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Abstract

Let L be a finite n-element semilattice. We prove that if L has at least 127 -2"~8 subsemilat-
tices, then L is planar. For n > 8, this result is sharp since there is a non-planar semilattice
with exactly 127 - 2"~8 — | subsemilattices.

Keywords Planar semilattice - Planar lattice - Subsemilattice - Number of subalgebras -
Number of subuniverses - Computer-assisted proof - Finite semilattice

1 Our result and introduction

This paper is dedicated to the memory of Ivo G. Rosenberg (1934-2018). In addition to
his celebrated theorem describing the maximal clones of operations on a finite set, he has
published many important results in many fields of mathematics. According to MathSciNet,
thirteen of his papers belong to the category “Order, lattices, ordered algebraic structures”;
[2] is one of these thirteen and it is a great privilege to me that I was included.

In the present paper, semilattices (without adjectives) are understood as join-semilattices.
In spite of this convention, sometimes we write “join-semilattice” for emphasis. Note that
Theorem 1.1 below is valid also for commutative idempotent semigroups, because they
are, in a well-known sense, equivalent to join-semilattices. A finite semilattice is said to be
planar if it has a Hasse diagram that is also a planar representation of a graph. Our goal is
to prove that finite semilattices with many subsemilattices are planar. Namely, we are going
to prove the following theorem.

Theorem 1.1 Let L be a finite semilattice, and let n := |L| denote the number of its
elements. If L has at least 127 - 2"~8 subsemilattices, then it is a planar semilattice.
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Another variant of this result will be stated in Theorem 2.2.

Remark 1.2 For n > 9, Theorem 1.1 is sharp, since there exists an n-element non-planar
semilattice with exactly 127 - 2"~8 — 1 subsemilattices.

Remark 1.3 Every semilattice with at most seven elements is planar, regardless the number
of its subsemilattices. While (Ap; V) from Lemma 3.2 is an 8-element non-planar semilat-
tice with 121 subsemilattices, every eight-element semilattice with at least 122 = 122 28-8
subsemilattices is planar.

This remark will be proved at the end of Section 4.

Remark 1.4 Although the numbers 63.5-2"~7,31.75.2"°,15.875.2"=5 ... and 254.2"9,
508 -2"10 1016- 2711 . areall equal to 127 - 2718 we want to avoid fractions as well
as large coefficients of powers of 2. This explains the formulation of Theorem 1.1.

Our result is motivated by similar or analogous results for lattices and for congruences;
see Ahmed and Horvath [1], Czédli [3-5], and [6], CzEdli and Horvath [7], and Muregan
and Kulin [10]. In particular, [6] proves that if an n-element lattice L has at least 83 - on—8
sublattices, then L is planar.

Remark 1.5 Clearly, an n-element semilattice L can have at most 2" — 1 subsemilat-
tices, and it has this many subsemilattices if and only if L is a chain. Chains are planar
semilattices. Since, up to isomorphism, there are only finitely many n-element semilat-
tices, we can let u(n) := 1 4+ max{k : there is an n-element non-planar semilattice with
exactly k subsemilattices}. Putting these three facts together, it follows trivially that every
n-element semilattice with at least +(n) subsemilattices is planar, and this result is sharp.
So the novelty in this paper is that @ (n) is explicitly determined and it is given by a simple
expression.

1.1 Outline

Apart from half a page devoted to the proof of Remark 1.3 at the end of Section 4, the rest
of the paper is devoted to the proof of Theorem 1.1. In particular, Section 2 contains Theo-
rem 2.2, which is a useful reformulation of Theorem 1.1, and Lemma 2.4; both statements
are worth separate mentioning here. In Section 3, a deep theorem of Kelly and Rival [9]
for lattices is recalled and a related lemma, proved by our computer program, is presented.
While reading this section and the rest of the paper, Czédli [6] should be near, since it con-
tains some notation and figures that we need in the present paper. The rest of the proof is
given in Section 4.

2 Another form of our result and some lemmas
2.1 Relative number of subuniverses
A partial groupoid is a structure (A; V) such that A is a nonempty set and V is a map

from a subset Dom(V) of A2 to A. A subuniverse of a partial groupoid (A; V) is a subset
X of A such that whenever x, y € X and (x, y) € Dom(V), then x V y € X. The set of
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subuniverses of (A; V) will be denoted by Sub(A; V). For a semilattice (L; V), Sub(L; V)
is usually called the lattice of subsemilattices of (L; V). In spite of this terminology, note
that the collection of subsemilattices is only Sub(L; V) \ {J}. We often abbreviate (L; V)
and Sub(L; V) as L and Sub(L), respectively; sometimes, this convention is indicated by
L = (L; v). Similar convention applies for posets, lattices, and partial groupoids. All semi-
lattices, posets, lattices, and partial groupoids in this paper are automatically assumed to be
finite even if this is not repeated all the time. For more about these structures, the reader can
resort to the monograph Gritzer [8].

Since a large semilattice L has many (more than |L|) subsemilattices, it is reasonable to
relate their number to the number |L| of elements of L. Thus, motivated by Czédli [6], we
will adhere to the following terminology and notation.

Definition 2.1 The relative number of subuniverses of an n-element finite partial groupoid
(A; V) is defined to be and denoted by

o (A; V) := | Sub(A; V)| - 287"

Furthermore, we say that a finite semilattice L has o-many subsemilattices or, in other
words, it has o -many subuniverses if o (L) > 127.

Since | Sub(L)| is larger than the number of subsemilattices by 1, we can reformulate
Theorem 1.1 and Remark 1.2 as follows.

Theorem 2.2 [f L is a finite semilattice such that o (L) > 127, then L is planar. In other
words, finite semilattices with o -many subsemilattices are planar. Furthermore, for every
natural number n > 9, there exists an n-element semilattice L such that o (L) = 127 and L
is not planar.

For partial groupoids (Ag; V1) and (Az; V2), we say that (Ay; V1) is a weak partial
subgroupoid (or a weak partial subalgebra) of (Ay; Vo) if Ay € Az, Dom(Vv1) € Dom(Vy),
and x V1 y = x V2 y holds for every (x, y) € Dom(Vy). The following easy lemma has
been proved in Czédli [6]; it is Lemma 2.3 there.

Lemma 2.3

(i) If B = (B; V) is a weak partial subgroupoid of a finite partial groupoid A = (A; V),
then o (B) > a(A).

(i) In particular, if S = (S; V) is a subsemilattice of a finite semilattice L = (L; V), then
a(S)>=o(L).

We also need a deeper statement, which we formulate below.
Lemma 2.4 (Key Lemma) Let S = (S;V) and L = (L; V) be finite semilattices, and
assume that S is a subposet of L, i.e., S C L and for any x,y € S, we have x <g y if and

onlyifx <p y. Then a(S) > o (L).

Since subsemilattices are subposets, Lemma 2.4 implies part (ii) of Lemma 2.3. For a
poset P, we will use the standard notation

M(P) := {x € P : x has exactly one upper cover}.
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The covering relation in P will be denoted by <p; so x <p y will mean that |[{z € P :
x <z <y} =2.For X C P, the set of upper bounds of X is denoted by Up(X) := {y €
P :y>xforall x € X}. For X = {x1, ..., x,}, we will write Up(x1, ..., x) rather than
Up({x1, ..., xu}).

Proof of Lemma 2.4 For the sake of contradiction, suppose that the lemma fails. Then we
can pick semilattices S and L with minimal value of |L \ S| such that § is a subposet of L
and o (S) < o (L). We know from Lemma 2.3(ii) that S is not a subsemilattice of L. Hence,
we can pick a minimal element j € S such that j :=a Vg b # a Vv b for somea,b € S.
Letd :=a vy b € L. Clearly, a is incomparable with b (in notation, a || b), d < j, and
d ¢ S. Define B := S U {d}. With the ordering inherited from L, B = (B; <) is a subposet
of L.If d <p x for some x € B, then x € SNUs(a, b) gives that j = a Vsgb < x, whereby
d <p j and, in addition, j is the only upper cover of d in B. This proves the first half of the
following observation; the second half is an easy consequence of the first one.

d <p j,d € M(B),andso,fors € S,s || j = s || d. 2.1)

We are going to show that (B; <) is a (join-)semilattice. With the notation | gd := {x € B :
x <d},welet D := SN |pd. If x,y € B are comparable elements, then x Vp y trivially
exists and equals x Vv, y € {x, y}. We claim that whenever x,y € Band x || y,thenx Vg y
still exists and

XVBy = xVsj, ify=dandx | d, (2.2)
XVBYy = jVsy, ifx =dandd | y, (2.3)
XVBYy = x Vg, if {x,y} S Sandx vgy # j, (2.4)
XVpy =XxVsgy=], if{x,y} S, {x,y} € Dandx Vvgy=j, (2.5)
xXVpy =d, if{x,y} S S, {x,yJCDandxVvsy=j. (2.6)

Note that the inclusion {x, y} € § makes the assumption in (2.6) redundant; this inclusion
occurs there only for emphasis. It suffices to show that for each of (2.2)—(2.6), the element
given right after “x Vp y =" is the smallest element of Up (x, y).

In order to verify (2.2), assume that x || d. Thend ¢ Up(x, d), and it follows from (2.1)
that Ug (x,d) = Up(x, j) = Us(x, j), whereby we conclude (2.2). Since the role of x and
y is symmetric, we also conclude (2.3).

Next, assume that {x, y} € Sandx Vgy # j. If x Vg y > jorx Vs y || j,then
Jj & Us(x,y) gives thatd ¢ Up(x, y), whereby Up(x,y) = Ug(x, y) and we obtain that
x Vpyexists and equals x Vg y. If x Vg y < j, then there are two cases. First, if x Vg y < d,
then x Vp y = x Vg y is clear. Second, assume that x Vg y # d while x Vg y < j. Since
xVsgy e Sbutd ¢ S, xVsy # d.Sox Vs y £ d. The minimality of j gives that
xVsy=xVpy. Hence,x Vi y=x Vs y £ d yields that at least one of x < d and y < d
fails, whence d ¢ Upg(x, y). Consequently, Up(x, y) = Us(x,y)andx Vg y = x Vg y is
clear again. This proves (2.4).

Since the assumptions in (2.5) imply that d ¢ Up(x,y), we have that Up(x,y) =
Us(x, y), whereby (2.5) follows.

Finally, {x, y} € DandxVgy = j,then Up(x, y) = {d}UUs(x, y) = {d}U1s j implies
that x Vp y = d, proving (2.6). Now, as it was mentioned earlier, (2.2)—(2.6) imply that
B = (B; <) is a semilattice (B; V). Since B is also a subposet of L and |L\ B| = |L\ S|—1,
the minimality of |L \ S| yields that

o(B;V)>a(L;V). 2.7
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Next, for a subset Y of S, we denote by [Y]s the subsemilattice of (S; V) generated by
Y. The notation [Y]p is understood analogously. Consider the map

@: Sub(B; V) — Sub(S; V), defined by X — [X \ {d}]s;
our plan is to show that
each Y € Sub(S; Vv) has exactly one or two preimages with respect to ¢. 2.8)

In order to do so, assume that Y € Sub(S; V). There are two cases to consider; assume first
that j ¢ Y andlet Z := [Y]p. Let Zp := Y and, fori > 0, let

Ziy1:=ZiU{xvpy:x,yeZ;, x| y}. Then Z = U Zi, 2.9)
ieNp
where Ny denotes the set of nonnegative integers. Since Zo N {j,d} = W and j ¢ Y,
only (2.4) from the rules (2.2)—(2.6) can be applied when we compute Z; according to
(2.9). However, (2.4) does not produce any new element since Zg = Y € Sub(S; V). So,
Z1 = Zg,and 29) leadsto Y = Zg = Z; = Zp, = --- = Z € Sub(B; V). Since
o(Z) =9(Y)=[Y \{d}]ls =[Y]s =Y, Y has at least one preimage, Z =Y.

Now, let X be an arbitrary preimage of Y. Since ¥ = ¢(X) = [X \ {d}]s, we have that
X\{d} C Y, thatis, X € YU{d}. Thus, to show that Y has at most two preimages, it suffices
to show that Y € X, because then X will necessarily belong to {Y, Y U {d}}. Suppose, for a
contradiction, that Y € X, and pick an element # € Y \ X. Then, using X C Y U {d}, we
have thatu € ¥ = ¢(X) = [X \ {d}]s C [Y \ {u}]s. Hence, there is a smallest k such that
U=y Vs--- Vs yr withsome y1, ...,k € X\ {d} € Y \ {u}. Since Y € Sub(S; V),

Y1Vsy2Vsy¥3 Vs ya=(y1 Vs Y2 Vs y3) V§ Y4, ..., Y1 Vs (2.10)

all the joins y; Vg y2, y1 Vs y2 Vs y3 = (1 Vs y2) Vs )’3,]
-++ Vs yr =ubelongto Y,

and none of them is j since j ¢ Y. By the minimality of k, all the outer joins above apply
to incomparable joinands. Thus, only (2.4) of the five computational rules applies to these
outer joins, whereby

the joins in (2.10) equal the joins y; Vg y2, Y1 VB Y2 VB y3 =
1 VB Y2) VB Y3, Y1 VB Y2 VB y3 VB y4 = (y1 VB 02 VB} 2.11)
Y3) VB Y4, ..., Y1 VB -+ VB Yk = U.

Since all the yq, ..., yx belong to X, so does u, which is a contradiction. Thus, (2.8) holds

for the particular case j ¢ Y.

Second, we assume that j € Y. Let Z := Y U {d}. Rules (2.2)—(2.6) yield that for
incomparable x, y € Z, the join x Vp y belongsto {d, xVsj, jVsy, xVsy} C{d}UY = Z,
since Y is Vg-closed, j € Y,andd € Z. Hence, Z € Sub(B; V). Since ¢(Z) = [Z\{d}]s =
[Y]s = Y, we have obtained that Y has at least one preimage, Z. Now, let X € Sub(B; V)
be an arbitrary preimage of Y. We claim that

Y\ {j} S X CYU{d}. (2.12)

The second inclusion is clear by the definition of ¢. Suppose, for a contradiction, that the
first inclusion fails, and pick an element # € Y \ {j} such that u ¢ X. Note that the earlier
meaning of u, given before (2.10), is no longer valid. Observe that u € ¥ = ¢(X) =
[X \ {d}]s and X € Y U {d} imply that there is a smallest k such that u is of the form
U=y Vs Vs yr with some yi, ..., yr € X N (Y \ {u}). The equalities listed in (2.10)
and (2.11) are understood for the present situation. If none of the joins in (2.10) equals j,
then (2.11) is still valid and leads to u € X, which is a contradiction. If one of the joins in
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(2.10) is j, then this join is not the last one (which gives u), and this join can change to d in
(2.11) by rule (2.6). More precisely, it may happen that (y; Vs --- Vs yi—1) Vs y; equals j
in (2.10) for some i < kbut (y; Vp---Vpyi—1) Vpy;i =d in(2.11); note that i is uniquely
determined since k was the least possible number for (2.10) and so the joins in (2.10) form a
strictly increasing sequence. By the minimality of k, we have that j || y;+1. Hence, d || yi+1
by (2.1). It follows from (2.3) that

1 VB VBY) VB Yit1 =d VB Yit1 = j Vs Yi+1 = (Y1 Vs -+ Vs ¥i) VS Yi+l-

We have seen that there can be at most one i < k such that the i-th join in (2.10) and that in
(2.11) are different, but we still have thatu = y; Vp---Vpy, € X, which is a contradiction.
This proves (2.12).

Observe that

if Y\ {j} € Sub(S; v), then X = X U {j}, (2.13)
because otherwise j ¢ X and X = X \ {j}, and so (2.12) would give that X = X \ {j} C
Y u{dh\{j} =X\ {j}) U{d}, which would lead to the contradiction
JE€Y = oX) =[X\{d}ls
CHN\N{HU{dh\{dlls S Y \{jHs =Y\ {j}
Hence, if Y \ {j} € Sub(S; V), then

2.12
UG € XU A
shows that X € {Y, Y U {d}}, whereby Y has at most two preimages X.

Thus, we can assume that in addition to j € Y, we have that Y \ {j} ¢ Sub(S; V). Then,
since Y is Vg-closed but Y\ {j} is not, there are x, y € Y \ {j} such that j = x Vg y. Clearly,
x || y. We obtain from (2.12) that x and y belong to X, whence x Vg y € X. It follows from
(2.5)and (2.6) thatx Vg y € {j,d}.If x Vg y = j, then j € X,

X C YU{d} (2.14)

2.12) 2.12)
Y=x\huljl € XU{jl=X < ruld, (2.15)

and in the same way as (2.14) did, (2.15) implies that Y has at most two preimages.
Similarly, if x Vp y =d, thend € X and
) ] (2.12) (2.12)
YUldh\{j} =X \{jhpuld} € XU{dl=X < YU{d}

showing that X € {(Y U {d}) \ {j}, Y U {d}}, which gives again that there are at most two
preimages X of Y. Hence, we have shown that if j € Y, then Y has one or two preimages.
Now, after that all cases have been considered, (2.8) has been proved. As a particular
case of (2.8), we know that ¢ is a surjective map. It is a trivial consequence of (2.8) that
2.1 Sub(S; V)| > | Sub(B; V)|. Dividing this inequality by 2.2181-8 — 2IBI-8 e obtain that
o (S; V) > a(B; Vv). This inequality and (2.7) yield that o (S; V) > a(L; V), contradicting
our initial assumption and completing the proof of Lemma 2.4. O

3 A deep result of D. Kelly and I. Rival and a computer program

For a poset P, its dual will be denoted by P3. With reference to Kelly and Rival [9], the
Kelly—Rival list of lattices is defined as the set

Lk = {An, En. E}. Fy, Go, Hy :n > 0YU{B, B*,C,C°, D, D*.  (3.1)
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In addition to Kelly and Rival [9], the lattices of this list are also given by Diagrams 1-5 of
CzEdli [6], which is an open access paper that recalls Kelly and Rival’s theorem; however,
the reader need not see these diagrams at this stage. Note that A,, F;,, G, and H, are
selfdual lattices. Our main tool is the following theorem.

Theorem 3.1 (Kelly—Rival Theorem, taken from Kelly and Rival [9]) A finite lattice L is
planar if and only if for every X € Lkg, X is not a subposet of L.

Note that the original version of this theorem in [9] says more by stating that Lxg is the
unique minimal list that makes the theorem work, but we will not use this fact.

When working on paper [6], the author has developed a straightforward computer pro-
gram under Windows 10. This program, called subsize, is downloadable from the author’s
website. Using the straightforward trivial algorithm, the program computes | Sub(A; F)| for
an arbitrary partial algebra (A; F'), provided |A| is small and it has only (at most) binary
operations. The following lemma as well as some other statements in the rest of the paper
are proved by this program; an appropriate input file (a single file for all these statements)
is available from the author’s website; see the list of publications there. While the program
is reliable up to the author’s best knowledge and one can easily write another computer pro-
gram, the reader may want to (but need not) check the input file for correctness. (Note that
the notation used in the input file is taken from the figures in Czédli [6].) The output file,
from which the input file can easily be recovered, is an appendix of the arXiv version of the
present paper.

The join-semilattices occurring in the lemma below are the semilattice reducts of the
“small” lattices occurring in the Kelly—Rival list Lgr. Note that, for any lattice X, (X 8. V)
is the same as (X; A); this trivial fact made it easier to produce most parts of the input file
from one of the input files that go with [6].

Lemma 3.2 6(Ag) = 0(Ag; V) = 122, 6(B; V) = 108, 6(B%;v) = 114, 6(C; V) =
123, 6(C% V) = 113, 0(D; V) = 116, 0(D%; V) = 124, 6 (Eg; V) = 114, 0 (ES; V) =
110, o (E1;Vv) = 179.75, a(E‘S;\/) = 845, o(Fy;Vv) = 127, o(F1;Vv) = 88.75,
0 (Go; V) = 98.75, and o (Hp; V) = 99.5.

4 Fences, a snake, and the end of the proof

We need the following four posets. The enriched 8-element fence and the 10-element snake
are given in Fig. 1. (In spite of its name, the enriched 8-element fence consists of ten ele-
ments.) If we remove all the black-filled elements, labeled by i, from Fig. 1, then we obtain
the 9-element up-fence, its dual, the 9-element down-fence, and the 8-crown.

Lemma 4.1 If L is a finite join-semilattice such that o (L) > 127 (in other words, if L
has o -many subsemilattices), then none of the enriched 8-element fence, the 8-crown, the
9-element up-fence, the 9-element down-fence, and the 10-element snake is a subposet of L.

Proof Let (L; V) be a finite join-semilattice such that ¢ (L) > 127. Unless otherwise stated,
the join V is understood in (L; V). The notation for the elements given in Fig. 1 will be in
effect.

For the sake of contradiction, suppose that the 9-element down-fence, denoted here by X,
is a subposet of L. Clearly,aVvb < f.IfaVv b < f,then we canreplace f by f' :=a Vv b;
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9-element up-fence with 4 9-element down-fence with 4
i .

ef o) hJ

¥Ya ¥b Y¥c ¥d

8-crown
. i Awith ¢
Enriched
8-element < %,
fence

Fig.1 Fences, the 8-crown, and the 10-element snake; the empty-filled elements only

all the previous comparabilities and incomparabilities that are true for f will remain true
for f’. For example, if we had f/ < g thena < f/ would lead to a < g by transitivity, but
a £ gin X. In the next step, we omit f and rename f’ as f. Hence, we can assume that
a Vv b = fin L. We can continue similarly, and finally we can assume that

avb=f bvc=g, cvd=h, dve=j, gVvVh=i. “.1)

Note that these assumptions are indicated by grey-filled angles in Fig. 1. Note also that
these assumptions should be made in the order they are listed above; for example, we have
to “fix” the joins at g and & before introducing the additional element i := g Vv h. Clearly,
(4.1) implies that
bvh=iandgvd=i, 4.2)

for example, bVh = bvevh = gvh = i. Armed with the seven equalities given in (4.1) and
(4.2), X U{i} turns into a partial groupoid (X U {i}; Vx), which is a weak partial subalgebra
of (L; V). Using our computer program, we obtain that o (X U {i}; Vx) = 123.5. So, by
Lemma 2.3, 123.5 > o(L; V), contradicting o (L; V) > 127. Therefore, the 9-element
down-fence cannot be a subposet of (L; V).

The argument for the 8-crown is almost the same; the only difference is that (4.1) and
(4.2) are replaced by

avb=e, avd=h, bvc=f, cvd=g, fvg=i 4.3)
and
bvg=iand fVvd=i, 4.4
and, in addition, now the o -value of the partial groupoid {a, b, ..., i} is 125.

The treatment for the 9-element up-fence, denoted here by Y, is a bit more complex, but
the argument begins in the same way as above. After modifying f, g, and A, if necessary,
and letting i := f V g, we obtain a weak partial subgroupoid (Y U{i}; Vy) of (L; V), where
Vy and its domain are described by

avyb=f, bvyc=g, cVyd=h, [fVyg=i, (4.5)
aVyg=i, and fVyc=Ii. 4.6)

Note that,in L,aV g =a Vv bV g= fVg=i, which explains the first equality in (4.6);
the second one is explained similarly. In Fig. 1, (4.5) is visualized by grey-filled angles.
Unfortunately, o (Y U{i}; Vy) = 137 is rather large to draw any conclusion. Hence, we need
to deal with two cases. First, assume that 2 vV j =i in L. Then we add h Vy j = i and its
consequence, ¢ Vy j =i (explainedby ¢V j = cVdV j = hV j)tothe domain of Vy, and
o (YU{i}; Vy) turns out to be 122. Second, assume that 4V j =: k is distinct from i. Then we
add hVy j = k and its consequence, cVy j = k (explained againby cV j = cvdVj = hV j)
to the domain of Vy, and we obtain that o (Y U {i, k}; Vy) = 114.25. In both cases, we have
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obtained a weak partial subgroupoid of (L; V) such that the o -value of this subgroupoid is
at most 122. Hence, by Lemma 2.3, o (L; V) is at most 122, contradicting our assumption
that o (L; V) > 127. Therefore, the 9-element up-fence cannot be a subposet of (L; V).
Next, let Z denote the enriched 8-element fence. For the sake of contradiction, suppose
that Z is a subposet of (L; V). Observe that Z is a join-semilattice, whereby the computer
program, Lemma 2.4, and our assumption on (L; V) yield that 78 = 0 (Z; V) > a(L; V) >
127, which is a contradiction. Thus, the enriched 8-element fence cannot be a subposet of
(L; V). Neither can the 10-element snake, because its o -value is 125.5 by the program and
the same reasoning applies. O

Now, we are in the position to complete the proof of our result.

Proof of Theorem 2.2 Let (L; V) be a finite semilattice with o (L; V) > 127. For the sake
of contradiction, suppose that L is not planar. Regardless whether L has a smallest element
or not, add a new bottom element O to L and denote by (LYY; <) the poset we obtain in this
way. So (LYY; <) is the disjoint union of {0} and L, and 0 < x for all x € L. In another
terminology,

(LUO; <) is the ordinal sum of the singleton poset and L. 4.7

Clearly, with the ordering just defined, (LUO; V) is also a join-semilattice; in fact, (LUO; <)
is a lattice. Since Sub(L"%; V) is the disjoint union of Sub(L; V) and {X U {0} : X €
Sub(L; Vv)}, it follows that

o (LY v) =6 (L; V) > 127. 4.8)

If (LY9; v) had a diagram with non-crossing edges, then after deleting all edges start-
ing from 0, we would obtain a planar digram of (L; V), and this would contradict our
assumption on (L; V). Hence, (L'9; v, A), that is, (L'0; <) is a non-planar lattice. By The-
orem 3.1, the Kelly—Rival Theorem, there exists a lattice X = (X; <) € Lkg, see (3.1),
such that (X; V) is a subposet of (L'0; V).

If X = Fy, then (the Key) Lemma 2.4 together with Lemma 3.2 give that o (L'?; v) <
127, contradicting (4.8). If X is another lattice occurring in Lemma 3.2, then the contradic-
tion is even bigger since o (X; V) is smaller than 127.

If X = Ajor X € {Ay, Az, Ay, ...}, then X and, thus, (LY; V) contains the 8-crown
or the 9-element down-fence as a subposet, which contradicts Lemma 4.1. If X = E,, or
X = Eﬁ for some n > 2, then the 9-element up-fence or the 9-element down-fence is a
subposet of (LY; v), and Lemma 4.1 gives a contradiction again. Since the enriched 8-
element fence is a subposet of F» and each of F3, Fy, ...contains a 9-element up-fence as
a subposet, Lemma 4.1 excludes that X € {F, : n > 2}. Since the 10-element snake is a
subposet of each of the G,, n > 0, we obtain from Lemma 4.1 that X is not of the form
G,,. (Note that G is also taken care of by Lemma 3.2.) Finally, the possibility X = H,
for some n > 1 is excluded again by the same lemma, since each of these H, contains the
10-element snake as a subposet.

All X € Lxgr have been ruled out, but this contradicts the existence of such an X. This
proves the first sentence of Theorem 2.2.

Finally, we prove by induction that for n > 9, there exists an n-element non-planar
semilattice (L,; V) such that ¢ (L,; V) = 127. Define (Lg; V) := (Fp; V); we know from
Lemma 3.2 that o (Lg; V) = 127. Since (Lg; <) = (Fp; <) is a lattice, it is non-planar
by the (Kelly—Rival) Theorem 3.1. For n > 9, we let (L,; V) = (L;ng; V). Using the

equality from (4.8), we obtain that o (L,; V) = a(LUO V) =0 (L,—1;Vv) = 127. Since

n—1°
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G. CZEDLI

Ao\ {0}

Fig.2 These join-semilattices are planar

(Ly—1; V) is non-planar, so is (L,; V); see the obvious sentence right after (4.8). Thus,
we have constructed a semilattice (L,; V) with the required properties for all n > 9 by

induction. This completes the proof of Theorem 2.2. O
Proof of Theorem 1.1 Apply the first two sentences of Theorem 2.2 O
Proof of Remark 1.2 Apply the last sentence of Theorem 2.2. O

Proof of Remark 1.3 For the sake of contradiction, suppose that L is a non-planar join-
semilattice with at most seven elements. Then L0, see (4.7), is a non-planar lattice and
|LY0| < 8. Since Ay is the only member of the Kelly—Rival list Lxr with at most eight
elements, it follows from (the Kelly—Rival) Theorem 3.1 that LYY = Ap. But this is a
contradiction since then L = A \ {0} is a planar poset; see Fig. 2.

Since |Ag| = 8, the equality o (Ap; V) = 122 from Lemma 3.2 means that (Ag; V) has
exactly 121 subsemilattices. Since (Ag; <) is also a lattice, (Ag; V) is non-planar by (the
Kelly—Rival) Theorem 3.1.

For the sake of contradiction again, suppose that (L; V) is an eight-element non-planar
semilattice with at least 122 subsemilattices, that is, | Sub(L; V)| > 123. Then, as in (4.8),
(LY v) = o(L; V) > 123 and (L'Y; <) is a non-planar lattice. By (the Kelly—Rival)
Theorem 3.1, some X € Lkr is a subposet of L0, Clearly, |X| < |[LY0] = 9, and it
follows from Lemma 2.4 that o (X; V) > o (LY; v) > 123. Comparing these inequalities
with Lemma 3.2, which takes care of all at most nine-element members of Lxr (and some
larger members of LgR), it follows that X belongs to {C, D3, Fo}. Since |X| = 9 = |LY9)
and X € LY imply LY° = X, we conclude that (L; V) is obtained from some (X; V) €
{((C; V), (D%; V), (Fo; V)} by removing its bottom element. Hence, (L; V) is one of the
eight-element planar join-semilattices given on the right of Fig. 2, which is a contradiction.

O
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