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Finite Semilattices with Many Congruences
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Abstract For an integer n ≥ 2, let NCSL(n) denote the set of sizes of congruence lattices of
n-element semilattices. We find the four largest numbers belonging to NCSL(n), provided
that n is large enough to ensure that |NCSL(n)| ≥ 4. Furthermore, we describe the n-element
semilattices witnessing these numbers.

Keywords Number of lattice congruences · Size of the congruence lattice of a finite
lattice · Lattice with many congruences

1 Introduction and Motivation

The present paper is primarily motivated by a problem on tolerance relations of lattices
raised by Joanna Grygiel in her conference talk in September, 2017, which was a contin-
uation of Górnicka, Grygiel, and Tyrala [5]. Further motivation is supplied by Czédli [1],
Czédli and Mureşan [2], Kulin and Mureşan [8], and Mureşan [9], still dealing with lattices
rather than semilattices.

As usual, Con(A) will stand for the lattice of congruences of an algebra A. Given a
natural number n ≥ 2 and a variety V of algebras, the task of

finding the small numbers in the set NC(V, n) :=
{|Con(A)| :A ∈ V and |A| = n} and describing the algebras
V witnessing these numbers

(1.1)

has already deserved some attention for various varieties V , because the description of the
simple n-element algebras in V for various varieties V and, in particular, even the Classifi-
cation of Finite Simple Groups belong to Eq. 1.1 in some vague sense. The present paper

� Gábor Czédli
czedli@math.u-szeged.hu
http://www.math.u-szeged.hu/czedli/

1 Bolyai Institute, University of Szeged, Szeged 6720, Hungary

Order (2019) 36:233–247

Received: 5 January 2018 / Accepted: 3 July 2018 / Published online: 7 July 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s11083-018-9464-5&domain=pdf
http://orcid.org/0000-0001-9990-3573
mailto: czedli@math.u-szeged.hu
http://www.math.u-szeged.hu/czedli/


addresses an analogous problem, which is obtained from Eq. 1.1 by changing “small” to
“large”. Of course, this problem is hopeless for an arbitrary variety V . However, if V is the
variety SLat∧ of meet-semilattices, see Remark 2.8 for this terminology, then we can benefit
from Freese and Nation’s classical description of the congruence lattices of finite members
of SLat∧; see [4]. Let us fix the following notation

NCSL(n) := NC(SLat∧, n) = {|Con(S)| : S ∈ SLat∧ and|S| = n}; (1.2)

the acronym NCSL comes from “Number of Congruences of SemiLattices”. Our target is to
determine the four largest numbers belonging to NCSL(n) and, in addition, to describe the
n-element semilattices witnessing these numbers.

1.1 Outline

The rest of the paper is structured as follows. In Section 2, we introduce a semilattice con-
struction, and we use this construction in formulating the main result, Theorem 2.3, to
realize our target mentioned above. This section concludes with a corollary stating that a
semilattice with sufficiently many congruences is planar. Section 3 is devoted to the proof
of Theorem 2.3.

2 Quasi-tree Semilattices and our Theorem

We follow the standard terminology and notation; see, for example, Grätzer [6, 7]. In par-
ticular, a ‖ b means that a and b are incomparable, that is, neither a ≤ b, nor b ≤ a.
Even without explicitly saying so all the time, by a semilattice we always mean a finite meet
semilattice S, that is, a finite member of SLat∧. Such an S = 〈S; ∧〉 has a least element
0 = ∧

S. We always denote S \ {0} by S+. Note that ∨, denoting supremum with respect to
the ordering inherited from 〈S; ∧〉, is only a partial operation and 〈S+; ∨〉 is a partial alge-
bra in general. If no two incomparable elements of S have an upper bound, then S is called
a tree semilattice.

Next, for a meet-semilattice S, the congruence τ = τ (S; ∧) generated by

{〈a ∧ b, a ∨ b〉 : a, b ∈ S+, a ‖ b, and a ∨ b exists in〈S+; ∨〉} (2.1)

will be called the tree congruence of 〈S; ∧〉. Of course, we can write a, b ∈ S instead of
a, b ∈ S+ above. Observe that for a, b ∈ S+,

{a, b} has an upper bound in S iff a ∨ b exists in 〈S+;∨〉; (2.2)

hence instead of requiring the join a∨b ∈ 〈S+; ∨〉, it suffices to require an upper bound of a

and b in Eq. 2.1. The name “tree congruence” is explained by the following easy statement,
which will be proved in Section 3.

Proposition 2.1 For an arbitrary finite meet-semilattice 〈S; ∧〉, the quotient meet-
semilattice 〈S; ∧〉/τ is a tree.

Definition 2.2 By a quasi-tree semilattice we mean a finite meet-semilattice 〈S; ∧〉 such
that its tree congruence τ = τ (S; ∧) has exactly one nonsingleton block. If 〈S; ∧〉 is a
quasi-tree semilattice, then the unique nonsingleton block of τ , which is a meet-semilattice,
and the quotient semilattice 〈S; ∧〉/τ are called the nucleus and the skeleton of 〈S; ∧〉.
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Some quasi-tree semilattices are shown in Figs. 1, 2 and 3. In these figures, the elements
of the nuclei are the black-filled ones, while the empty-filled smaller circles stand for the
rest of elements. Although a quasi-tree semilattice 〈S; ∧〉 is not determined by its skeleton
and nucleus in general, the skeleton and the nucleus together carry a lot of information on
〈S; ∧〉. In order to make the numbers occurring in the following theorem easy to compare,
we give them in a redundant way as multiples of 2n−6.

Theorem 2.3 If 〈S; ∧〉 is a finite meet-semilattice of size n = |S| > 1, then the following
hold.

(i) 〈S; ∧〉 has at most 2n−1 = 32 · 2n−6 many congruences. Furthermore, we have that
|Con(S; ∧)| = 2n−1 if and only if 〈S; ∧〉 is a tree semilattice.

(ii) If 〈S; ∧〉 has less than 2n−1 = 32 · 2n−6 congruences, then it has at most 28 · 2n−6

congruences. Furthermore, |Con(S; ∧)| = 28 · 2n−6 if and only if 〈S; ∧〉 is a quasi-
tree semilattice and its nucleus is the four-element boolean lattice; see Fig. 1 for
n = 6.

(iii) If 〈S; ∧〉 has less than 28·2n−6 congruences, then it has at most 26·2n−6 congruences.
Furthermore, |Con(S; ∧)| = 26 · 2n−6 if and only if 〈S; ∧〉 is a quasi-tree semilattice
such that its nucleus is the pentagon N5; see Fig. 4 and S1, . . . , S3 in Fig. 2.

(iv) If 〈S; ∧〉 has less than 26·2n−6 congruences, then it has at most 25·2n−6 congruences.
Furthermore, |Con(S; ∧)| = 25 · 2n−6 if and only if 〈S; ∧〉 is a quasi-tree semilattice
such that its nucleus is either F , or N6; see Fig. 4 and S4, . . . , S7 in Fig. 3.

Remark 2.4 Although Theorem 2.3 holds for all n ≥ 2, it neither gives the four largest
numbers of NCSL(n), nor does it say too much for n ≤ 5. For example, 25 ·2n−6 is not even
an integer if n ≤ 5. Hence, we note the following facts without including their trivial proofs
in the paper.

(A) NCSL(2) = {2 = 22−1}
(B) NCSL(3) = {4 = 23−1}
(C) NCSL(4) = {8 = 24−1, 7 = 28 · 24−6}
(D) NCSL(5) = {16 = 25−1, 14 = 28 · 25−6, 13 = 26 · 25−6, 12}. Note that 12 is

witnessed by M3 = 〈M3,∧〉; see Fig. 4.

A semilattice is planar if it has a planar Hasse diagram, that is a Hasse diagram in which
edges can intersect only at their endpoints, that is, at vertices. Theorem 2.3 immediately
implies the following statement.

Fig. 1 The full list of 6-element meet-semilattices with exactly 28 = 28 · 26−6 many congruences
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Fig. 2 Three twelve-element meet-semilattices with the same skeleton T and the same number, 26 ·212−6 =
1664, of congruences

Corollary 2.5 If an n-element meet-semilattice has at least 25 · 2n−6 congruences, then it
is planar.

The following statement is due to Freese [3]; see also Czédli [1] for a second proof, which
gives the first half of the following corollary for arbitrary finite algebras in congruence
distributive varieties, not only for lattices.

Corollary 2.6 For every n-element lattice L, we have that |Con(L)| ≤ 2n−1. Furthermore,
|Con(L)| = 2n−1 if and only if L is a chain.

As a preparation for a remark below, we derive this corollary from Theorem 2.3 (i) here
rather than in the next section.

Proof of Corollary 2.6 The only n-element tree semilattice that is also a lattice is the n-
element chain. For an equivalence relation � on this chain 〈C; ≤〉,

� ∈ Con(C; ∧) iff � ∈ Con(C; ∨,∧) iff
every �-block is an interval of 〈C; ≤〉. (2.3)

Observe that every � ∈ Con(L; ∨,∧) also belongs to Con(L; ∧). Hence, using Theorem
2.3 (i) at ≤∗ below, we obtain that

|Con(L; ∨,∧)| ≤ |Con(L; ∧)| ≤∗ |Con(C; ∧)| = |Con(C; ∨,∧)|,
proving Corollary 2.6.

Fig. 3 Four thirteen-element meet-semilattices with the same skeleton T and the same number, 25 ·213−6 =
3200, of congruences
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Fig. 4 F , M3, N6, and the pentagon, N5

Next, we point out that Theorem 2.3 (i) plays an essential role in the proof above.

Remark 2.7 By Szpilrajn’s Extension Theorem [10], every (partial) ordering on a set can be
extended to a linear ordering. Hence, the second part of Eq. 2.3 might give the false feeling
that this Extension Theorem in itself implies Corollary 2.6 as follows: extend the ordering
relation of L to a linear ordering to obtain a chain; then we obtain more intervals and thus
more equivalences whose blocks are intervals, and so more congruences by Eq. 2.3. In
order to point out that this argument does not work, let 〈L; ≤1〉 be the direct product of the
two-element chain and the three-element chain. Although ≤1 can be extended to a linear
ordering ≤2 and the chain 〈L; ≤2〉 has more intervals than 〈L; ≤1〉, the lattice 〈L; ≤1〉 has
34 equivalences whose blocks are intervals but the chain 〈L; ≤2〉 has only 32.

Remark 2.8 The concept of meet-semilattices 〈S; ∧〉 and that of semilattices as commuta-
tive and idempotent semigroups 〈S; ·〉 are well known to be equivalent; see, for example,
Grätzer [6, Exercises I.1.41–42 in pp. 18–19]. This paper gives preference to the former
approach because of two reasons. First, as opposed to semilattices where there are two nat-
ural ways of defining an ordering, it is generally accepted that a ≤ b ⇐⇒ a ∧ b = a

for arbitrary elements a and b of a meet-semilattice 〈S; ∧〉. Second, our figures and many
arguments are order theoretical even though congruences are defined in the usual algebraic
and semigroup theoretical way.

3 Proofs

Proof of Proposition 2.1 A subset X of 〈S; ∧〉 is said to be convex, if x < y < z and
x, z ∈ X imply that y ∈ X, for any x, y, z ∈ S. It is well known that

the blocks of every congruence of 〈S; ∧〉 are convex subsets of 〈S; ∧〉. (3.1)

Indeed, if � ∈ Con(S; ∧), x ≤ y ≤ z and 〈x, z〉 ∈ �, then 〈x, y〉 = 〈x ∧ y, z ∧ y〉 ∈ �,
whereby y ∈ x/�, which shows Eq. 3.1. By Eq. 3.1, the τ -blocks are convex subsets of
〈S; ∧〉. Next, for the sake of contradiction, suppose that a, b ∈ S such that a/τ and b/τ

are incomparable elements of the meet-semilattice 〈S; ∧〉/τ and they have an upper bound
c/τ ∈ 〈S; ∧〉/τ . Let a′ := a ∧ c and b′ := b ∧ c in 〈S; ∧〉. Since a/τ ≤ c/τ , we have
that a/τ = a/τ ∧ c/τ = (a ∧ c)/τ = a′/τ , whence 〈a, a′〉 ∈ τ . Similarly, 〈b, b′〉 ∈ τ .
Since a′ ≤ c and b′ ≤ c, Eq. 2.2 implies the existence of a′ ∨ b′ ∈ 〈S+; ∨〉. Hence, by the
definition of τ , we have that 〈a′ ∧ b′, a′ ∨ b′〉 ∈ τ . Since the τ -block (a′ ∧ b′)/τ is convex,
〈a′, b′〉 ∈ τ . Combining this with 〈a, a′〉 ∈ τ and 〈b, b′〉 ∈ τ , we obtain that 〈a, b〉 ∈ τ .
Hence, a/τ equals b/τ , which contradicts their incomparability.

Note that, in general, τ = τ (S; ∧) is not the smallest congruence of 〈S; ∧〉 such
that 〈S; ∧〉/τ is a tree; this is exemplified by the semilattice reduct of the four-element
boolean lattice.
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The proof of Theorem 2.3 will be divided into several lemmas, some of them being
interesting in themselves, and we are going to prove parts (i)–(iv) separately.

Remember that, for a finite meet-semilattice S = 〈S; ∧〉, we use the notation S+ := S \
{0}. Then 〈S+; ∨〉 is a partial algebra, which we call the partial join-semilattice associated
with S. By a partial subalgebra of 〈S+; ∨〉 we mean a subset X of S+ such that whenever
x, y ∈ X and x ∨ y is defined in 〈S+; ∨〉, then x ∨ y ∈ X. With respect to the set inclusion
relation ⊆, the set of all partial subalgebras of 〈S+;∨〉 turns out to be a lattice, which we
denote by Sub(S+; ∨). For convenience, our convention is that ∅ ∈ Sub(S+;∨). The proof
of Theorem 2.3 relies on the following result of Freese and Nation [4].

Lemma 3.1 (Freese and Nation [4, Lemma 1]) For every finite meet-semilattice 〈S; ∧〉,
the lattice Con(S; ∧) is dually isomorphic to Sub(S+;∨). In particular, we have that
|Con(S; ∧)| = |Sub(S+; ∨)|.

Note that Freese and Nation [4] uses Sub(S; ∨, 0), which does not contain the emptyset,
but the natural isomorphism from Sub(S+; ∨) onto Sub(S; ∨, 0), defined by X �→ X ∪ {0},
allows us to cite their result in the above form. The following lemma is almost trivial;
having no reference at hand, we are going to present a short proof. As usual, intervals are
nonempty subsets of the form [a, b] := {x : a ≤ x ≤ b}. The principal ideal and the
principal filter generated by an element a ∈ S are denoted by ↓a = {x ∈ S : x ≤ a} and
↑a = {x ∈ S : a ≤ x}, respectively. Meet-closed convex subsets are convex subsemilattices.
A subsemilattice is nontrivial if it consists of at least two elements.

Lemma 3.2 Let X be a nontrivial convex subsemilattice of a finite semilattice 〈S; ∧〉, and
denote the smallest element of X by u := ∧

X. Then the following two conditions are
equivalent.

(a) The equivalence � on S whose only nonsingleton block is X is a congruence of 〈S; ∧〉.
(b) For all c ∈ S \ ↑u and every maximal element v of X, we have that u ∧ c = v ∧ c.

Proof of Lemma 3.2 Assume (a) and let c /∈ ↑u, and let v be a maximal element of X.
Then c /∈ ↑v, u � u ∧ c, and u � v ∧ c. Hence, none of u ∧ c and v ∧ c is in X, but
these two elements are collapsed by � since 〈u, v〉 ∈ �. Thus, the definition of � gives that
u ∧ c = v ∧ c, proving that (a) implies (b).

Next, assume (b), and let � be defined as in (a). First, we show that for all x, y, z ∈ S,

if 〈x, y〉 ∈ �, then 〈x ∧ z, y ∧ z〉 ∈ �. (3.2)

This is trivial for x = y, so we can assume that x, y ∈ X. Pick maximal elements x1 and
y1 in X such that x ≤ x1 and y ≤ y1. First, let z ∈ ↑u. Then, using the convexity of X,
x ∧ z ∈ [u, x] ⊆ X and, similarly, y ∧ z ∈ X, whence we obtain that 〈x ∧ z, y ∧ z〉 ∈ � by
the definition of �. Second, let z ∈ S \↑u. Then x ∧z belongs to the interval [u∧z, x1 ∧z],
which is the singleton set {u ∧ z} by (b). Hence, x ∧ z = u ∧ z. Similarly, y ∧ z = u ∧ z,
whereby 〈x ∧ z, y ∧ z〉 ∈ �. Thus, Eq. 3.2 holds.

Finally, if 〈x1, y1〉 ∈ � and 〈x2, y2〉 ∈ �, then we obtain from Eq. 3.2 that both 〈x1 ∧
x2, y1 ∧x2〉 and 〈y1 ∧x2, y1 ∧y2〉 belong to �, whereby transitivity gives that 〈x1 ∧x2, y1 ∧
y2〉 ∈ �. Consequently, � is a congruence and (b) implies (a).
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The powerset of a set A will be denoted by P(A) = {X : X ⊆ A}. In the rest of the
paper,

n ≥ 2 denotes a natural number, 〈S; ∧〉 will stand for an n-
element meet-semilattice, and we will also use the notation
k := |Con(S; ∧)| = |Sub(S+; ∨)|;

(3.3)

here the second equality is valid by Lemma 3.1.

Proof of Theorem 2.3 (i) Since |S+| = n − 1, S+ has at most 2n−1 subsets, whereby
|Con(S; ∧)| = k ≤ |P(S+)| = 2n−1, as required. If 〈S; ∧〉 is a tree semilattice, then x ∨ y

is defined only if x and y form a comparable pair of S+, whence x ∨ y ∈ {x, y}. Hence,
every subset of S+ belongs to Sub(S+; ∨), and so k = |Sub(S+; ∨)| = |P(S+)| = 2n−1. If
S is not a tree semilattice, then there is a pair 〈a, b〉 of incomparable elements of S+ with
an upper bound. By Eq. 2.2, a ∨ b is defined in 〈S+; ∨〉. Hence, {a, b} /∈ Sub(S+; ∨) and
so k = |Sub(S+;∨)| < |P(S+)| = 2n−1. This completes the proof of part (i).

By an upper bounded two-element antichain, abbreviated as ubt-antichain, we mean a
two-element subset {x, y} of a finite meet-semilattice 〈S; ∧〉 such that x ‖ y and ↑x ∩↑y �=
∅. By Eq. 2.2, every ubt-antichain {x, y} has a join in S+ but this join is outside {x, y}.
Therefore,

Sub(S+; ∨) contains no ubt-antichain. (3.4)

Besides (3.4), the importance of ubt-antichains is explained by the following lemma.

Lemma 3.3 Let X be a convex subsemilattice of a finite semilattice 〈S; ∧〉 such that |X| ≥
2 and X × X ⊆ τ ; see Eq. 2.1. If X contains all ubt-antichains {p, q} of 〈S; ∧〉 together
with their joins p ∨ q, then 〈S; ∧〉 is a quasi-tree semilattice and its nucleus is X.

Proof of Lemma 3.3 Denote the smallest element of X by u := ∧
X. Let � be the equiv-

alence relation on S with X as the only nonsingleton block of �. In order to prove that
� ∈ Con(S; ∧), assume that c ∈ S \ ↑u and v is a maximal element of X. For the sake of
contradiction, suppose that u ∧ c �= v ∧ c, which means that u ∧ c < v ∧ c. If we had that
v ∧ c ≤ u, then v ∧ c = u ∧ (v ∧ c) = (u ∧ v) ∧ c = u ∧ c would be a contradiction. Thus,
v ∧ c � u. On the other hand, u � v ∧ c since u � c, whereby u ‖ v ∧ c. Since v is a
common upper bound of u and v ∧ c, we obtain that {u, v ∧ c} is a ubt-antichain. This is a
contradiction since c /∈ ↑u implies that u � v ∧c, whence the ubt-antichain {u, v ∧c} is not
a subset of X. Hence, u ∧ c = v ∧ c, and it follows from Lemma 3.2 that � ∈ Con(S; ∧).

Next, in order to show that 〈S; ∧〉/� is a tree, suppose the contrary. Then there are two
incomparable �-blocks x/� and y/� that have an upper bound z/�. Since u ∈ X and all
other �-blocks are singletons, every �-block has a smallest element. This fact allows us to
assume that each of x, y, and z is the least element of its �-block. Since x/� ≤ z/�, we
have that x/� = x/� ∧ z/� = (x ∧ z)/�, that is, 〈x, x ∧ z〉 ∈ �. But the least element of
x/� is x, whence x = x ∧ z, that is, x ≤ z. We obtain similarly that y ≤ z, that is, {x, y}
has an upper bound, z. Since x ∧y = x would imply that x/�∧y/� = (x ∧y)/� = x/�,
contradicting that {x/�, y/�} is an antichain, we obtain that x � y. We obtain y � x

similarly. Thus, {x, y} is a ubt-antichain, whereby {x, y} ⊆ X. But then x/� = X = y/�,
contradicting the initial assumption that these two �-blocks are incomparable. Therefore,
〈S; ∧〉/� is a tree. Hence, in order to complete the proof, we need to show that � = τ .
Since X × X ⊆ τ , the inclusion � ⊆ τ is clear. In order to see the converse inclusion, let
〈a ∧ b, a ∨ b〉 be a pair occurring in Eq. 2.1. Then {a, b} is a ubt-antichain, so {a, b} ⊆ X

and, by the assumptions of the lemma, both a ∨ b and a ∧ b belong to X. Hence, the pairs
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in Eq. 2.1 are collapsed by � and we conclude that τ ⊆ �. Consequently, � = τ , and the
proof of Lemma 3.3 is complete.

Lemma 3.4 If 〈S; ∧〉 from Eq. 3.3 contains exactly one ubt-antichain, then 〈S; ∧〉 is a
quasi-tree semilattice and its nucleus is the four-element boolean lattice.

Proof of Lemma 3.4 Let us denote by {a, b} the unique ubt-antichain of 〈S; ∧〉. Let v :=
a ∨ b, which exists by Eq. 2.2, and let u := a ∧ b. Then L := [u, v] contains every ubt-
antichain. Since 〈u, v〉 ∈ τ by Eq. 2.1 and the τ -blocks are convex, L × L ⊆ τ . So, with
reference to Lemma 3.3, it suffices to show that L is the four-element boolean lattice. In fact,
it suffices to show that L ⊆ {u, a, b, v} since the converse inclusion is evident. Suppose the
contrary, and let x ∈ L \ {u, a, b, v}. If x ‖ a, then {a, x} is a ubt-antichain (with upper
bound v) but it is distinct from {a, b}, which contradicts the fact that {a, b} is the only ubt-
antichain. Hence, a and x are comparable. We obtain similarly that b and x are comparable.
If x ≤ a and x ≤ b, then u ≤ x ≤ a ∧ b = u leads to x = u ∈ L, which is not the case.
We obtain dually that the conjunction of x ≥ a and x ≥ b is impossible. Hence, a ≤ x ≤ b

or b ≤ x ≤ a, contradicting that {a, b} is an antichain. This shows that L ⊆ {u, a, b, v},
completing the proof of Lemma 3.4.

Proof of Theorem 2.3(ii) Assume that k < 2n−1; see Eq. 3.3. By Theorem 2.3(i), 〈S; ∧〉
is not a tree. Hence, n = |S| ≥ 4. Since |Sub(S+; ∨)| = k < 2n−1 = |P(S+)|, not every
subset of S+ is ∨-closed. Thus, we can pick a, b ∈ S+ such that a ‖ b and a ∨ b exists
in 〈S+; ∨〉. Since |S+ \ {a, b, a ∨ b}| = n − 4, there are 2n−4 subsets of S+ that contain
a, b, but not a ∨ b; these subsets do not belong to Sub(S+; ∨). Thus, k ≤ 2n−1 − 2n−4 =
32 · 2n−6 − 4 · 2n−6 = 28 · 2n−6, proving the first half of (ii).

Next, assume that k = 28 · 2n−6 and choose a and b as above. There are 2n−4 = 4 · 2n−6

subsets of S+ containing a and b, but not containing a ∨b; these subsets are not in 〈S+;∨〉.
Thus, all the remaining 32 · 2n−6 − 4 · 2n−6 = 28 · 2n−6 subsets belong to 〈S+; ∨〉 since
k = 28 · 2n−6. In particular, for every ubt-antichain {x, y}, we have that {x, y} �= {a, b} ⇒
{x, y} ∈ Sub(S+;∨). This implication and Eq. 3.4 yield that {a, b} is the only ubt-antichain
in 〈S; ∧〉. Thus, it follows from Lemma 3.4 that 〈S; ∧〉 is a quasi-tree semilattice of the
required form.

Conversely, assume that 〈S; ∧〉 is of the form described in Theorem 2.3(ii). Choosing the
notation so that its nucleus is {a ∧ b, a, b, a ∨ b}, the only ubt-antichain is {a, b}, whence a
subset X of S+ is not in Sub(S+; ∨) iff a, b ∈ X but a ∨ b /∈ X. There are 2n−4 = 4 · 2n−6

such subsets X, and we obtain that k = |Sub(S+;∨)| = |P(S+)| − 4 · 2n−6 = 32 · 2n−6 −
4 · 2n−6 = 28 · 2n−6, as required. This completes the proof of Theorem 2.3(ii).

Lemma 3.5 If 〈S; ∧〉 from Eq. 3.3 contains exactly two ubt-antichains, {a, b} and {c, b}
such that a < c, then 〈S; ∧〉 is a quasi-tree semilattice and its nucleus is the pentagon
lattice N5.

Proof of Lemma 3.5 By Eq. 2.2, we can let v := a ∨ b. Since v ≤ c would lead to b ≤ c,
we have that v � c. In particular, v �= c, and we also have that v /∈ {a, b} since {a, b}
is an antichain. Thus, {c, v} is a two-element subset of S and it is distinct from {a, b} and
{a, c}. Hence, {c, v} is not a ubt-antichain. Since b ∨ c, which exists by Eq. 2.2, is clearly
an upper bound of {c, v}, it follows that {c, v} is not an antichain. This fact and v � c yield
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that c ≤ v. Thus, v = a ∨ b ≤ c ∨ b ≤ v, that is, v = a ∨ b = c ∨ b. Next, let u := b ∧ c;
clearly, u /∈ {b, c}. If we had that a ‖ u, then {a, u} would be a third ubt-antichain (with
upper bound c), whence a and u are comparable elements. Since a ≤ u would lead to a ≤ b

by transitivity, we have that u ≤ a. Hence, u ≤ a ∧ b ≤ c ∧ b = u, and so a ∧ b = u. The
equalities established so far show that L := {u, a, b, c, v} is a sublattice isomorphic to N5.
In order to show that L is the interval [u, v], suppose the contrary, and let x ∈ [u, v] \ L.
If x ‖ b, then {b, x} would be a third ubt-antichain (with upper bound v), which would
be a contradiction. If we had that b < x < v, then {c, x} would be a ubt-antichain, a
contradiction. Similarly, u < x < b gives that {a, x} is a ubt-antichain, a contradiction
again. Thus, L = [u, v] is an interval of S. By Eq. 2.1, 〈u, v〉 = 〈a ∧ b, a ∨ b〉 ∈ τ . Using
that the τ -blocks are convex subsets, we obtain that L × L = [u, v] × [u, v] ⊆ τ . Thus,
Lemma 3.5 follows from Lemma 3.3.

Proof of Theorem 2.3(iii) Assume that k < 28 · 2n−6; see Eq. 3.3.
Note at this point that no equality will be assumed for k before Eq. 3.24. Therefore the

numbered equations, equalities, and statements before Eq. 3.24 can be used later in the proof
of Theorem 2.3(iv).

We introduce the following notation. For a ubt-antichain {a, b}, let

U(a, b) := {X ∈ P(S+) : a ∈ X, b ∈ X, but a ∨ b /∈ X}; (3.5)

it is a subset of P(S+); note that the existence of a ∨ b above follows from Eq. 2.2. By
Theorem 2.3(i), 〈S; ∧〉 is not a tree, whereby it has at least one ubt-antichain. If it had
only one ubt-antichain, then Lemma 3.4 and Theorem 2.3(ii) would imply that k = 28 ·
2n−6. Hence, 〈S; ∧〉 has at least two ubt-antichains. Let {a1, b1}, {a2, b2}, . . . , {at , bt } be
a repetition-free list of all ubt-antichains of 〈S; ∧〉; note that t ≥ 2. Let vi := ai ∨ bi and
Ui := U(ai, bi), see Eq. 3.5, for i = 1, . . . , t . That is, Ui is the set of all those X ∈ P(S+)

that contain ai and bi but not vi . Observe that, for 1 ≤ i < j ≤ t ,

if |{ai, bi, vi , aj , bj , vj }| = �, then |Ui ∩ Uj | is either 25−� · 2n−6, or 0. (3.6)

Indeed, when we choose elements from the (n − 1)-element P(S+) in order to form a set
X ∈ Ui ∩Uj , then we can dispose only over (n−1)−� = (5−�)+(n−6) elements, because
the containment X ∈ Ui ∩ Uj determines what to do with � elements. If the stipulations for
these � elements are contradictory, then |Ui ∩ Uj | equals 0; this can happen only if � < 6.
Otherwise, |Ui ∩ Uj | = 25−� · 2n−6, showing the validity of Eq. 3.6.

Next, we show that for any 1 ≤ i < j ≤ t ,

if |{ai, bi, vi , aj , bj , vj }| = 6, then k ≤ 24.5 · 2n−6, (3.7)

if |{ai, bi, vi , aj , bj , vj }| = 5, then k ≤ 25 · 2n−6, and (3.8)

if |{ai, bi, vi , aj , bj , vj }| = 4, then k ≤ 26 · 2n−6. (3.9)

As a stronger form of Eq. 3.4 for the present situation, it is clear that

Sub(S+; ∨) = P(S+) \ (U1 ∪ · · · ∪ Ut). (3.10)

In particular, Ui∪Uj is disjoint from Sub(S+; ∨). Hence, the Inclusion-Exclusion Principle,
k = |Sub(S+; ∨)|, |P(S+)| = 32 · 2n−6, and |Ui | = |Uj | = 4 · 2n−6 give that

Sub(S+; ∨) ⊆ P(S+) \ (Ui ∪ Uj ), and so (3.11)

k ≤ 2n−6 · (32 − 4 − 4) + |Ui ∩ Uj | = 24 · 2n−6 + |Ui ∩ Uj |, (3.12)

and if (3.11) holds with equality in it, then so does (3.12). (3.13)
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Clearly, Eqs. 3.7, 3.8 and 3.9 follow from Eqs. 3.6 and 3.12. Furthermore, it is also clear
from this argument that strict inequalities lead to strict inequalities. For later reference, we
formulate this as follows.

If |Ui ∩ Uj | is strictly less than 2n−7, 2n−6, and 2 · 2n−6,
then k is strictly less than 24.5 · 2n−6, 25 · 2n−6, and 26 ·
2n−6, respectively.

(3.14)

Next, we claim that for 1 ≤ i < j ≤ t ,

if vi �= vj , then |{ai, bi, vi , aj , bj , vj }| ≥ 5. (3.15)

In order to show this, first we deal with the case where vj ∈ {ai, bi} or vi ∈ {aj , bj }.
Let, say, v1 = a2. Then v2 > a2 = v1 > a1 and v2 > a2 = v1 > b1 yield that
|{a1, b1, v1, v2}| = 4. Clearly, b2 /∈ {a2 = v1, v2}. If we had that b2 ∈ {a1, b1}, then
b2 < v1 = a2 would contradict a2 ‖ b2. Hence, the inequality in Eq. 3.15 holds in this case.
Second, assume that vj /∈ {ai, bi} and vi /∈ {aj , bj }. Using also that vi �= vj , we have that
|{ai, bi, vi , vj }| = 4. Since vi /∈ {aj , bj }, {ai, bi} �= {aj , bj }, and, of course, vj /∈ {aj , bj },
at least one of aj and bj is not in {ai, bi, vi , vj }, and the required inequality in Eq. 3.15
holds again. This proves (3.15). Clearly,

if vi = vj but i �= j , then |{ai, bi, vi , aj , bj , vj }| ≥ 4, (3.16)

because {ai, bi, aj , bj } has at least three elements and does not contain vi = vj , which is
strictly larger than every element of {ai, bi, aj , bj }. Observe that the inequality k ≤ 26 ·
2n−6, which is the first half of Theorem 2.3(iii), follows from Eqs. 3.7, 3.8, 3.9, 3.15 and
3.16, because t ≥ 2 implies the existence of a pair 〈i, j〉 such that 1 ≤ i < j ≤ t .

Next, strengthening Eq. 3.8, we are going to show that for any 1 ≤ i < j ≤ t ,

if |{ai, bi, vi , aj , bj , vj }| = 5 and t ≥ 3, then k < 25 · 2n−6. (3.17)

Assume the premise of Eq. 3.17. Since t ≥ 3, we can pick an m ∈ {1, . . . , t} \ {i, j}. For
the sake of contradiction,

suppose that |{ai, bi, vi , aj , bj , vj }| = 5 but k ≥ 25 · 2n−6. (3.18)

By Eqs. 3.6 and 3.18, |Ui ∩ Uj | is either 0 or 2n−6, but the first alternative is ruled out by
Eqs. 3.14 and 3.18. Hence

|Ui ∩ Uj | = 2n−6. (3.19)

By Eqs. 3.7 and 3.18, none of {ai, bi, vi, am, bm, vm} and {aj , bj , vj , am, bm, vm} consists
of six elements. Hence, it follows from Eqs. 3.15 and 3.16, that each of these two sets
consists of four or five elements. Thus, Eq. 3.6 gives that

|Ui ∩ Um| ≤ 2 · 2n−6 and |Uj ∩ Um| ≤ 2 · 2n−6. (3.20)

We also need the following observation.

If Ui ∩ Uj �= ∅, Ui ∩ Um �= ∅, and Uj ∩ Um �= ∅, then
Ui ∩ Uj ∩ Um �= ∅. (3.21)

To show Eq. 3.21, assume that its premise holds. If {ai, bi, aj , bj , am, bm} is disjoint from
{vi, vj , vm}, then Ui ∩ Uj ∩ Um contains {ai, bi, aj , bj , am, bm} and so it is nonempty.
Otherwise, by a–b symmetry and since the subscripts in Eq. 3.21 play symmetric roles,
we can assume that ai = vj . However, then Ui ∩ Uj = ∅, contradicting the premise of
Eq. 3.21. Consequently, Eq. 3.21 holds. Based on the Inclusion-Exclusion Principle, as in
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Eqs. 3.11–3.13, and using Eqs. 3.19 and 3.20, we can compute as follows; the overline and
the underlines below will serve as reference points.

k ≤ 2n−6 · (
32 − (4 + 4 + 4)

) + (|Ui ∩ Uj | + |Ui ∩ Um| + |Uj ∩ Uj |)
−|Ui ∩ Uj ∩ Um|, and so (3.22)

k ≤ 2n−6 · (20 + 1 + 2 + 2) − |Ui ∩ Uj ∩ Um|
= 25 · 2n−6 − |Ui ∩ Uj ∩ Um|. (3.23)

We know from Eq. 3.19 that Ui ∩ Uj �= ∅. Both underlined numbers in Eq. 3.23 come from
Eq. 3.20. So if at least one the intersections Ui ∩ Um and Uj ∩ Um is empty, then at least
one of the underlined numbers can be replaced by 0 and Eq. 3.23 gives that k < 25 · 2n−6.
Otherwise the subtrahend at the end of Eq. 3.23 is positive by Eq. 3.21, and we obtain again
that k < 25 · 2n−6.

This contradicts (3.18) and proves the validity of Eq. 3.17. Next, we assume that

k = 26 · 2n−6. (3.24)

It follows from Eqs. 3.7, 3.8, 3.15 and 3.24 that

all the vi are the same, so we can let v := v1 = · · · = vt . (3.25)

Hence, we get from Eqs. 3.6, 3.7, 3.8, 3.16 and 3.24 that, for any 1 ≤ i < j ≤ t ,

|{ai, bi, aj , bj , v}| = 4 and so |Ui ∩ Uj | ≤ 2 · 2n−6,
|{ai, bi, aj , bj }| = 3, and |{ai, bi} ∩ {aj , bj }| = 1.

(3.26)

Next, we are going to prove that t , the number of ubt-antichains, equals 2. Suppose the
contrary. Since now we have Eq. 3.26 instead of Eq. 3.19, 1 and 25 in Eq. 3.23 turn into
2 and 26, respectively. These two modifications do not influence the paragraph following
Eq. 3.23, and we conclude that the inequality in the modified Eq. 3.23 is a strict one, that
is, k < 26 · 2n−6. This contradicts Eq. 3.24, whence we conclude that there are exactly
t = 2 ubt-antichains. We know from Eq. 3.26 that they are not disjoint. So we can denote
them by {a, b} and {c, b} where |{a, b, c}| = 3. By Eq. 3.25, v = a∨b = c∨b. Since t = 2,
the set {a, c} is not a ubt-antichain, whence a and c are comparable. So we can assume that
a < c, and it follows from Lemma 3.5 that 〈S; ∧〉 is a quasi-tree semilattice of the required
form.

Finally, assume that 〈S; ∧〉 is a quasi-tree semilattice and its nucleus is the pentagon
N5 = {u, a, b, c, v} with bottom u, top v, and a < c. Let U1 := U(a, b) and U2 := U(c, b);
see Eq. 3.5. Since Sub(S+; ∨) = P(S+) \ (U1 ∪ U2) by Eq. 3.10,

k = |P(S+)| − |U1| − |U2| + |U1 ∩ U2| = (32 − 4 − 4 + 2) · 2n−6 = 26 · 2n−6,

as required. This completes the proof of Theorem 2.3(iii).

Lemma 3.6 If 〈S; ∧〉 from Eq. 3.3 contains exactly two ubt-antichains, {a, b} and {b, c}
such that v1 := a ∨ b and v2 := b ∨ c are incomparable, then 〈S; ∧〉 is a quasi-tree
semilattice and its nucleus is F = {u := a ∧ b ∧ c, a, b, c, v1, v2} given in Fig. 4.

Proof of Lemma 3.6 Let u := a ∧ b. It is not in {a, b}. Since b � c, we have that u � c.
Using that v2 is an upper bound of {u, c} and {u, c} is not a ubt-antichain, it follows that
{u, c} is not an antichain. Hence, u ≤ c, whence u = a ∧ b ∧ c. Since a ‖ b and v1 ‖ v2
implies that a ‖ c, we obtain that a∧c /∈ {a, b, c}. Hence, {b, a∧c} is a two-element set and
it is distinct from {a, b} and {b, c}. Using that v1 is an upper bound of {b, a ∧ c}, we obtain
that {b, a ∧ c} is not an antichain. Since b � c, we have that b � a ∧ c. Hence, a ∧ c ≤ b,
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implying that a ∧ c = a ∧ c ∧ b. Summarizing the facts above and taking into account that
a and c play a symmetric role, we have that

u = a ∧ b = a ∧ b ∧ c = b ∧ c = a ∧ c. (3.27)

Let M := {a, b, c, u, v1, v2}; we claim that

M is a convex meet-subsemilattice of 〈S; ∧〉. (3.28)

First, we show that M is a convex subset of 〈S; ∧〉. For the sake of contradiction, suppose
that x ∈ S \ M such that u < x < v1; the case u < x < v2 would be similar since a

and c play symmetric roles. Both {a, x} and {x, b} have an upper bound, v1. Hence, none
of them is an ubt-antichain since x /∈ M . Thus, a ≤ x ≤ b, or b ≤ x ≤ a, or a, b ∈ ↓x,
or a, b ∈ ↑x. The first two alternatives are ruled out by a ‖ b. The third alternative leads
to v1 = a ∨ b ≤ x ≤ v1, contradicting x /∈ M . We obtain a contradiction from the fourth
alternative dually by using u instead of v1. Thus, M is a convex subset of 〈S; ∧〉. Since M

is convex and b ≤ v1 ∧v2 ≤ v1, we have that v1 ∧v2 ∈ {b, v1}. Similarly, v1 ∧v2 ∈ {b, v2}.
So v1 ∧ v2 ∈ {b, v1} ∩ {b, v2} = {b}, that is, v1 ∧ v2 = b. This equality together with
Eq. 3.27 give easily that M is a meet-subsemilattice of 〈S; ∧〉, whence (3.28) holds. It is
clear by Eq. 3.27 that M ∼= F .

Since 〈u, v1〉 = 〈a ∧ b, a ∨ b〉 occurs in Eq. 2.1 and the τ -blocks are convex subsets,
{a, b, v1, u} ⊆ u/τ . We obtain similarly that {b, c, v2, u} ⊆ u/τ , whence we have that
M × M ⊆ τ . Therefore, since M contains both ubt-antichains and their joins, Lemma 3.3
implies the validity of Lemma 3.6.

Lemma 3.7 If 〈S; ∧〉 from Eq. 3.3 contains exactly three ubt-antichains, {a1, b}, {a2, b},
and {a3, b} such that v := a1 ∨ b = a2 ∨ b = a3 ∨ b and a1 < a2 < a3, then 〈S; ∧〉 is a
quasi-tree semilattice and its nucleus is N6 = {u := a1 ∧b = a2 ∧b = a3 ∧b, a1, a2, a3, v}
given in Fig. 4.

Proof of Lemma 3.7 Let u := a3 ∧ b. Since a3 ‖ b, u �= b. We are going to show that
M := {u, a1, a2, a3, v} is a subsemilattice isomorphic to N6. Let i ∈ {1, 2}. Since v is an
upper bound of the set {ai, u}, this set is not an antichain. Since ai � b, we have that ai � u.
Hence, u < ai , and we obtain that u ≤ ai ∧ b ≤ a3 ∧ b = u. Thus, the meets in M are what
they are required to be, and we conclude that M ∼= N6. Next, for the sake of contradiction,
suppose that M is not a convex subset of 〈S; ∧〉, and pick an element x ∈ S \ M such
that u ≤ x ≤ v. Since no more ubt-antichain is possible, none of a1, a2, a3, and b is
incomparable with x. If we had that x ≤ aj for some j ∈ {1, 2, 3}, then b ≤ x would
contradict b � aj while x ≤ b would lead to u ≤ x ≤ aj ∧ b ≤ u, a contradiction since
x �= u ∈ M . A dual argument, with v instead of u, would lead to a contradiction if aj ≤ x.
Hence, M is a convex subsemilattice of 〈S; ∧〉. Since 〈u, v〉 = 〈a1 ∧ b, a1 ∨ b〉 occurs in
Eq. 2.1 and the τ -blocks are convex subsets, M × M ⊆ τ . Therefore, since M contains all
the three ubt-antichains and their common join, Lemma 3.7 follows from Lemma 3.3.

Proof of Theorem 2.3 (iv) We assume that k = |Con(S; ∧)| < 26 · 2n−6. In the first part of
the proof, we are going to focus on the required inequality, k ≤ 25 · 2n−6.

As it has been mentioned in the proof of Theorem 2.3(iii), any part of that proof before
Eq. 3.24 is applicable here, including the notation. If |{ai, bi, vi , aj , bj , vj }| ≥ 5 or vi �= vj

for some 1 ≤ i < j ≤ t , then the required k ≤ 25 ·2n−6 follows from Eqs. 3.7, 3.8 and 3.15.
Hence, we can assume that v := v1 = v2 = · · · = vt . By Eqs. 3.8 and 3.16, we can assume
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also that |{ai, bi, aj , bj , v}| = 4 for all 1 ≤ i < j ≤ t . For later reference, we summarize
our assumptions as

v := v1 = v2 = · · · = vt and |{ai, bi, aj , bj , v}| = 4, whereby
|{ai, bi, aj , bj }| = 3 and |{ai, bi} ∩ {aj , bj }| = 1, for all 1 ≤ i < j ≤ t . (3.29)

We claim that

if t ≥ 3, Eq. 3.29, and {a1, b1} ∩ {a2, b2} ∩ {a3, b3} = ∅, then
k ≤ 24 · 2n−6.

(3.30)

The pairwise intersections in Eq. 3.29 are singletons, whereby the only way that the intersec-
tion in Eq. 3.30 is empty is that |{a1, b1, a2, b2, a3, b3}| = 3. Hence, for all 1 ≤ i < j ≤ t ,
we have that Ui ∩ Uj = U1 ∩ U2 ∩ U3 and |U1 ∩ U2 ∩ U3| = |Ui ∩ Uj | = 2 · 2n−6, and
Eq. 3.30 follows from Eq. 3.22. We also claim that

if t ≥ 3, Eq. 3.29, and {a1, b1} ∩ {a2, b2} ∩ {a3, b3} �= ∅, then
k ≤ 25 · 2n−6.

(3.31)

With the assumption made in Eq. 3.31, if we consider the same intersections as in the
argument right after Eq. 3.30, then we obtain that |{a1, b1, a2, b2, a3, b3}| = 4. Hence,
|Ui ∩ Uj | = 2 · 2n−6 and |U1 ∩ U2 ∩ U3| = 1 · 2n−6, and Eq. 3.31 follows from Eq. 3.22.
Our next observation is that

if t ≤ 2 and Eq. 3.29, then k ≥ 26 · 2n−6. (3.32)

For t ≤ 1, this is clear from Theorem 2.3(i), Lemma 3.4, and Theorem 2.3(ii); so let t = 2.
Since the intersection in Eq. 3.29 is a singleton, the two ubt-antichains are of the form {a, b}
and {c, b}. Since {a, c} cannot be a third ubt-antichain, the elements a and c are comparable,
whereby Lemma 3.5, and Theorem 2.3(iii) imply that k = 26 · 2n−6. Thus, Eq. 3.32 holds.
Now, the required k ≤ 25 · 2n−6 follows from Eqs. 3.30, 3.31 and 3.32, and the paragraph
above Eq. 3.29; completing the first part of the proof.

In the rest of the proof, we will always assume that k = 25 · 2n−6, even if this is not
emphasized all the time. We claim that

if k = 25 · 2n−6 and t ≥ 3, then t = 3, v := v1 = · · · = vt , and
Eq. 3.26 holds for all 1 ≤ i < j ≤ t .

(3.33)

Assuming the premise of Eq. 3.33, we obtain from Eq. 3.7 that the size of the set
{ai, bi, vi , aj , bj , vj } is not 6. We obtain from Eq. 3.17 that it is neither 5, whereby this size
is 4 since {ai, bi} �= {aj , bj }. Thus, Eq. 3.15 implies v := v1 = · · · = vt as well as the
validity of Eq. 3.26. The |{ai, bi} ∩ {aj , bj }| = 1 part of Eq. 3.26 implies that apart from
notation (that is, modulo permutations of the sets {i, j, m}, {ai, bi}, {aj , bj }, {am, bm}),

whenever 1 ≤ i < j < m ≤ t , then either bi = aj , bj = am, and
bm = ai , or b := bi = bj = bm and |{ai, aj , am}| = 3. (3.34)

It follows similarly to Eqs. 3.22 and 3.23 that

if the first alternative of Eq. 3.34 holds, then |Ui ∪ Uj ∪ Um| =(
(4 + 4 + 4)− (2 + 2 + 2)+ 2

) · 2n−6, whereby k ≤ (32 − 8) · 2n−6,
which contradicts k = 25 · 2n−6,

(3.35)

since Ui ∩ Uj ∩ Um = Ui ∩ Uj . Thus, Eq. 3.35 excludes the first alternative of Eq. 3.34.
Hence we have the second alternative |Ui ∩ Uj ∩ Um| = 2n−6, and it follows similarly to
Eqs. 3.22 and 3.23 that

|Ui ∪ Uj ∪ Um| = (
(4 + 4 + 4) − (2 + 2 + 2) + 1

) · 2n−6 = 7 · 2n−6. (3.36)
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Now, for the sake of contradiction, suppose that t ≥ 4. Then we can pick an index s ∈
{1, . . . , t} \ {i, j, m}. The ubt-antichain {as, bs} belongs to Us but it does not belong to Ui

since the members of Ui contain both ai and bi but {as, bs} �= {ai, bi}. Similarly, {as, bs}
belongs neither to Uj , nor to Um, whence it is not in Ui ∪Uj ∪Um. Hence, Ui ∪Uj ∪Um is
a proper subset of Ui ∪Uj ∪Um ∪Us , which is disjoint from Sub(S+;∨) by Eq. 3.10. Thus,
by Eq. 3.36, strictly more than 7 · 2n−6 subsets of S+ are not in Sub(S+; ∨), and we obtain
that k = |Sub(S+; ∨)| < (32 − 7) · 2n−6. This contradicts k = 25 · 2n−6 and excludes that
t ≥ 4. Thus, t = 3 and we have proved Eq. 3.33.

Next, assume that t ≥ 3. We know from Eq. 3.33 that t = 3. Furthermore, we have
by Eqs. 3.33, 3.34 and 3.35 that {a1, b}, {a2, b}, and {a3, b} is the list of all ubt-antichains
of 〈S; ∧〉 and they have a common join v. No two of a1, a2, and a3 are incomparable,
since otherwise those two would form a ubt-antichain (with upper bound v). Hence, we can
assume that a1 < a2 < a3. Thus, it follows from Lemma 3.7 that 〈S; ∧〉 is a quasi-tree
semilattice with nucleus N6.

Finally, assume that t � 3. By Theorem 2.3(i)–(ii) and Lemma 3.4, t /∈ {0, 1}, whence
t = 2. There are several cases to consider.

Case 1 (we assume that v1 = v2 and {a1, b1} ∩ {a2, b2} �= ∅) By the a–b symmetry, we
can choose the notation so that a := a1, b := b1 = b2, and c := a2. If a ‖ c, then {a, c} is a
third ubt-antichain (with upper bound v1 = v2), contradicting t = 2. Hence, we can assume
that a < c. But then, by Lemma 3.5, 〈S; ∧〉 is a quasi-tree semilattice with nucleus N5, and
so Theorem 2.3(iii) gives that k = 26 · 2n−6, a contradiction again since k = 25 · 2n−6 has
been assumed. So Case 1 cannot occur.

Case 2 (we assume that v1 = v2 and {a1, b1} ∩ {a2, b2} = ∅) Observe that for every
X ⊆ {a1, b1, a2, b2} such that |X| = 2,

if {a1, b1} �= X �= {a2, b2}, then X is not an antichain, (3.37)

since otherwise X would be a third ubt-antichain with upper bound v1 = v2. By the 1–2
symmetry, we can assume that a1 < a2. By Eq. 3.37, a2 and b1 are comparable elements.
If we had that a2 ≤ b1, then we would obtain a1 ≤ b1 by transitivity, contradicting that
{a1, b1} is a ubt-antichain. Hence, b1 < a2. But then the inequality v1 = a1 ∨ b1 ≤ a2 <

v2 = v1 is a contradiction. Therefore, Case 2 cannot occur either.

Cases 1 and 2 make it clear that now, when t = 2, we have that v1 �= v2. We obtain from
Eqs. 3.7 and 3.15 that

|{a1, b1, v1, a2, b2, v2}| = 5. (3.38)

The following two cases have to be considered.

Case 3 (we assume that v1 �= v2 and {a1, b1, a2, b2} ∩ {v1, v2} = ∅) This assumption and
Eq. 3.38 allow us to assume that {a1, b1} = {a, b} and {a2, b2} = {c, b}. So v1 = a ∨ b and
v2 = c ∨ b. For the sake of contradiction, suppose that a and c are comparable. Let, say,
a < c; then v1 = a ∨ b ≤ c ∨ b = v2. But v1 �= v2, so v1 < v2. If we had that c ≤ v1,
then v2 = b ∨ c ≤ v1 would contradict v1 < v2. If we had that v1 ≤ c, then this would
lead to the contradiction b ≤ c by transitivity. Hence, c ‖ v1. So {c, v1} is an additional
ubt-antichain (with upper bound v2), which is a contradiction showing that a ‖ c. If v1 and
v2 were comparable, then the larger one of them would be an upper bound of {a, c}, and so
{a, c} would be a third ubt-antichain. Thus, v1 ‖ v2, and Lemma 3.6 gives that 〈S; ∧〉 is a
quasi-tree semilattice with nucleus F , as required.
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Case 4 (we assume that v1 �= v2 and {a1, b1, a2, b2} ∩ {v1, v2} �= ∅) Since a and b play
symmetric roles and so do the subscripts 1 and 2, we can assume that v1 = a2. We have that
|{a1, b1, a2, b2}| = 4 since b2 � a2 = v1 excludes the possibility that b2 ∈ {a1, b1, a2}.
None of the sets {a1, b2} and {b1, b2} is an antichain, since otherwise the set in question
would be a new ubt-antichain with upper bound v2, which would be a contradiction. Hence,
a1 and b2 are comparable elements, and so are b1 and b2. If we had that a1 ≥ b2 or b1 ≥ b2,
then transitivity would lead to a2 = v1 ≥ b2, a contradiction. Thus, a1 ≤ b2 and b1 ≤ b2.
But then a2 = v1 = a1 ∨ b1 ≤ b2 is a contradiction. This shows that Case 4 cannot occur.

Now that all cases have been considered, we have shown that if k = 25·2n−6, then 〈S; ∧〉
is of the required form.

Finally, if 〈S; ∧〉 is a quasi-tree semilattice with nucleus N6, then using the Inclusion-
Exclusion Principle and Eq. 3.10, a computation similar to Eqs. 3.22 and 3.23 yields that

|Con(S; ∧)| = 2n−6(32 − (4 + 4 + 4) + (2 + 2 + 2) − 1
) = 25 · 2n−6,

as required. Also, if the nucleus is F , then a computation similar to Eqs. 3.11–3.13 derives
from Eq. 3.10 and the Inclusion-Exclusion Principle that

|Con(S; ∧)| = 2n−6(32 − (4 + 4) + 1
) = 25 · 2n−6.

This completes the proof of Theorem 2.3(iv).
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https://doi.org/10.16926/m.2016.21.03

6. Grätzer, G.: Lattice Theory: Foundation. Basel, Birkhäuser (2011)
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