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Abstract
Although d-complete posets arose along the interface between algebraic combinatorics and
Lie theory, they are defined using only requirements on their local structure. These posets
are a mutual generalization of rooted trees, shapes, and shifted shapes. They possess Stan-
ley’s hook product property for their P -partition generating functions and Schützenberger’s
well-defined jeu de taquin rectification property. The original definition of d-complete poset
was lengthy, but more succinct definitions were later developed. Here several definitions
are shown to be equivalent. The basic properties of d-complete posets are summarized.
Background and a partial bibliography for these posets is given.

Keywords d-complete poset · λ-minuscule element · Double tailed diamond · Hook length
poset · Partially ordered set

1 Introduction

This paper is entirely poset-theoretic, apart from some background and motivational
remarks. d-Complete posets arose in the area of overlap between combinatorics, represen-
tation theory, and algebraic geometry that is inhabited by Young tableaux, Coxeter (Weyl)
groups, Kac-Moody Lie algebras, and flag varieties. Generalizing (shifted) Young diagrams,
d-complete posets have been shown to possess both Stanley’s hook product property for
their P -partition generating functions [29] and Schützenberger’s well-defined jeu de taquin
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rectification property [28]. Specializing these hook identities gives generalizations of the
FRT hook formula for the number of standard Young tableaux to enumerations of the linear
extensions of d-complete posets.

d-Complete posets can be defined with various combinations of local structural axioms.
They have been classified with Dynkin diagrams [26]. We study the interplay between a
number of structural axioms and indicate which combinations of these axioms produce some
useful local structural properties. Both locally finite (all intervals are finite) and finite posets
are considered. Sections 4 and 7 contain conjectures that graph theorists may be able to
confirm by arguing that certain rank size growths are unbounded. We prove that the lengthy
original published [26] definition of “d-complete” is equivalent to the succinct most recent
[29] definition. This is the first step needed in a sequence of journal papers that will pro-
vide a complete derivation of the multivariate hook product identity for colored d-complete
posets [29] that was obtained with Dale Peterson. We are hoping this paper becomes a
standard reference for d-complete posets: Given the growing interest in these posets, we
summarize their properties, outline the foremost background material, and provide a partial
bibliography.

Before [26] was written, in 1994 an earlier notion of (colored) d-complete poset was
developed while combinatorializing [25] a basis theorem of Seshadri for certain represen-
tations of simple Lie algebras. There the structural axioms arose from relations within the
universal enveloping algebra of the Lie algebra. When the jeu de taquin rectification algo-
rithm was shown to be well-defined for d-complete posets, the remarkable “simultaneous”
property was also obtained. It seemed likely that some algebraic phenomena related to the
local structure of d-complete posets underlay this property; these phenomena would be
related to the reduced decompositions of λ-minuscule elements of Weyl groups. It is hoped
that the understanding of the interplay among the local structural axioms obtained here
will facilitate the development of an explanation of the interplay between the order the-
oretic structure of d-complete posets and some of the algebraic structures in this area of
mathematics.

For a full understanding of the algebraic roles of d-complete posets, the notion of col-
ored d-complete poset is needed. The notion of colored d-complete was shown [27] to be
essentially equivalent to the purely structural notion of d-complete considered here. This
paper sets the stage for a sequel in which the lengthy original definition of colored d-
complete poset is shown to be equivalent to the shorter current [29] colored definition. This
equivalence is also needed for the journal papers version of the conference proceedings con-
tribution [29]. To prepare for developing a notion of colored d-complete for locally finite
posets, here we are careful to delineate between the finite and locally finite cases.

Ishikawa and Tagawa have developed a category of finite posets that vastly extends
the category of finite colored d-complete posets. They have shown [10] that their “leaf”
posets also possess hook product identities for the associated colored P -partition generating
functions; these identities subsume those in [29]. Presently leaf posets are defined only
by the presentation of families of Hasse diagrams that generalize the families of diagrams
appearing in the classification [26] of d-complete posets. The hook property is so special
and this extension of it is so nice that it is natural to expect that there exists some underlying
algebraic or geometric explanation for it; currently their combinatorial generating function
calculations proceed class-by-class. As a first step toward a uniform understanding, it would
be desirable for someone to develop an axiomatic definition of the notion of leaf poset in
the spirit of the axiomatic considerations presented here. For example, the “short intervals
are small” property considered here may be useful for studying leaf posets, as well as for
the study of colored d-complete posets.
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In the original definition of d-complete poset, there were three local structural condi-
tions for each positive integer k ≥ 3. Although we show that there exist useful alternates
to or hybrids of these three axioms, for each k ≥ 3 each of the following three aspects
remains present: First, if a convex subset of the poset is isomorphic to the poset formed
by removing the maximum element from the fundamental “double tailed diamond” poset
dk(1), then it must be completable to an interval that is isomorphic to all of dk(1). Second,
the completing element must cover only elements within that interval. Third, certain kinds
of overlaps between two such intervals are prohibited. It is intriguing that some of the prop-
erties obtained have alternate derivations in which adding a local structure axiom hypothesis
of one of these three types allows one of the local structure axiom hypotheses of one of the
other types to be weakened or omitted. Further, some of the properties obtained for locally
finite posets have alternate derivations in which adding the assumption of finiteness allows
one of the local structure axiom hypotheses to be weakened or omitted. Such trade-offs may
parallel interactions among corresponding algebraic relations. More specific comments are
made after the statement of Theorem 4.4. We also study the interplay among our axioms in
Sections 3–8 so that we can compare the competing definitions of d-complete presented in
Section 9, and to prepare for proving their equivalence there.

Much of the structure of a d-complete poset is already significantly constrained by the
imposition of only the three k = 3 conditions. A poset satisfying these is called a “d3-
complete” poset; these posets may be interesting in their own right. In another sequel to
this paper, we visually characterize the global and the local structure of finite d3-complete
posets. This generalizes the classification of d-complete posets [26].

Section 2 presents the prototypical families of d-complete posets and gives additional
background, especially for colored d-complete posets. This paper then has three parts with
three sections apiece. The definitions needed for each part are presented in its first section
and the proofs appear in its last section. There are notions and results that pertain only to d3-
complete posets, and the proof details for the k = 3 conditions are slightly different than the
details for the k ≥ 4 conditions. Therefore Sections 3, 4, and 5 are concerned only with the
axioms needed for d3-complete posets, while Sections 6, 7, and 8 generalize many of those
results to the axioms needed for dk-complete posets for k ≥ 3. Section 9 presents several
definitions of d-complete posets and Section 10 presents basic properties of d-complete
posets. Section 12 describes appearances of d-complete posets.

2 Poset Terms, Prototypical d-Complete Posets, andMore Background

A poset is locally finite if every closed interval is finite. ‘Poset’ will mean ‘locally finite
poset’ unless ‘finite’ is assumed. Let P be a poset, and let u, v,w, x, y, z denote distinct
elements of P . We write x → y when y covers x. We extend this to write {x, y} → z for
x → z and y → z, to write w → {x, y} for w → x and w → y, and so on. Consult [32] for
the notions of the (Hasse) diagram of P , closed interval [w, z], convex set, connected poset,
connected components, and (shifted) Ferrers diagram. The following definitions come from
[4]: A (covering) chain in P is a set of elements x1, . . . , xn ∈ P for n ≥ 1 such that
x1 → x2 → · · · → xn. This chain C has length n− 1; this is denoted �(C) = n− 1. A rank
function on P is a function ρ : P → Z such that x → y implies that ρ(y) = ρ(x) + 1. We
say P is ranked if it has a rank function.

Definition 9.1 presents the definition of a “d-complete” poset. Here we present the pro-
totypical families of posets that motivated the development of that notion: A rooted tree is
a connected poset with a unique maximal element whose diagram is acyclic; see Fig. 1a.
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Fig. 1 Rooted tree (a) and shifted shape poset (b)

Given a Ferrers diagram for a partition of an integer, its shape poset is produced by rotating
it 45◦ clockwise and drawing covering edges between adjacent dots. Shifted shape posets
are similarly created from the shifted Ferrers diagrams for strict integer partitions. Figure 1b
displays the shifted shape poset for the strict partition (9, 6, 3, 1) of 19. Let k ≥ 3. The dou-
ble tailed diamond poset dk(1) is defined by Fig. 2a. Any (2k − 2)-element self dual poset
with exactly two incomparable elements is isomorphic to dk(1). While developing his the-
ory of P -partitions, Stanley obtained [31] hook length product identities for rooted trees,
shapes, and double tailed diamonds that generalized Euler’s generating function identity
for the number of integer partitions into no more than n parts, and he conjectured such an
identity for shifted shapes.

As product identities for boundedP -partitions on rectangular shapes and staircase shifted
shapes were derived Lie theoretically by the first author with Stanley, the Bruhat orders
on the quotients WJ of finite Weyl groups that are distributive lattices were classified
[24]. Their posets of join irreducible elements were called “minuscule” posets; these were
labelled with the root system and the dominant weight used to generate the Bruhat order.
Rectangular shapes, staircase shifted shapes, and double-tailed diamonds are minuscule.
Shapes, shifted shapes, the “filters” of other minuscule posets, and rooted trees are d-
complete. Finite connected d-complete posets have unique maximal elements. The top tree
of a finite connected poset with a unique maximal element is the rooted tree that consists of
the elements x such that {y : y ≥ x} is a chain. The shifted shape in Fig. 1b is a filter of the
staircase minuscule poset denoted d10(ω9); its top tree is circled. The top tree of a filter of a
minuscule poset is the Dynkin diagram for the Weyl group from which its Bruhat order was
formed. In the shifted shape the top tree is the Dynkin diagram D10. For n ≥ 3 the double
tailed diamond dn(1) is the minuscule poset dn(ω1), and its top tree is the Dynkin diagram
Dn. Hence for k ≥ 3 the subscript ‘k’ in dk(1) is the number of generators for the associated
Weyl (Coxeter) group of type Dk .

A finite connected poset with a unique maximal element is simply colored [27] if its
elements have been colored such that the elements in its top tree are distinctly colored,
every other element receives one of those colors, and no two elements in a chain interval
receive the same color. Inspired by a formulation [33] of Stembridge, we now [29] define
it to be a (simply) colored d-complete poset if: equichromatic elements are comparable,
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Fig. 2 Double tailed diamond poset dk(1) in (a) and overlapping d−
k -intervals (b)

any two elements with colors that are adjacent in the top tree are comparable, the colors
of two elements that are adjacent in the Hasse diagram are adjacent in the top tree, and in
the open interval between two consecutive equichromatic elements there are exactly two
elements whose colors are adjacent to that color in the top tree. Figures 1b and 3a display
such colored posets; the latter one is the exceptional minuscule colored d-complete poset
e7(7). The notion of colored d-complete poset was developed [25] when a combinatorial
linear algebra version of the geometric representation basis theorem of Seshadri that had
been used [24] to prove m-bounded P -partition identities was developed. For finite posets,
the notions of d-complete poset and of colored d-complete poset are essentially equivalent
[27]: Ignoring the colors of one of the latter produces one of the former. Given one of the
former, its elements may be colored in essentially only one way to produce one of the latter.
(The (colored) d-complete definition used in [27] was the order dual of the definition used
here and elsewhere.)

Dale Peterson introduced [2] the notion of a “λ-minuscule” element w of a Kac-Moody
Weyl group W . When W is simply laced, it was shown [27] for such an element that the
“ideal” (w) of the Bruhat order on W is a distributive lattice. It was further shown that the
order dual of a poset P is colored d-complete if and only if P arises as the poset of join
irreducible elements of such a distributive lattice (w) for some dominant λ. Here (w) ∼=
J (P ) in the language of [32]. Then, as the “heap” of w, the colored poset contains much
information [33] concerning the reduced decompositions of w.

The definitions of “d-complete poset” require that the intervals in the poset that are
isomorphic to dk(1) (or are nearly isomorphic to dk(1)) for k ≥ 3 are well behaved in certain
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Fig. 3 Minuscule poset e7(7) in (a) and the poset for˜E6(ωA − ωB) in (b)

respects. So one may view a d-complete poset as consisting of double tailed diamonds that
have been carefully “woven” together. The doubly infinite colored poset displayed in Fig. 3b
is generated from the weight λ = ωA − ωB for the exceptional affine Weyl group˜E6 in the
“numbers game” manner implicitly used in the proofs of Lemma 3.2 and Proposition 3.1
in [24]. In addition to satisfying our definition of d-complete for locally finite uncolored
posets, this colored poset also satisfies the requirements above for finite simply colored d-
complete posets, once the role of top tree has been taken by an embedded copy of the Dynkin
diagram. The intervals formed from the consecutive occurrences of a color in Figs. 1b and
3 are double tailed diamonds. In this paper both of the infinite uncolored posets in Fig. 4
qualify to be d-complete posets; see the Added Note.

Roughly speaking, the overall global structure of a finite connected d-complete poset
is that of a rooted tree, but with interspersed “slant irreducible” components [26].
These irreducible components fall into 15 classes, of which 14 are indexed by top trees
which are Dynkin diagrams of general type E. The sole member of the 15th class is
e7(7).
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Fig. 4 Locally finite posets

3 Definitions, Axioms, and Properties for k = 3

Let P be a poset with distinct elements u, w,w′, x, y, z. A diamond is a subset {w; x, y; z}
of P such that w → {x, y} and {x, y} → z. The bottom and top of the diamond are w and
z respectively, and the elbows are x and y. We say the top z is free if it covers only x and y.
An interval [w, z] is a d3-interval if it is a diamond {w; x, y; z} for some x, y ∈ P . Once
it is known that a diamond {w; x, y; z} forms all of the interval [w, z], we refer to z as the
maximum element. A subset {w; x, y} of P is a vee or a d−

3 -set if w → {x, y}. Note that a
d−
3 -set is convex. A d−

3 -set {w; x, y} is completed if there exists a completing element z such
that {w; x, y; z} is a d3-interval. Two d−

3 -sets {w; x, y} and {w′; x, y} are said to overlap.
Two d3-intervals (or diamonds) are distinct if their set symmetric difference is non-empty.
An interval [w, z] is short if there exists u such that w → u → z.

Fact 3.1 Let S = {w; x, y} be a d−
3 -set and let z ∈ P .

(a) If S ∪ {z} is a d3-interval, then S ∪ {z} = [w, z] and z covers x and y.
(b) If z covers x and y and no other elements, then S ∪ {z} is the d3-interval [w, z].

We call a structural property an “axiom” if we use it as part of a definition of the d-
complete property in Section 9 or near the end of Section 4.

Axioms A poset satisfies the

[Class I: Completion Axioms]

(VT) “Vees have Tops” axiom if w → {x, y} implies that there exists z such that
{x, y} → z, the
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(D3−C) “d−
3 -sets are Completed” axiom if for each d−

3 -set S there exists z such that
S ∪ {z} is a d3-interval, the

[Class II: Freeness Axioms]

(FT) “diamonds have Free Tops” axiom if the top element of each diamond covers
only the elbows of the diamond, the

(D3MF) “d3-interval Maxs are Free” axiom if the maximum element of each d3-interval
covers only the elbows of the interval, the

[Classes I/II: Completion/Freeness Axiom]

(D3−CF) “d−
3 -sets are Completed Freely” axiom if for each d−

3 -set S there exists z such
that S ∪ {z} is a d3-interval with maximum element z such that z covers only
elements from S, the

[Class III: Forbidden Structure Axioms]

(NCC) “No Criss Cross” axiom if there do not exist overlapping d−
3 -sets, and the

(D3MD) “d3-interval Maxs are Distinct” axiom if the maximum elements of distinct
d3-intervals are distinct.

At times, Axioms VT and FT together are referred to as Diamond I+II and Axioms D3−C
and D3MF together are referred to as Classic I+II.

Remark 3.2 Axioms D3−C, D3−CF, and FT obviously respectively imply VT, D3−C, and
D3MF. Also, Axioms D3−C and D3MF together imply D3−CF.

Properties A poset has the

(UPUE) “Upward Propagation of Up Edges” property if w ≤ y, w → x, and x 
≤ y

imply there exists z such that y → z and x ≤ z, the
(UM) “Unique Maximal element” property if it has a unique maximal element, the

(CLMEE) “Chain Lengths to Maximal Element are Equal” property if it has UM and if
every chain from an element w to the unique maximal element z has the same
length, the

(CLE) “Chain Lengths are Equal” property if whenever x < y all chains from x to y

have equal length, the
(SIS) “Short Intervals are Small” property if whenever [w, z] is a short interval, then

|[w, z]| ∈ {3, 4}, the
(DAI) “Diamonds Are Intervals” property if each diamond is an interval, the
(NTC) “No Triply Covereds” property if no element is covered by three elements, the
(UT) “Unique Top” property if each vee has exactly one top, and the

(UC3) “Unique Completion” property if each d−
3 -set has exactly one completing

element.

The ranked and connected properties are indicated with the labels (Rank) and (Conn).
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Remark 3.3 If Property NTC were to be regarded as an axiom, it would belong to Class
III since it could be viewed as prohibiting two more kinds of overlap between two d−

3 -
sets that are not prohibited by Axiom NCC: Let {w; x, y} and {w′; x′, y′} be two distinct
d−
3 -sets. Suppose these sets have a coincidence between their minimal elements and/or a

coincidence among their maximal elements. If {x, y} = {x′, y′}, then w 
= w′ and this is
prohibited by NCC. If {x, y} 
= {x′, y′} and w = w′, then Property NTC prohibits w = w′
from being covered by three or four distinct elements from {x, y, x′, y′}. (Axiom NCC
and Property NTC together do not prohibit the one remaining possibility, the “W”: here
|{x, y} ∩ {x′, y′}| = 1 and w 
= w′.)

It is easy to see that:

Fact 3.4 (DAI #1) If a poset P is FT or has No Triply Covereds or has Short Intervals are
Small, then it has Diamonds Are Intervals.

4 Results for k = 3

The implications in Theorem 4.1 below are displayed in tabular form, with the first four
columns displaying hypotheses that are Class I, II, III axioms or a property. For example,
Parts (k), (l), and (m) have the acronym D3−CF entered midway between the columns for
Class I and Class II axioms. This indicates that the Class I/II hybrid axiom “d−

3 -sets are
Completed Freely” is being assumed in these parts. Parts (l) and (m) together indicate that
the Class III axioms “No Criss Cross” and “d3-intervals Maxs are Distinct” are equivalent
in the presence of D3−CF. Parts (b)-(e) describe ways in which the easy-to-check “Vees
have Tops” axiom may be strengthened to the “d−

3 -sets are Completed” axiom needed for
a d-complete poset. Parts (e), (i), (l), (m), and (n) are concerned only with axioms; this
illustrates the interplay among the axioms mentioned in the introduction. For example, part
of Part (l) strengthens the weak Class II requirement contained in the Class I/II hybrid axiom
D3−CF to the full-strength Class II axiom D3MF when the Class III axiom NCC is present.
And without a Class I axiom being present, in Part (i) the Class III axiom NCC implies the
other Class III axiom D3MD when the Class II axiom D3MF is present. An entry of “etc.”
in the last column indicates that further conclusions may be drawn using one or both of the
listed conclusions to satisfy an earlier line in the table. The last part propagates an edge in a
vee upwardly along a chain when VT is present.

Theorem 4.1 The implications in Table 1 hold in a poset.

In Section 9 we see that the hypotheses of Parts (l), (m), and (n) satisfy the definition of “d3-
complete” poset. Posets satisfying these axioms satisfy all of the k = 3 axioms and have
the DAI, UT, and UC3 properties. Given this remark, it can be seen that Part (n) is closely
related to Part (l). We have included Part (n) because it gives a partial converse to Part (e),
and because it clarifies the misworded statement “We have just required . . .” on pp. 65 and
283 of [26] and [27]; that statement should have instead begun “It can be shown that . . .”.

Combining Remark 3.2, Fact 3.4, and Part (j) of Theorem 4.1, we have:

Corollary 4.2 A poset is FT if and only if it is D3MF and has Diamonds Are Intervals.
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Table 1 Implications for Theorem 4.1

I II III Property Conclusion(s)

(a) VT — NCC — UT

(b) VT — — DAI D3−C
(c) VT — — NTC D3−C
(d) VT — — SIS D3−C
(e) VT FT — — D3−C+D3MF

(f) D3−C — — UT DAI

(g) D3−C — NCC — UT, DAI, UC3

(h) D3−C — D3MD NTC NCC, etc.

(i) — D3MF NCC — D3MD

(j) — D3MF — DAI FT

(k) D3−CF — UC3 D3−C+D3MF

(l) D3−CF NCC — D3MF, D3MD, etc.

(m) D3−CF D3MD — NCC, D3MF, etc.

(n) D3−C D3MF NCC — VT + FT, etc.

(o) VT — — — UPUE

Now we consider finite posets. We believe that the converse of Part (d) above holds here:

Conjecture 4.3 If a finite poset is D3−C, then it has Short Intervals are Small (and is VT).

We propose a proof for this conjecture just before stating Conjecture 4.5. The next the-
orem presents some implications that may be deduced when the poset is finite. Parts (a)
and (b) present four fundamental structural properties that follow from the Upward Prop-
agation of Up Edges part above. Part (e) says that the converse of Theorem 4.1(e) is
known to hold when the poset is finite. The first part of Part (f) says that the D3−CF
hypothesis for the first part of Theorem 4.1(m) may be weakened to D3−C in the finite
case.

Theorem 4.4 The implications in Table 2 hold in a finite poset.

The poset on the left in Fig. 4 gives a counterexample to dropping the assumption of finite-
ness from Part (d) and from the second part of Part (f) of this theorem. Requiring Axioms
D3−C or D3−CF without requiring the completions of vees to be unique can lead to messy
situations if insufficient requirements have been imposed with Class II or Class III axioms
or with finiteness. But we have not considered Property UC3 as an axiom in this paper due to
space limitations. We believe that Parts (c) and (e) and the first part of Part (f) of this theorem
also do not hold when finiteness is dropped. The diagram on the left in Fig. 5 presents a
“seed” for a proposed counterexample to Part (c) and the diagram on the right does so for
proposed counterexamples to Part (e) and the first part of Part (f). The failure of the diagrams
generated from these seeds to “close up” in a neat finite fashion may correspond to some
kind of messy infinite algebraic quotient that has resulted from insufficient relations having
been imposed. In a similar vein, attempting to prove that the contrapositive “¬ SIS ⇒ ¬
D3−C ∨¬ finite” of Conjecture 4.3 is true when the diagram on the right in Fig. 5 is present
as a subdiagram also seems to generate an infinite poset.
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Table 2 Implications for Theorem 4.4

I II III Property Conclusion(s)

(a) VT — — Conn UM, CLMEE

(b) VT — — — Ranked, CLE

(c) VT — — NTC SIS

(d) D3−CF — — NTC

(e) D3−C D3MF — — VT+ FT

(f) D3−C — D3MD — NCC, NTC, UC3, etc.

Conjecture 4.5 There exist infinite locally finite posets that are counterexamples to drop-
ping the assumption of finiteness for Parts (c) and (e) and the first part of Part (f) of
Theorem 4.4.

Remark 4.6 Since VT and FT imply D3−C and D3MF, and D3−C and D3MF obviously
imply D3−CF, Theorem 4.4(d) implies that a finite poset has NTC whenever it is Diamond
I+II or Classic I+II.

Several definitions of d3-complete will be given for locally finite posets in Section 9.
For this paragraph, let us use that Classic definition to say that a poset is d3-complete if
it is D3−C, D3MF, and NCC. This provides a context to discuss the interplay among the
axioms and between the axioms and the assumption of finiteness, especially in regard to
forming other combinations of axioms that are equivalent to the Classic definition. Within
Class I, Axiom D3−C is stronger than VT. Within Class II, Axiom FT is stronger than
D3MF. It is interesting that in the diamond point of view, using the stronger FT compen-
sates for using the weaker VT in Theorem 4.1(e) so that one can still obtain the combination
D3−C plus D3MF needed in the d3-interval point of view for the Classic definition. Con-
versely, in the d3-interval point of view when NCC is present (Theorem 4.1(n)) or the
poset is finite (Theorem 4.4(e)), using the stronger D3−C compensates for using the weaker
D3MF so that one can still obtain the more convenient combination of VT plus FT in the
diamond point of view. What happens if the weaker Class I axiom VT is paired with the
weaker Class II axiom D3MF? By Theorem 4.1(c), strengthening the Class III axiom of
NCC by also assuming NTC to prohibit two more same-rank overlaps between two d−

3 -
sets allows one to satisfy the Classic definition of d3-complete with the combination of VT,

Fig. 5 Seeds for proposed counterexamples
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D3MF, NCC, and NTC. (This was done in some earlier editions of [28].) When the poset
is finite, Remark 3.2 and Theorem 4.4(d) indicate that this strengthening did not go too
far: here a finite poset that is d3-complete by the Classic definition already has the NTC
property.

5 Proofs for k = 3

Proof of Theorem 4.1 Parts (a), (b), (j), and (k) follow quickly from the definitions; Part (i)
also follows directly with a bit of thought. For Parts (c) and (d), note that: If VT is present,
then D3−C can fail at a d−

3 -set only if there is an “extra” chain from the minimum element
to the diamond top required by VT. Such a chain is ruled out by either NTC or SIS. For
Part (e), recall from Section 3 the implications FT ⇒ D3MF and FT ⇒ DAI. Then by Part
(b) we get D3−C.

For Part (f), given a diamond {w; x, y; z}, for {w; x, y} by D3−C there is a z′ such that
[w, z′] is a d3-interval. So UT implies z′ = z, implying that the diamond is an interval. For
Part (g), follow Remark 3.2 and Part (a) by Part (f).

For Part (h), suppose {w,w′} → {x, y}. Applying D3−C to {w; x, y} gives z such
that [w, z] is a d3-interval. Here D3MD implies that [w′, z] is not a d3-interval. So
there exists some u ∈ [w′, z] such that u 
∈ {w′; x, y; z}. Let v be the minimal such
element; we have w′ → v. Since v 
∈ {x, y}, this would violate NTC. So NCC
holds.

For Part (l), first note D3−CF ⇒ D3−C; add NCC with Part (g) to obtain UC3, which via
Part (k) implies D3MF. Then Part (i) gives D3MD. For Part (m), suppose {w,w′} → {x, y}.
Applying D3−CF to {w; x, y} gives z such that [w, z] is a d3-interval with z free. This z

covers exactly x and y in {w′; x, y}. So [w′, z] is a d3-interval. This contradicts D3MD at z.
For Part (n), first note D3−C ⇒ VT; add NCC with Part (a), which via Part (f) gives DAI.
Then Part (j) gives FT.

Part (o) was Proposition F1 of [26], which did not actually need finiteness.

Proof of Theorem 4.4 Part (a) was Propositions F2 and F3 of [26]. For Part (b), each com-
ponent has a unique maximal element. Then CLMEE can be used to construct a well-defined
rank function on each component. Property CLE follows.

For Part (c), a short interval [w, z] will be contained in a connected component. Let u

be such that w → u → z. Suppose |[w, z]| ≥ 5. So there exists x, y ∈ [w, z] such that
w, u, x, y, z are distinct. There exist chains from w to z that pass through x and through y.
Here CLE implies that these chains are of length 2. So w → {u, x, y}, contradicting NTC.

For Part (d), suppose w → {x1, y1, z1}. Applying D3−CF three times yields three dis-
tinct free completing elements x2, y2, z2. This axiom can be repeatedly applied three times
in this fashion ad infinitum, contradicting finiteness. For Part (e), note that D3−C implies
VT, and adding in D3MF gives D3−CF. Part (d) provides NTC, which was used in Fact 3.4
to get DAI. Then Theorem 4.1(j) gives FT.

To prove the first part of Part (f), suppose {x0, y0} → {x1, y1}. Applying axioms D3−C
and D3MD together twice implies that there exist distinct completing elements x2 and
y2. These axioms can be repeatedly applied twice in this fashion ad infinitum, contra-
dicting finiteness. The proof of the second part of Part (f) is the same as the proof of
Part (d), except now D3−C and D3MD are used instead of D3−CF to construct the infi-
nite succession of completing elements three at a time. For the third part use Theorem
4.1(g).
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6 Definitions, Axioms, and Properties for k ≥ 3

Let P be a poset. Here and below u, v, w, x, y denote arbitrary elements. We define convex
sets [w; x, y] ..= [w, x] ∪ [w, y] and [u, v; x, y] ..= [u; x, y] ∪ [v; x, y].

Let k ≥ 3. Consider the double tailed diamond (DTD) poset dk(1) of Fig. 2a. The two
incomparable elements b and c are its elbows. Its neck elements are f3, f4, . . . , fk and its
tail elements are a3, a4, . . . , ak . When k ≥ 4, all but the lowest of the neck elements are its
strict neck elements and all but the highest of the tail elements are its strict tail elements. A
Yk-set [w; x, y] ⊆ P is a convex set such that [w; x, y] ∼= [ak; b, c] ⊆ dk(1). Note that a Y3-
set is a vee. Suppose the elements of this set are w =.. wk → wk−1 → · · · → w3 → {x, y}.
Here wk, . . . , w3 are the stem elements of Yk . A �Yk-set [u, v; x, y] ⊆ P is a convex set of
the following form: we require {u, v} → wk and [u, v; x, y] = {u, v} ∪ [wk; x, y], where
[wk; x, y] is a Yk-set.

An interval [w, z] in P is a dk-interval if [w, z] ∼= dk(1) = {ak, . . . , a3; b,c; f3, . . . , fk}.
We say that [w, z] is a DTD interval if we do not want to mention k. Note that if [w, z] =
{w =.. wk, . . . , w3; x, y; z3, . . . zk

..= z} is a dk-interval, then [wh, zh] is a dh-interval for
3 ≤ h ≤ k. A neck element u in a dk-interval [w, z] is free if u covers only (an) element(s)
in [w, z]. A convex set is a d−

k -set if it is isomorphic to dk(1) − {fk}. When k ≥ 4, a d−
k -

set is an interval and thus may be referred to as a d−
k -interval. Here a d−

k -interval [w, z′]
may be described as {w = .. wk,wk−1, . . . , w3; x, y; z3, . . . , zk−2, zk−1

..= z′}. Returning
to k ≥ 3, such a d−

k -set is completed if there exists a completing element zk such that
{wk, . . . , w3; x, y; z3, . . . , zk−1, zk} is a dk-interval. Two dk-intervals are distinct if their
set symmetric difference is non-empty. Let k ≥ 4. Suppose [w, z′] is a d−

k -interval in which
u is the unique element covering w. If there exists w′ 
= w also covered by u such that
[w′, z′] is also a d−

k -interval, then the d−
k -intervals [w, z′] and [w′, z′] overlap. Overlapping

d−
k -intervals are shown in Fig. 2b: They differ only in their minimal elements [22].
The following statement is the analog of Fact 3.1 for k ≥ 4:

Fact 6.1 Let k ≥ 4. Let S = {wk, . . . , w3; x, y; z3, . . . , zk−1} be a d−
k -set and let zk ∈ P .

(a) If S ∪ {zk} is a dk-interval, then S ∪ {zk} = [wk, zk] and zk covers zk−1.
(b) If zk covers zk−1 and no other elements, then S ∪ {zk} is the dk-interval [wk, zk].

Axioms Let k ≥ 3. A poset satisfies the

[Class I: Completion Axiom]

(Dk−C) “d−
k -sets are Completed” axiom if for each d−

k -set S there exists an element z

such that S ∪ {z} is a dk-interval, the

[Class II: Freeness Axiom]

(DkMF) “dk-interval Maxs are Free” axiom if the maximum element of each dk-interval
covers only (an) element(s) in that interval, the

[Classes I/ II: Completion/Freeness Axiom]

(Dk−CF) “d−
k -sets are Completed Freely” axiom if for each d−

k -set S there exists an
element z such that S ∪ {z} is a dk-interval with maximum element z such that
z covers only (an) element(s) from S, the
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[Class III: Forbidden Structure Axioms]

(NODk−) “No Overlapping d−
k -sets” axiom if there do not exist overlapping d−

k -sets, and
the

(DkMD) “dk-interval Maxs are Distinct” axiom if the maximum elements of distinct
dk-intervals are distinct.

Remark 6.2 Each of these axioms subsumes the corresponding k = 3 axiom, with NCC
having been renamed NOD3−. Axiom Dk−CF obviously implies Dk−C. Axioms Dk−C
and DkMF together imply Dk−CF.

Properties Let k ≥ 3. A poset has the

(YECOI) “Y -stem Elements Covered Only Internally” property if each stem element of
a Yk-set is covered only by element(s) from that set, the

(N�Yk) “No �Yk-sets” property if there do not exists �Yk-sets, and the
(UCk) “Unique Completion” property if each d−

k -set has exactly one completing
element.

7 Results for k ≥ 3

Let k ≥ 3 throughout this section.

Proposition 7.1 (YECOI) If a VT poset has No Triply Covereds, then it has Y -stem
Elements Covered Only Internally.

Here is how we can extend a dk-interval to a d−
k+1-interval:

Lemma 7.2 (Add To Tail #1 (ATTk #1)) Consider any poset. Let {wk, . . . , w3; x,

y; z3, . . . , zk} be a dk-interval and let wk+1 be such that wk+1 → wk . If [wk+1; x, y] is a
Yk+1-set and the neck elements of [wk, zk] are free, then [wk+1, zk] is a d−

k+1-interval.

The hybrid axioms Dh−CF for 3 ≤ h ≤ k enable us to extend Yk-sets to nice dk-intervals:

Lemma 7.3 (Yk-sets are Completed Freely (YkCF)) Suppose a poset is Dh−CF for 3 ≤
h ≤ k. If {wk,wk−1, . . . , w3; x, y} is a Yk-set, then there exist elements z3 → z4 → · · · →
zk such that [wh, zh] is a dh-interval and zh is free for 3 ≤ h ≤ k.

If in addition we assume the Class III axiom at the next index, we can rule out a forbidden
structure:

Proposition 7.4 (N�Yk) Suppose a poset is NOD(k + 1)− and Dh−CF for 3 ≤ h ≤ k.
Then there cannot exist �Yk-sets.

In the following theorem, Parts (a), (b) (c), (d), (e), and the second part of (f) respectively
generalize Part (h), Part (k), the first part of Part (m), the second part of Part (l), Part (i), and
the first part of Part (l) of Theorem 4.1. The first part of Part (f) generalizes the third part of
Theorem 4.1(g), once D3−C has been strengthened to Dh−CF for 3 ≤ h ≤ k.
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Table 3 Implications for Theorem 7.5

I II III Property Conclusion(s)

(a) VT, Dk−C — DkMD NTC NODk−

(b) Dk−CF — UCk Dk−C + DkMF

(c) Dk−CF DkMD — NODk−

(d) Dh−CF NODh− — DkMD

(e) — DhMF NODh− — DkMD

(f) Dh−CF NODk− — UCk, DkMF

Theorem 7.5 The implications in Table 3 hold in a poset; here the letter “h” indicates that
the axiom is to be assumed for 3 ≤ h ≤ k.

The hypotheses for part (c) and (d) will be used in Section 9 to define dk-complete and
dh-complete posets respectively.

The remaining results assume the No Triply Covereds property. In practice these results
may most often be applied to finite posets via the following: By the second part of Theo-
rem 4.4(f) (or Theorem 4.4(d)), a D3−C poset has the No Triply Covereds property if it is
finite and is D3MD (or is D3−CF).

Lemma 7.6 (Add To Tail #2 (ATTk #2)) Consider a VT poset that has No Triply Covereds.
Let {wk, . . . , w3; x, y; z3, . . . , zk} be a dk-interval and let wk+1 be such that wk+1 → wk .
If [wk+1; x, y] is a Yk+1-set, then [wk+1, zk] is a d−

k+1-interval.

Lemma 7.7 (Yk-sets are Completed (YkC)) Consider a poset that is Dh−C for 3 ≤ h ≤ k

and has No Triply Covereds. If {wk,wk−1, . . . , w3; x, y} is a Yk-set, then there exist
elements z3 → z4 → · · · → zk such that [wh, zh] is a dh-interval for 3 ≤ h ≤ k.

The next result, which obtains the unique completion property a second time, generalizes
the result of following Theorem 4.1(h) by the last part of Theorem 4.1(g):

Proposition 7.8 (UCk #2) Consider a poset that is Dh−C for 3 ≤ h ≤ k and has No
Triply Covereds. If it is DkMD, then it has Unique Completion at k.

8 Proofs for k ≥ 3

Proof of Proposition 7.1 Suppose some stem element wi of a Yk-set [wk; x, y] is covered
by some u 
∈ [wk; x, y]. Apply UPUE from Theorem 4.1(o) to wi ≤ w3, wi → u, and
u 
≤ w3 to produce z 
∈ {x, y} such that w3 → z.

Proof of Lemma 7.2 Let u ∈ [wk+1, zk] be maximal such that u 
∈ {wk+1} ∪ [wk, zk].
Here maximality implies that u is covered by some element v of [wk, zk]. This v cannot
be a neck element, since those are free. But v ∈ {wk, . . . , w3, x, y} with u ≥ wk+1 would
violate [wk+1; x, y] being a Yk+1-set. So there is no such u. Hence [wk+1, zk] ∼= dk+1(1) −
{fk+1}.

Proof of Lemma 7.3 Here D3−CF says that {w3; x, y} is freely completed with a z3. And
{w4, w3; x, y} is a Y4-set. So Lemma ATT3#1 says that [w4, z3] is a d−

4 -interval. Now
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repeatedly alternate the application of Dh−CF and then ATTh#1 for 4 ≤ h < k to construct
the d−

h -intervals [wh+1, zh]. Finish with Dk−CF.

Proof of Proposition 7.4 Suppose [u, v; x, y] is a �Yk-set with {u, v} → wk ∈ [u, v; x, y].
Here [wk; x, y] is a Yk-set. Apply Lemma YkCF to construct a dk-interval [wk, zk] with
free neck elements z3, . . . , zk . Note that [u; x, y] and [v; x, y] are Yk+1-sets. So Lemma
ATTk#1 says that [u, zk] and [v, zk] are d−

k+1-intervals. But they are overlapping.

Proof of Theorem 7.5 Part (b) follows from the definitions for k ≥ 3. Since it has been
noted how the other parts reduce to parts of Theorem 4.1 when k = 3, suppose k ≥ 4.

(a) Let {wk, wk−1, . . . , w3; x, y; z3, . . . , zk−1} and {w′
k, wk−1, . . . , w3; x, y; z3, . . . ,

zk−1} be overlapping d−
k -intervals. Apply Dk−C to obtain zk such that [wk, zk] is a

dk-interval. By DkMD, there exists u ∈ [w′
k, zk] with u 
∈ {wk,w

′
k} ∪ [wk−1, zk]. Let

v be the minimal such u. Since wk−1 < v is not possible, it must be that w′
k → v.

Since [w′
k; x, y] is a Yk-set, this violates Proposition YECOI.

(c) Let [wk, zk−1] and [w′
k, zk−1] be overlapping d−

k -intervals. Apply Dk−CF to obtain zk

such that [wk, zk] is a dk-interval with zk free. Since zk covers only zk−1, we see that
[w′

k, zk] is a dk-interval. This contradicts DkMD.
(d) Let {wk, . . . , w3; x, y; z3, . . . , zk} and {ak, . . . , a3; b, c; f3, . . . , fk} be two dk-

intervals with zk = fk . Apply Dk−CF to [wk, zk−1] to produce z′
k such that [wk, z

′
k]

is a dk-interval with z′
k free. Suppose z′

k 
= zk . Here [x, y; zk, z
′
k] is a �Yk−1-set. This

would contradict Proposition N�Y(k-1), and so z′
k = zk . Hence zk is free, which

implies zk−1 = fk−1. This argument can be repeated to conclude that zh = fh for
k ≥ h ≥ 3. From Theorem 4.1(l) we have D3MD. So {x, y} = {b, c} and w3 = a3.
By NODh− for 4 ≤ h ≤ k we have wh = ah. Hence [wk, zk] = [ak, fh].

(e) Let {wk, . . . , w3; x, y; z3, . . . , zk} and {ak, . . . , a3; b, c; f3, . . . , fk} be two dk-
intervals with zk = fk . By DhMF for k ≥ h ≥ 4 we have zh−1 = fh−1. By D3MF we
have {x, y} = {b, c}. Now NCC requires w3 = a3. Finish as in the proof of Part (d).

(f) We note that for UCk we will not need the freeness of Dh−CF at h = k, but only
for 3 ≤ h ≤ k − 1. Let {wk, . . . , w3; x, y; z3, . . . , zk−1} be a d−

k -interval. Then
Dk−C gives a zk so that [wk, zk] is a dk-interval. Suppose that z′

k 
= zk also com-
pletes [wk, zk−1], now to a dk-interval [wk, z

′
k]. Here [x, y; zk, z

′
k] is a �Yk−1-set.

Since this would contradict Proposition N�Y(k-1), Property UCk holds. For DkMF,
let {wk, . . . , w3; x, y; z3, . . . , zk} be a dk-interval. Then Dk−CF gives a free complet-
ing element z′

k for the d−
k -interval [wk, zk−1]. Here UCk implies that z′

k = zk , and so
zk is free.

Proof of Lemma 7.6 Let u ∈ [wk+1, zk] be minimal such that u 
∈ {wk+1} ∪ [wk, zk]. Here
minimality implies that u covers some element v of {wk+1} ∪ [wk, zk−1]. Since u ≤ zk , we
cannot have v ∈ [wk, zk−1]. So v = wk+1, andwk+1 → u violates Proposition YECOI.

Proof of Lemma 7.7 In the proof of Lemma 7.3, replace each instance of ‘Dh−CF’ with
‘Dh−C’, replace each instance of ‘ATTh#1’ with ‘ATTh#2’, and delete all references to
‘free’ completions.
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Proof of Proposition 7.8 Given the generalization remark, suppose k ≥ 4. Let
{wk, . . . , w3; x, y; z3, . . . , zk−1} be a d−

k -interval. Then Dk−C gives a zk so that [wk, zk] is
a dk-interval. Suppose that z′

k 
= zk also completes [wk, zk−1], now to a dk-interval [wk, z
′
k].

Here [z3; zk, z
′
k] is a Yk−1-set. Lemma Y(k-1)C constructs uk−1 → uk−2 → · · · → u3

such that [zh, uh] is a dk+2−h-interval for k − 1 ≥ h ≥ 3. So [z3, u3] is a dk−1-interval.
Here [x; zk, z

′
k] and [y; zk, z

′
k] are Yk-sets. Use Lemma ATT(k-1)#2 on each of them

to see that [x, u3] and [y, u3] are d−
k -intervals. They are overlapping, which contradicts

Theorem 7.5(a).

9 Definitions for d-Complete Posets and Their Equivalences

We continue to consider locally finite posets. Our currently preferred (and shortest) def-
initions of dk-complete, d≤k-complete, and d-complete posets appeared in the paper [29]
published in the RIMS Kôkyûroku series. Invoke the parenthetical parts when k = 3:

Definition 9.1 (Kôkyûroku definitions) A poset is dk-complete if for every d−
k -set S there

exists an element that covers exactly the maximal element(s) of S and that does not
cover (both of) the maximal element(s) of any other d−

k -set. It is d≤k-complete if it is
dh-complete for every 3 ≤ h ≤ k and it is d-complete if it is dk-complete for every
k ≥ 3.

Alternatively, one could define these three notions using any one of the four combina-
tions of axioms from Sections 4 and 7 that are presented in Table 4. Once the remark in
Section 4 concerning the inadvertent double-defining of d3-complete in [26, 27] is taken into
account, Combination (a) of Table 4 at h = k was essentially used in those papers to define
dk-complete and d-complete finite posets. A nicely worded version of that combination
appeared in [22]. We refer to it as the Classic definition.

Now we relate the Kôkyûroku definitions of dk-complete and d≤k-complete to the four
combinations of axioms. For the notion of dk-complete, some of the (4+1)×[(4+1)−1] =
20 possible implications among these five criteria do not hold true at h = k alone. But
some do hold true. See Section 11 for further remarks. For the notion of d≤k-complete, all
of these 20 implications hold true when one or more of the two or three hypothesis axioms
is assumed for 3 ≤ h ≤ k:

Theorem 9.2 Let k ≥ 3. A poset is d≤k-complete if and only if it satisfies any one of the
Combinations (a) - (d) of axioms displayed in Table 4 for 3 ≤ h ≤ k. Hence it is d-complete
if and only if it satisfies any one of these combinations of axioms for k ≥ 3.

Table 4 Combinations (a) - (d)
of axioms for h ≥ 3 I II III

(a) Dh−C DhMF NODh−

(b) Dh−C DhMF DhMD

(c) Dh−CF NODh−

(d) Dh−CF DhMD
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10 Properties of d-Complete Posets

We take note of two important facts that are not used in this paper:

Fact 10.1 Any “filter” of a d-complete poset is d-complete, as is the disjoint union of two
d-complete posets.

For the first statement, note that removing an “ideal” of elements to produce a filter of P

does not adversely affect the satisfaction of the d-complete requirements for P .
The following theorem applies the results of Sections 4 and 7 to d-complete posets:

Theorem 10.2 Let P be a d-complete poset.

(a) The poset P satisfies all of the axioms defined in Sections 3 and 6 and possesses the
following properties defined there: UPUE, DAI, UT, and UCk.

(b) If P is finite, it also possesses all of the properties defined in Sections 3 and 6, except
for UM and CLMEE when P is not connected.

Here Part (a) follows from the observation that by Theorem 9.2 the hypotheses of all of
the Propositions and Theorems in Sections 4 and 7 that do not assume finiteness, NTC,
or SIS are satisfied. For Part (b), note that if P is finite, then the hypotheses of all of the
Propositions and Theorems in Sections 4 and 7 are satisfied, apart from Theorem 4.4(a).

We now study the necks and tails of DTD intervals in d-complete posets. In the following
statement, Part (a) restates Axiom DhMF for 3 ≤ h ≤ k and Part (b) follows immediately
from Proposition YECOI of Section 7:

Fact 10.3 Let P be a d-complete poset. Let k ≥ 3. Let {wk, . . . , w3; x, y; z3, . . . , zk} be a
dk-interval.

(a) A neck element zi of [wk, zk] can cover only element(s) in [wk, zk]: If zi is strict (i.e.
i ≥ 4), then it covers only zi−1. Otherwise (i.e. i = 3) it covers only x and y.

(b) If P has the No Triply Covereds property, then a tail element wi of [wk, zk] can be
covered by only element(s) in [wk, zk]: If wi is strict (i.e. i ≥ 4), then it is covered
only by wi−1. Otherwise (i.e. i = 3) it is covered only by x and y.

The next result says that the necks (tails) of two DTD intervals may intersect only in a
particular way. For Part (b), keep in mind that every finite d-complete poset has the NTC
property.

Proposition 10.4 Let P be a d-complete poset. Let 3 ≤ k ≤ k′.

(a) If there exists an element that is both a neck element for a dk-interval [wk, zk] and a
neck element for a dk′ -interval [ak′ , fk′ ], then [wk, zk] ⊆ [ak′ , fk′ ].

(b) If P has the No Triply Covereds property and there exists an element that is both a tail
element for a dk-interval [wk, zk] and a tail element for a dk′ -interval [ak′ , fk′ ], then
[wk, zk] ⊆ [ak′ , fk′ ].

Corollary 10.5 Let P be a d-complete poset. Let k ≥ 3. Let {wk, . . . , w3; x, y; z3, . . . , zk}
be a dk-interval. For each k′ ≥ k there is at most one dk′ -interval that contains
[wk, zk], and if such an interval exists it must be of the form {wk′ , . . . , wk, . . . w3; x, y;
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z3, . . . , zk, . . . , zk′ }. A neck element zi of [wk, zk] can be a neck element of only those dk′ -
intervals {wk′ , . . . , wk, . . . , w3; x, y; z3, . . . , zk, . . . , zk′ }. If P has the No Triply Covereds
property, then a tail element wi of [wk, zk] can be a tail element of only those dk′ -intervals
{wk′ , . . . , wk, . . . , w3; x, y; z3, . . . , zk, . . . , zk′ }.

11 Proofs of Equivalences and Properties

Proof of Theorem 9.2. Table 5 presents six implications for parts of the d≤k-complete state-
ment. The first five come from Sections 6 and 7. Here the ‘h = k’ and ‘h ≤ k’ entries
under “Realm” indicate whether the hypothesis of the implication needs to assume that
the axioms at hand hold merely at k or it needs to assume that the axioms hold for all
3 ≤ h ≤ k. The last implication is verified by composing two of the earlier implications
and then remembering one of its hypotheses. So we can finish this proof by relating the
Kôkyûroku definition to any of these combinations of axioms. We show that Combination
(d)⇒Kôkyûroku and that Kôkyûroku⇒Combination (c), both within the h = k realm. Let
k ≥ 3.

Suppose Combination (d) holds at h = k. Let S be a d−
k -set with minimum ele-

ment wk and maximum element zk−1 (when k ≥ 4) or maximum elements {x, y} (when
k = 3). Then Dk−CF gives some zk such that S ∪ {zk} is the dk-interval [wk, zk] and
zk covers only element(s) from S. Facts 6.1(a) and 3.1(a) imply that zk covers exactly
these maximum element(s) of S. Suppose that zk covers the maximum element(s) fk−1 (or
{b, c}) of some d−

k -set T , whose minimum element is denoted ak . Since zk covers zk−1
(or {x, y}) exactly, we have zk−1 = fk−1 or {x, y} = {b, c}. Since zk covers fk−1 (or
{b, c}) exactly, Facts 6.1(b) and 3.1(b) say that T ∪ {zk} is the dk-interval [ak, zk]. Here
DkMD says that [wk, zk] = [ak, zk], and so T must coincide with S. Hence Kôkyûroku
holds.

Suppose the Kôkyûroku definition of dk-complete holds at k ≥ 3. Let S be a d−
k -

set with minimum element wk and maximum element zk−1 (when k ≥ 4) or maximum
elements {x, y} (when k = 3). Then by Kôkyûroku there exists some zk that covers
these maximum element(s) of S exactly and that does not cover the maximum ele-
ment(s) of any other d−

k -set. Facts 6.1(b) and 3.1(b) say that S ∪ {zk} is the dk-interval
[wk, zk], and so Dk−CF is satisfied. Suppose {wk,wk−1, . . . , w3; x, y; z3, . . . , zk−1}
and {wk′ , wk−1, . . . , w3; x, y; z3, . . . , zk−1} are overlapping d−

k -sets. There exists some
zk that covers zk−1 (or {x, y}) exactly and that does not cover the maximal ele-
ment(s) of any other d−

k -set. Since wk′ 
= wk and the maximal element(s) of

Table 5 Implications in
Theorem 9.2 Implication Realm Citation/Justification

(a) ⇒ (c) h = k Remark 6.2

(c) ⇒ (a) h ≤ k Remark 6.2+Theorem 7.5(f)

(d) ⇒ (c) h = k Theorem 7.5(c)

(c) ⇒ (d) h ≤ k Theorem 7.5(d)

(b) ⇒ (d) h = k Remark 6.2

(a) ⇒ (b) h ≤ k (a) ⇒ (c) ⇒ (d); + (a)
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{wk′ , wk−1, . . . , w3; x, y; z3, . . . , zk−1} is (are) zk−1 (or {x, y}), we see that zk covers the
maximal element(s) of another d−

k -set. This contradiction implies that NODk− holds. So
Combination (c) is satisfied at h = k.

Proof of Proposition 10.4 Let 3 ≤ k ≤ k′. Let {wk, . . . , w3; x, y; z3, . . . , zk} be a
dk-interval and {ak′ , . . . , a3; b, c; f3, . . . , fk′ } be a dk′ -interval.

(a) Let 3 ≤ j ≤ k′ be maximal such that there exists 3 ≤ i ≤ k with zi = fj . Let
m ..= min{i −3, j −3}. Since [wk, zk] is a dk-interval, if m ≥ 1 use Fact 10.3(a) twice
to get zi−1 = fj−1. Similarly, if m ≥ 2 then zi−2 = fj−2. Continuing downward, we
conclude that zi−l = fj−l for l ∈ {0, . . . , m}. This includes the case m = 0. If i 
= j ,
then {i − m, j − m} = {3, h} with h > 3. So one of zi−m and fj−m is a diamond
top and thus covers two distinct elements while the other is the maximum element of
a dh-interval and thus by Fact 10.3(a) can only cover one element. This contradicts
zi−m = fj−m. Thus i = j and zi−l = fi−l for l ∈ {0, . . . , i − 3}. Since z3 = f3,
Axiom D3MD implies that [w3, z3] = [a3, f3]. So {x, y} = {b, c} and w3 = a3.

Suppose i < k. Then the element zi+1 exists and the choice of j implies that zi+1 
=
fi+1. Since [wk, zk] and [ak′ , fk′ ] are DTD intervals, we see that [x, y; zi+1, fi+1] is a
�Yi-set. This contradicts Proposition N�Yi. Thus it must be that i = k. So zt = ft for
t ∈ {3, . . . , k}. Here [wk, zk] and [ak, fk] are both dk-intervals with zk = fk . Hence DkMD
implies [wk, zk] = [ak, fk]. Therefore [wk, zk] ⊆ [ak′ , fk′ ].
(b) Let 3 ≤ j ≤ k′ be such that there exists 3 ≤ i ≤ k with wi = aj . Let m ..= min{i −3,

j − 3}. The argument above can be “reflected” to move up toward a diamond: Use
Fact 10.3(b) instead of Fact 10.3(a) to soon obtain wi−1 = aj−1. After analogizing
five more sentences (again using Fact 10.3(b) instead of Fact 10.3(a)), we arrive at
contradicting wi−m = aj−m. Thus i = j and wi−l = ai−l for l ∈ {0, . . . , i −3}. Since
w3 = a3, to avoid contradicting NTC it must be that {x, y} = {b, c}. Then z3 = f3 to
avoid contradicting NCC. Now note that z3 is both a neck element for the dk-interval
[wk, zk] and a neck element for the dk′ -interval [ak′ , fk′ ]. Then Part (a) implies that
[wk, zk] ⊆ [ak′ , fk′ ].

Proof of Corollary 10.5 Let k′ ≥ k ≥ 3 and let {wk, . . . , w3; x, y; z3, . . . , zk} be a dk-
interval. Suppose two dk′ -intervals contain [wk, zk]. Their elbows must pairwise coincide
with {x, y} and zk is a neck element of both dk′ -intervals. Using Proposition 10.4(a) for
two containments, we find that the two dk′ -intervals must be equal and have the claimed
form. Let zi (or wi) be a neck (respectively tail) element of [wk, zk]. If zi (or wi) is also
a neck (respectively tail) element of a dk′ -interval, then using Proposition 10.4 and the
first statement we find that that dk′ -interval must be the unique dk′ -interval that contains
[wk, zk].

12 Other Work on d-Complete Posets

For the most part, we list only papers that work in a substantive fashion with d-
complete posets that are more general than filters of minuscule posets or rooted trees. We
include structures that are closely related to d-complete posets: λ-minuscule elements of
Kac-Moody Weyl groups, their heaps, and Nakada’s “generalized Young diagrams”.
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Colors play no role in some appearances of d-complete posets, beginning with their
classification [26] and continuing with the jeu de taquin result of [28]. Ishikawa and
Tagawa used determinants and Pfaffians [9] to prove that many classes of slant irreducible
d-complete posets possess Stanley’s hook product property. For standard shifted Young
tableaux Konvalinka gave [15] a bijective proof of the branching recursion that implies the
hook product enumeration formula, and he began to develop this approach for proving the
hook product formula for counting linear extensions of d-complete posets. Riegler and Neu-
mann [30] use jeu de taquin slides with respect to a fixed linear extension of a poset P to
sort any labelling into an linear extension of P . They began to study this for d-complete
posets, showing that the linear extensions produced are uniformly distributed when P is
a filter of dn(1) (and hence d-complete), but not when P is a non-chain proper ideal of
dn(1) (and hence not d-complete). The website [5] has lists of connected d-complete posets
with up to 9 elements and a Mathematica procedure that determines whether a poset is
d-complete.

Some appearances of d-complete posets have initial statements that refer to uncolored
structures from pre-existing combinatorial problems, but at the same time have fuller col-
ored statements or have proofs that refer to a colored version of the d-complete poset. In
addition to the hook product identity [29] found with Peterson for d-complete posets, this
remark also applies to the generalizations of that identity found by Ishikawa and Tagawa for
leaf posets [10]. Okamura referred to the classification of d-complete posets to give a case-
by-case probabalistic proof [23] of the hook product formula for counting the number of
linear extensions of a d-complete poset. Nakada’s results concern “generalized Young dia-
gram” posets that are formed from Kac-Moody roots: In [17] his fractional “colored hook
formula” was a multivariate generalization of the formula used by Greene, Nijenhuis, and
Wilf for their probabalistic proof of the hook product formula for counting standard Young
tableaux. In [18] he presented his version of the multivariate hook product identity of [29].
Nakada and Okamura noted [20] that a uniform probability algorithm proof of a product for-
mula for counting linear extensions of these posets that was analogous to that of [23] could
be deduced in this context from [17]. After proving (q, t)-generalizations of multivariate
hook product identities for reverse plane partitions on shapes and shifted shapes, Okada
conjectured [22] an extension of it that would (q, t)-generalize the hook product identity of
[29] for d-complete posets. He confirmed this for rooted trees, and Ishikawa confirmed [8]
it for two of the simpler classes of slant irreducible d-complete posets. Kawanaka extended
[11] the Sato-Welter-Sprague-Grundy winning strategy for nim from shapes to d-complete
posets. Later he introduced [12] “finitely branching principal plain algorithm” games; it can
be seen using [27] that portions of the digraphs of these games arise in his Theorem 6.3
as the Hasse diagrams of lattices of filters of d-complete posets. Uncolored d-complete
posets can serve as “boards” on which jeu de taquin rectification procedures are performed
during the computation of cohomology products for some Schubert varieties in some flag
varieties. The “squares” of these boards do not need to be colored for the sliding mechan-
ics, but they need to be colored when one labels the Schubert varieties with elements of
the Weyl group. Some such results of Chaput and Perrin [3] for Kac-Moody flag varieties
use the well-defined jeu de taquin rectification result of [28] for some d-complete posets
that are not filters of minuscule posets. The K-theoretic Littlewood-Richardson results of
Buch and Samuel [1] refer only to minuscule posets, as do several cohomology computation
references of [1].

Colors play a central role in some appearances of d-complete posets, beginning with
their first formulation in [25]. Earlier, the product formula on p. 348 of [24] for the number
of linear extensions of a minuscule poset did not refer to colors. However, Theorem 11 there
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described a minuscule poset as a poset of certain colored coroots for its associated Weyl
group. Combining the remark on pp. 345-346 with Theorem 11, in hindsight that product
formula also expressed the number of reduced decompositions of a minuscule element of a
finite Weyl group (a colored problem) as a product over a poset of colored coroots. Peterson
extended this product-over-roots formula [2] for reduced decompositions to λ-minuscule
elements of Kac-Moody Weyl groups. For further information on Peterson’s work and the
development of the notion of d-complete in [25] from the work in [24], which later led
to [29], see Section 13 of [29]. Nakada’s overview [19] of [17, 18], and [20] notes that
Peterson’s formula can be deduced from the main result of any of those papers. Given the
connection between the linear extensions of colored d-complete posets and such reduced
decompositions that was described in [27] for the simply laced cases, a closely related hook
product formula for this number can be deduced from [23] or [29]. Also via this connec-
tion, the classification of d-complete posets in [26] gave a classification of the λ-minuscule
elements of simply laced Kac-Moody Weyl groups. Stembridge extended [33] this clas-
sification to all symmetrizable Kac-Moody Weyl groups. There Theorem 5.5 extended
Theorem 11 of [24] to use posets of coroots to describe the heaps of the λ-minuscule ele-
ments in all symmetrizable Kac-MoodyWeyl groups. Kleshchev’s and Ram’s Theorem 3.10
of [14] can be seen to be saying that the dimensions of certain homogenous irreducible mod-
ules of Khovanov-Lauda-Rouquier algebras are equal to the number of linear extensions of
associated d-complete posets. When the hook product expression of [23] or [29] is applied
here, this theorem generalizes the fact that the dimensions of the irreducible representations
of the symmetric group are given by the FRT hook formula for enumerating standard Young
tableaux.

Green’s “full heaps” [6] are candidates to be regarded as locally finite colored d-complete
posets once that definition is finalized; they play a central role in that book. Our Fig. 3b
appears as the full heap of his Figure 6.13. Lax refers to several of the axioms for d-complete
and colored d-complete posets when he uses minuscule posets to give uniform derivations
[16] of the “extreme” Plücker relations for the embeddings of minuscule flag varieties.
Michael Strayer has shown (personal communication) that a finite poset P can be colored in
such a way that the lattice J (P ) carries a representation of a simply laced Kac-Moody Borel
derived subalgebra in a certain natural “minuscule” fashion exactly when P is a simply
colored d-complete poset.

Added Notes Before this paper, the notion of “d-complete” was considered only for finite
posets. As this paper was being written, it was observed that most of the axioms and defini-
tions for finite d-complete posets continued to work well for locally finite posets, without
additions or modifications. However, recent work by Michael Strayer and the first author
indicates that it will be useful in the future to require that the No Triply Covereds property
holds as an axiom for an infinite locally finite poset to be called d-complete. Then the poset
on the left in Fig. 4 will no longer qualify to be d-complete. More recently, while revisit-
ing and extending Theorem 4.1.6(i) of [6], Strayer has obtained [34] a definition of locally
finite colored d-complete posets that is motivated by the consideration of representations of
Kac-Moody algebras.

Kim and Yoo evaluate integrals of the q-Selberg kind to give a new (class-by-class) proof
[13] of Stanley’s hook product property for all d-complete posets. Naruse and Okada use
formulas for products in the equivariant K-theory of Kac-Moody flag varieties to re-prove
and generalize [21] the multivariate hook product identity of [29] for d-complete posets.
The recent paper [7] by Ilango, Pechenik, and Zlatin is closely related to [3].
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