1

1 ) ∈ {1, 2} as well as I (T
cn

i ) ≤ I (T
cn+1
i+1 ) ≤ 2I (T

cn

i ) for i ∈ [n − 2].
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Thus

Qcn+1 =
∑

i∈[n−1]
2n−1−i I

(
T

cn+1
i

) − (
2n−1 − 1

)

≤ 2n−1−1 · 2 +
∑

i∈[n−2]
2n−2−i ·

(
2I

(
T

cn

i

)) − 2
(
2n−2 − 1

) − 1

= 2n−1 + 2Qcn − 1

with equality if I (T
cn+1
i+1 ) = 2I (T

cn

i ) for all i ∈ [n − 2] and I (T
cn+1

1 ) = 2 which
happens if and only if out(T

cn+1
k ) and out(T

cn+1
� ) coincide for all 1 ≤ k, � ≤ n − 1.

Thus, if Qcn+1 is maximum then cn+1 ∈ Coxa ⊆ Coxmin. In other words, if the number
of cut functions that cross f is maximum then f has three extrema. This proves the
claim if (W, S) is of type D.

Finally, we prove the claim in type E. We first analyze E6. Clearly, removing the
vertex sp = s5 from �E6 yields a Coxeter graph of type D5. Let c be a Coxeter element
for type E6 and c̃ be the corresponding Coxeter element for (W̃ , S \ {s5}) of type D5.
Since I (T c

k ) = I (T c̃
k ) for 1 ≤ k ≤ 3, we obtain Qc = 2Qc̃ + I (T c

4 ) − 1.
A case analysis reveals that Qc is maximum in type E6 if and only if c ∈ Coxa∪Coxb.

Thus, if f is a cut function with the maximum number of crossing cut functions then
cf ∈ Coxa∪Coxb, that is, f has three extrema. To solve the remaining cases E7 and E8
we extend from type E6 to E7 and from type E7 to E8 similarly to the induction step
from Dn to Dn+1. Again, we obtain Qcn+1 ≤ 2n−1 + 2Qcn − 1 with equality if and only
if out(T cn+1

k ) and out(T
cn+1
� ) coincide for all 1 ≤ k, � ≤ n − 1. Therefore, if Qcn+1 is

maximum then cn+1 ∈ Coxa ⊆ Coxmin. This proves the claim if (W, S) is of type E7
and E8.

We now characterize the Coxeter elements c that maximize and minimize the cardinal-
ity Sc of a Cambrian acyclic domain Acycc.

Theorem 4
Let (W, S) be a finite irreducible Coxeter system, c ∈ Cox(W, S) and Sc = |Acycc|.

a) The cardinality Sc of Acycc is maximum if and only if c ∈ Coxmax.
b) The cardinality Sc of Acycc is minimum if and only if

i) c ∈ Coxmin and (W, S) is path-like or of type D4;
ii) c ∈ Coxa ∪ Coxb and (W, S) is of type E6;

iii) c ∈ Coxa and (W, S) is of type E7, E8 or Dn for n ≥ 5.

Proof a) This is a consequence of Theorem 3 and Corollary 4 combined with Lemma 7.
b) When (W, S) is path-like or of type D4, it follows immediately from Lemma 7. Oth-

erwise, to decide the remaining cases for type D and E, we use the relevant values for
I
(
T c

i

)
from the proof of Proposition 5. We have to analyze ca ∈ Coxa, cb ∈ Coxb and

cc ∈ Coxc. If (W, S) is of type D, we obtain

Qca = (n − 4)2n−1 + 2n−3 + 1,

Qcb = (n − 4)2n−1 + 3, and

Qcc = (n − 4)2n−1 + 3.
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The maximum is achieved by ca, cb and cc if n = 4 and only by ca if n ≥ 5. If (W, S)

is of type E, we similarly obtain

Qca = (n − 5)2n−2 + 5 · 2n−4 + 1,

Qcb = (n − 5)2n−2 + 2n−2 + 5, and

Qcc = (n − 5)2n−2 + 2n + 1.

The maximum is achieved by ca and cb if n = 6 and by ca if n ∈ {7, 8}. In particular,
this shows that the number of cut functions that cross f is not always maximized if the
number of extrema of f is minimized.
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