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Abstract We study the structure of the partially ordered set of minors of an arbitrary func-
tion of several variables. We give an abstract characterization of such “minor posets” in
terms of colorings of partition lattices, and we also present infinite families of examples as
well as some constructions that can be used to build new minor posets.

Keywords Function of several variables · Identification of variables · Minors of
functions · Poset · Set partition

1 Introduction

We investigate the partially ordered set of functions that can be obtained from an arbitrary
n-variable function f : An → B via identifications of variables. Such functions are called
minors of f , and they are naturally partially ordered, since some minors of f can be also
minors of each other; we shall use the symbol ↓f to denote this poset of minors of the
function f . In fact, the minor relation is a partial order on the set FAB of all functions of
several variables from A to B, if we regard functions differing only in inessential variables
and/or in the order of their variables as equivalent. Our goal is to characterize the principal
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ideals ↓f of this poset up to isomorphism (see Fig. 2). We give the precise definitions in
Section 2; here we present only an illustrative example.

Example 1 Let us consider the function f (x1, x2, x3, x4) = x1x3 + x2 + x4 over the
2-element field. Identifying the first two variables, we obtain the minor g (x, y, z) =
f (x, x, y, z) = xy + x + z. If we identify the first and the fourth variable, then we get
f (x, y, z, x) = xz + y + x, which is the same as g (x, z, y), hence we consider this minor
to be the same as (or equivalent to) g. On the other hand, identifying the first and third vari-
ables of f , we obtain a new minor f (x, y, x, z) = x + y + z, and one can verify that there
are no other 3-variable minors of f . Identification of the second and fourth variables yields
the minor h (x, y, z) = f (x, y, z, y) = xz, which has formally 3 variables, but depends
only on 2 of them. Note that g (x, y, x) = xy is equivalent to h, hence h is a minor of g.
Examining all possible variable identifications, we see that f has altogether 6 minors up to
equivalence, which form the poset shown in Fig. 1.

Looking only at the Hasse diagram of Fig. 1 (ignoring the labels), it is not at all clear,
whether there is a function whose minors give this poset, and this is exactly the problem that
we consider in this paper. After recalling the necessary definitions and introducing some
formalism for minors in Section 2, we present a characterization of such “minor posets”
by means of admissible colorings of partition lattices in Section 3. Then, in Section 4 we
use this characterization to give some infinite families of examples of minor posets, and we
also present some operations that allow us to construct new minor posets from known ones.
However, it still remains an open problem to find a finite bounded poset that is not the poset
of minors of any function, if there is such a poset at all.

Let us briefly discuss the relevance of minors of functions to universal algebra and
multiple-valued logic. Many important properties of an algebraic structure A = (A;F)

depend only on the clone of term functions of A, not on the set F of basic operations (which
is a generating set for this clone). This makes the theory of clones an essential part of uni-
versal algebra. Clones of Boolean functions (i.e., functions on the set {0, 1}) are obviously
relevant for logic [9], and clones of functions on larger sets are central objects of study in
multiple-valued logic. Clone theory is essentially the study of compositions of functions
of several variables. The simplest kinds of compositions are the ones where we compose
a function f with projections. It is easy to see that these are the same as the minors of f

(see Example 1 and Section 2.3). We will see in this paper that even such very simple com-
positions raise highly nontrivial problems, and we believe that the investigation of these
problems contributes to our understanding of clones.

Fig. 1 A minor poset
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This article is an extended version of the conference paper [7] presented at the 47th IEEE
International Symposium on Multiple-Valued Logic, where the main results and sketches of
some of the proofs were given.

2 Preliminaries

2.1 Posets

For a bounded poset P , let ⊥P and �P denote its least and greatest elements; we drop
the subscript when there is no danger of ambiguity. The dual of a poset P is the poset P d

obtained by reversing the ordering of P (drawing the Hasse diagram of P upside down). The
interval [a, b] in P is the set {x ∈ P : a ≤ x ≤ b}. The principal ideal generated by a ∈ P

is the interval ↓a := [⊥P , a], and the principal filter generated by a is the interval [a, �P ].
We denote the n-element chain by n, the n-element antichain by n, and Mn denotes the

bounded poset (in fact, lattice) of size n + 2 with no comparabilities among its elements
except for the top and bottom elements. The ordinal sum (linear sum) of posets P and
Q is the poset P ⊕ Q obtained by putting Q “on top of” P . With this notation we have
n = 1 ⊕ · · · ⊕ 1

︸ ︷︷ ︸

n

and Mn = 1 ⊕ n ⊕ 1.

By a coloring of a poset we mean a surjective map c : P → C, where C is an arbitrary
nonempty set, whose elements are referred to as colors. Given such a coloring, we can
introduce a relation λ on C by uλv ⇐⇒ ∃a, b ∈ P : a ≤ b and c (a) = u, c (b) = v. If
λ is a partial order (which is not always the case), we obtain the “poset of colors” (C; λ),
and in this case we will use the symbol ≤ instead of λ. Note that (C; ≤) can be naturally
identified with the poset of equivalence classes with respect to the kernel of the map c, hence
we shall denote this quotient poset by P/ ker c. Let us emphasize that even if P is a lattice
(which will always be the case in this paper), the quotient poset P/ ker c is not necessarily
a lattice (i.e., ker c is not always a congruence).

2.2 Set Partitions

For any nonempty set V , let �V denote the set of all partitions of V ; if V = [n] :=
{1, . . . , n} then we simply write �n. Each partition α ∈ �V corresponds naturally to an
equivalence relation ρα ⊆ V × V . For notational convenience, we will sometimes use the
same symbol for a partition and the corresponding equivalence relation, when there is no
risk of ambiguity. For example, we denote the block of α ∈ �V containing v ∈ V by v/α

instead of the more usual notation v/ρα . Similarly, we use the symbol ker h not only for the
kernel of a map h : V → A, but also for the corresponding partition in �V .

For α, β ∈ �V , we say that α is a refinement of β and β is a coarsening of α (denoted
by α ≤ β) if every block of α is a subset of some block of β (equivalently, ρα ⊆ ρβ ). The
poset (�V ; ≤) is a lattice, where α ∧ β is the partition corresponding to ρα ∩ ρβ and α ∨ β

is the partition corresponding to the transitive closure of ρα ∪ ρβ . The top element of �V is
� = {V } and the bottom element is ⊥ = {{v} : v ∈ V }. If α < β and there is no partition
ξ with α < ξ < β then β is an upper cover of α (α is a lower cover of β), and we shall
denote this by α ≺ β. Note that in this case β is obtained from α by merging two blocks; in
particular, ϑ ≺ � holds if and only if ϑ has exactly two blocks.

Ore proved in [8] that every automorphism of �V is induced by a permutation of V .
It follows immediately that every isomorphism between partition lattices is induced by a
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bijection between the underlying sets. More precisely, let V and W be nonempty sets, and
let π : V → W be a bijection. For any partition α = {V1, . . . , Vk} ∈ �V , let π̃ (α) =
{π (V1) , . . . , π (Vk)} ∈ �W . Obviously, π̃ : �V → �W is an isomorphism. With this
notation we can recast Ore’s theorem in the following form.

Theorem 2 (Ore [8]) For arbitrary sets V and W , every isomorphism between �V and
�W is of the form π̃ for some bijection π : V → W .

Although �V is not a modular lattice if |V | > 3, the following special case of the
isomorphism theorem for perspective intervals in modular lattices does hold (the easy proof
is left to the reader).

Fact 3 Let α, γ, ϑ ∈ �V with α ≤ ϑ ≺ � and α ≺ γ � ϑ . If one of the blocks of α is also
a block of ϑ , then the following two maps are mutually inverse isomorphisms between the
intervals [α, ϑ] and [γ, �]:

[α, ϑ] → [γ, �] , ξ �→ ξ ∨ γ ;
[γ, �] → [α, ϑ] , ξ �→ ξ ∧ ϑ.

Remark 4 The intervals [α, ϑ] and [γ, �] in Fact 3 are both isomorphic to the partition
lattice on |α| − 1 = |γ | elements, hence from Theorem 2 we see that up to permutations of
blocks of α, the only isomorphism from [α, ϑ] to [γ, �] is ξ �→ ξ ∨ γ .

2.3 Functions and Their Minors

A function of several variables is a map of the form f : An → B, where A and B are
arbitrary nonempty sets, and n is a natural number, called the arity of f . To avoid degenerate
cases, the sets A and B will be assumed to have at least two elements. The set of all such
functions (of arbitrary arities) is denoted by FAB . We say that the i-th variable of f is
essential (or that f depends on its i-th variable) if there exist tuples a, a′ ∈ An differing
only in their i-th coordinate such that f (a) �= f

(

a′).
For f, g ∈ FAB , we say that g is a minor of f (notation: g ≤m f ), if there is a map

σ : [n] → [m] such that g (x1, . . . , xm) = f
(

xσ(1), . . . , xσ(n)

)

, where n and m denote the
arities of f and g, respectively. It is easy to see that g ≤m f holds if and only if g can be
obtained from f by identification of variables, permutation of variables and/or introduction
or deletion of inessential variables. The minor relation is a quasiorder on FAB , and the
corresponding equivalence of functions is defined and denoted by f ≡ g ⇐⇒ f ≤m g

and g ≤m f . Two functions are equivalent if and only if they can be obtained from each
other by permutation of variables and/or introduction or deletion of inessential variables,
whereas to form a proper minor g <m f (meaning g ≤m f but g �≡ f ), one must identify
at least two essential variables. Considering functions only up to equivalence, as we shall
do in this paper, one obtains the poset (FAB/≡; ≤m), which is our main object of study.
The structure of this poset is quite complicated; for instance, it was shown by Couceiro and
Pouzet [5] that it contains a copy of the poset of finite subsets of a countable set (hence
a copy of every finite poset) even in the simplest case A = B = {0, 1} (i.e., in the case
of Boolean functions). In fact, (FAB/≡; ≤m) is universal for the class of countable posets
with finite principal ideals, whenever |B| ≥ min(3, |A|) (see Lehtonen, Szendrei [6]).

Here we deal with principal ideals of (FAB/≡;≤m). The principal ideal ↓f generated
by a function f consists of the minors of f (up to equivalence), hence we call it the poset of
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minors of f , and we also say that P is a minor poset if there exists a function f : An → B

for some sets A,B and for some natural number n, such that P ∼= ↓f . Clearly ↓f is a
finite poset with largest element f/≡. Although FAB/≡ has no least element (but it has
several minimal elements), every function f has a least minor, namely the unary function
f (x, . . . , x); see Fig. 2. Therefore, every minor poset is a finite bounded poset. We shall
denote the class of all minor posets by M, and our main goal is to characterize members of
M by means of a necessary and sufficient condition that does not refer to the existence of
a suitable function f . In Corollary 18 we establish such a “function-free” characterization;
unfortunately, this involves quite an intricate property that is not easy to verify for a con-
crete poset. Therefore, in spite of this characterization, it is still not clear whether all finite
bounded posets are minor posets or not. In Section 4 we present some infinite families of
minor posets, and we prove that M is closed under certain poset constructions.

In order to present the promised characterization, we need to introduce some more
abstract formalism for tuples, functions and minors (following Willard [10]). An n-ary func-
tion from A to B can be viewed as a map f : AV → B, where V is an arbitrary n-element set
(whose elements are considered to be the variables of f ), and the elements of AV are maps
of the form a : V → A (evaluations of variables). Note that in the special case V = [n], the
elements of AV can be naturally identified with n-tuples, and in this case we get back the
usual notion of a function of several variables. We will formulate our results in this usual
setting, but in the proofs we will also need the more abstract view of functions allowing
arbitrary finite sets as the set of variables.

For a ∈ AW and σ : V → W , we can define the composition a◦σ ∈ AV by (a ◦ σ) (v) =
a (σ (v)). Minors of f are functions g : AW → B that can be given in the form g (a) =
f (a ◦ σ) for some map σ : V → W . If α ∈ �V is a partition, then let natα denote the natu-
ral surjection natα : V → α, v �→ v/α. The map natα induces a minor fα : Aα → B, which
is given by fα (a) = f (a ◦ natα) for all a ∈ Aα . Observe that fα is obtained from f by iden-
tifying variables belonging to the same block of α. Conversely, for every map σ : V → W ,
the minor g (a) = f (a ◦ σ) is equivalent to fα with α = ker σ . This shows that it
suffices to work with minors of the form fα , and we shall record this fact here for reference.

Fact 5 If f : AV → B and g : AW → B are arbitrary functions, then

g ≤m f ⇐⇒ ∃α ∈ �V : g ≡ fα.

Fig. 2 A principal ideal in FAB
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3 Admissible Colorings

According to Fact 5, every minor of an n-variable function f is equivalent to a function fα

for some α ∈ �n. This means that we can encode all information about minors of f into a
“coloring” c of the partition lattice �n, where the color of a partition α is c (α) = fα/≡.
Actually, the only relevant property of this coloring is that two minors receive the same
color if and only if they are equivalent. Clearly, we have β ≥ α =⇒ fβ ≤m fα . The
following easy observation formulates a kind of converse of this statement, showing that we
can recover the poset ↓f as the quotient of �n by the kernel of the aforementioned coloring c.

Proposition 6 For every function f : An → B and for all α, β ∈ �n, the function fβ is a
minor of fα if and only if there exists a partition γ ≥ α such that fγ ≡ fβ .

Proof The “if” part of the statement is obvious. For the “only if” part, assume that fβ ≤m
fα . By Fact 5, this means that there exists a partition δ ∈ �α such that fβ ≡ (fα)δ . Let
γ ∈ �n be the partition obtained by merging the blocks of α that belong to the same block
of δ. (More precisely, two elements u, v ∈ [n] are ργ -related if and only if the α-blocks u/α

and v/α are ρδ-related.) Clearly, γ ≥ α and (fα)δ ≡ fγ , hence fβ ≡ fγ .

Corollary 7 For every function f : An → B, the poset of minors of f is dually isomorphic
to �n/ ker c for the natural coloring c : �n → ↓f, α �→ fα/≡.

Example 8 Let us consider the function f (x1, x2, x3, x4) = x1x3 + x2 + x4 of Example 1
once more. We have computed there that f12/3/4 ≡ f14/2/3 ≡ g >m h ≡ f1/24/3 and
f13/2/4 is incomparable to g and h. (Here we use a simplified, but hopefully clear notation
for partitions.) Calculating fα for all the 15 partitions of [4] = {1, 2, 3, 4}, we get a coloring
of �4 with 6 colors, as shown in Fig. 3. The partial order induced on the 6 colors is the dual
of the poset of Fig. 1.

Corollary 7 shows that we can obtain each minor poset as a “poset of colors”, where the
order on the colors is induced by a suitable coloring of a partition lattice. Therefore, our
main goal is to characterize those colorings that can arise from a function. We define an
abstract property of colorings of partition lattices, called admissibility (see Definition 11),

Fig. 3 The coloring of �4 that corresponds to Fig. 1
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and in Corollary 18 we prove that admissibility is indeed a necessary and sufficient condi-
tion for the existence of a function f such that the given coloring is induced by f (as in
Corollary 7).

Definition 9 Let c : �n → C be a coloring, and let α, β ∈ �n. We write α ∼ β if the
intervals [α, �] and [β, �] are isomorphic as colored posets, i.e., there is an isomorphism ϕ

from [α, �] to [β, �] such that c (ξ) = c (ϕ (ξ)) for all ξ ∈ [α, �].

Proposition 10 Let c : �n → C be a coloring, and let α, ϑ ∈ �n such that α ≤ ϑ ≺ �.
Then the following two conditions are equivalent.

(i) For every γ ∈ �n with α ≺ γ � ϑ , the map

ϕγ : [α, ϑ] → [γ, �] , ξ �→ ξ ∨ γ

is a color-preserving isomorphism (cf. Fact 3 and see also Fig. 4).
(ii) One of the blocks of α is also a block of ϑ and

∀ξ ∈ [α, �] : c (ξ) = c (ξ ∧ ϑ) . (1)

Proof Observe that if α = ϑ , then the equivalence of (i) and (ii) is obvious: both are
equivalent to c (α) = c (�) (in this case the partition γ in (i) must be �). Therefore, we
may assume that α < ϑ , as depicted in Fig. 4. Then α has at least three blocks, and there
exist partitions γ �= � with α ≺ γ � ϑ (just merge any two blocks of α that are not merged
in ϑ).

Assume first that (i) holds. If k = |α| and the two blocks of ϑ are unions of s and k − s

blocks of α, respectively, then [α, ϑ] ∼= �s × �k−s and [γ, �] ∼= �k−1. By condition (i),
these two lattices are isomorphic: �s ×�k−s

∼= �k−1. Partition lattices are simple (see Ore
[8, Theorem 8] and Beran, Ježek [1, Theorem 1]), hence directly indecomposable; therefore,
we must have s = 1 or s = k − 1. Thus one of the blocks of α is indeed a block of ϑ , i.e.,
α and ϑ are of the form α = {V1, . . . , Vk} and ϑ = {V1, V2 ∪ · · · ∪ Vk}. To prove (1), let us
fix an arbitrary partition ξ ∈ [α, �]. If ξ ≤ ϑ , then ξ ∧ ϑ = ξ , hence (1) holds trivially. If
ξ � ϑ , then V1 is merged with at least one other block of α in ξ ; we can suppose without loss

Fig. 4 The intervals [α, ϑ] and
[γ, �] are isomorphic as colored
posets
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of generality that V1 ∪ V2 is contained in a block of ξ . Letting γ = {V1 ∪ V2, V3, . . . , Vk},
we see that ξ ∈ [γ, �] and α ≺ γ � ϑ , thus c

(

ϕ−1
γ (ξ)

)

= c (ξ) by (i). Recall from Fact 3

that ϕ−1
γ (ξ) = ξ ∧ ϑ , hence c (ξ ∧ ϑ) = c

(

ϕ−1
γ (ξ)

)

= c (ξ), which completes the proof

of (ii).
Now assume that (ii) holds. If α ≺ γ � ϑ and ξ ∈ [α, ϑ], then replacing ξ by ξ ∨ γ in

(1) we obtain

c (ξ ∨ γ ) = c ((ξ ∨ γ ) ∧ ϑ) = c (ξ) ,

which proves that ϕγ preserves colors. (Here we used Fact 3 in the form (ξ ∨ γ ) ∧ ϑ =
ξ .)

Definition 11 Let c : �n → C be a coloring, and let α, β ∈ �n. We write α �1 β if
α ≺ β and there is a partition ϑ ∈ �n with α ≤ ϑ ≺ � and β � ϑ such that the equivalent
conditions of Proposition 10 are satisfied (in particular, condition (ii) holds with γ = β).

Let � be the reflexive-transitive closure of �1, i.e., α � β if and only if there exist
α0, . . . , αk ∈ �n for some k ≥ 0 such that α = α0 �1 α1 �1 · · · �1 αk = β (this
includes the case α = β when k = 0).

We say that the coloring c is admissible, if for all α, β ∈ �n, we have

c (α) = c (β) =⇒ ∃α′, β ′ ∈ �n : α � α′ ∼ β ′ �β. (2)

Remark 12 Note that if α ∼ β or α � β, then c (α) = c (β). Thus the reverse implication
of (2) always holds.

Proposition 13 Let f : An → B be an arbitrary function, and let c (α) = fα/≡ for all
α ∈ �n. Then c is an admissible coloring of �n.

Proof Let α = {V1, . . . , Vk} ∈ �n be an arbitrary partition of size k ≥ 2, and assume
that V1 is an inessential variable of fα . Let ϑ = {V1, V2 ∪ · · · ∪ Vk} and suppose that α ≺
γ � ϑ . Clearly, γ is obtained from α by merging V1 with another block Vj . This means
that we get fγ from fα by identifying the inessential variable V1 with another variable,
hence we have fα ≡ fγ , that is c (α) = c (γ ). Similarly, for any ξ ∈ [α, ϑ], denoting by
ϕ (ξ) = ξ ∨γ the partition obtained from ξ by merging V1 (which must be a block of ξ ) with
the block containing Vj , we have c (ξ) = c (ϕ (ξ)), therefore condition (i) of Proposition 10
is satisfied. Thus we can conclude that α �1 γ for every γ ∈ �n such that α ≺ γ � ϑ .

We have proved that if fα has an inessential variable, then there exists an upper cover γ

of α such that α �1 γ . Proceeding this way (always identifying an inessential variable with
another variable as long as there is an inessential variable), we finally arrive at a partition α′
such that α � α′ and all variables of fα′ are essential.

Now we are ready to prove that c is an admissible coloring. Assume that c (α) = c (β),
i.e., fα ≡ fβ , and use the above procedure to find partitions α′ and β ′ such that α � α′
and β � β ′ with fα′ and fβ ′ depending on all their variables. Since fα′ ≡ fα ≡ fβ ≡ fβ ′ ,
the functions fα′ and fβ ′ are equivalent, and this implies that they can be obtained from
each other by permuting (renaming) the variables, since both functions have only essential
variables. This permutation of variables induces naturally a color-preserving isomorphism
between the intervals

[

α′,�]

and
[

β ′,�]

, showing that α′ ∼ β ′. Thus we have α � α′ ∼
β ′ �β, and this proves that (2) is satisfied.
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Remark 14 If f depends on all of its variables, then c (⊥) = f/≡ appears only at ⊥ in the
coloring of Proposition 13. Therefore, one may always assume without loss of generality
that ⊥ is the unique element of �n with color c (⊥). On the other hand, one cannot assume
the same about the color of �: a function can have several minors that are equivalent to
f� = f (x, . . . , x) (see also Remark 22).

Next we would like to prove the following converse of Proposition 13: for any admissible
coloring c : �n → C, there is a function f : An → B such that two partitions of [n] have
the same color if and only if the corresponding minors of f are equivalent. To construct this
function, let A be any set with at least n elements, let B = C, and define f : An → B by
f (a) := c (ker a) for all a ∈ An. Here ker a denotes the (partition corresponding to the)
kernel of the map a : [n] → A, i �→ ai . All partitions of [n] with at most |A| blocks arise
in the form ker a, therefore our assumption |A| ≥ n guarantees that in fact every element of
�n will occur. We will show in Theorem 17 that the above function has the desired property,
thus we can conclude that every poset that appears as the poset of minors of a function can
be represented by a function f having the special property that f (a) is determined by the
kernel of a.

Let f be the function defined above, and let us consider an arbitrary minor fα . From the
definition of a minor we have that fα (a) = f (a ◦ natα) = c (ker (a ◦ natα)) for all a ∈ Aα .
Observe that the partition ker (a ◦ natα) is a coarsening of α (merging two blocks of α if
and only if a assigns the same value to them). Moreover, the assumption |A| ≥ n ensures
that we obtain every coarsening of α (every element of the interval [α, �]) this way. This
observation will be of key importance in the next two lemmas, which prepare the ground
for the proof of Theorem 17, our main result in this section.

Lemma 15 Let c : �n → C be an arbitrary coloring, and let the function f : An → C be
defined by f (a) = c (ker a) for all a ∈ An, where A is a finite set with at least n elements.
For arbitrary partitions α, β ∈ �n, the minors fα and fβ can be obtained from each other
by a permutation of variables if and only if α ∼ β.

Proof First let us assume that fα and fβ can be obtained from each other by a permutation
of variables. This means that α and β have the same number of blocks, and there is a
bijection π : β → α such that fα (a) = fβ (a ◦ π) for all a ∈ Aα . By the definition of a
minor, we can rewrite this equality as f (a ◦ natα) = f

(

a ◦ π ◦ natβ
)

, which in turn can
be formulated as c (ker (a ◦ natα)) = c

(

ker
(

a ◦ π ◦ natβ
))

. The partition ker (a ◦ natα) is a
coarsening of α, and ker

(

a ◦ π ◦ natβ
)

is a coarsening of β, which can be obtained from β

by merging two blocks if and only if the images of these two blocks under π are merged in
ker (a ◦ natα). Since all coarsenings of α and β appear here, we obtain a color-preserving
isomorphism

π̃ : [α, �] → [β, �] , ker (a ◦ natα) �→ ker
(

a ◦ π ◦ natβ
)

, (3)

showing that α ∼ β.
Next assume that α ∼ β, i.e., that there is a color-preserving isomorphism ϕ : [α, �] →

[β, �]. Since [α, �] ∼= �α and [β, �] ∼= �β , Theorem 2 implies that ϕ is induced by a
bijection π : β → α. From the above considerations it follows that ϕ is exactly the iso-
morphism π̃ defined by (3), and, since ϕ is a color-preserving isomorphism, this means
that c (ker (a ◦ natα)) = c

(

ker
(

a ◦ π ◦ natβ
))

for all a ∈ Aα . By the definition of f , we
conclude fα (a) = fβ (a ◦ π), hence fα can be obtained from fβ by a permutation of
variables.
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Lemma 16 Let c : �n → C be an arbitrary coloring, and let the function f : An →
C be defined by f (a) = c (ker a) for all a ∈ An, where A is a finite set with at
least n elements. For arbitrary partitions α, β ∈ �n, the minor fβ can be obtained
from fα by identifying an inessential variable with another variable if and only if
α �1 β.

Proof To prove the “only if” part of the lemma, let α = {V1, . . . , Vk} ∈ �n and let
us assume (without loss of generality) that the first variable of fα is inessential and
that fβ is obtained from fα by identifying the first two variables. Then we have β =
{V1 ∪ V2, V3, . . . , Vk}, and let us put ϑ = {V1, V2 ∪ · · · ∪ Vk}. Clearly, α ≤ ϑ ≺ � and
α ≺ β � ϑ , so we only need to verify (1). Let ξ = {W1, . . . , W�} ∈ [α, �] be an arbitrary
partition, and let W1 be the block of ξ that contains V1. If W1 = V1 then ξ ≤ ϑ , hence
ξ = ξ∧ϑ , and then (1) holds trivially. If W1 ⊂ V1, then ξ∧ϑ = {V1, W1 \ V1,W2, . . . , W�}
and V1 is an inessential variable in fξ∧ϑ . Therefore, if a0, . . . , a� ∈ A are pairwise different
(such elements exist, as |A| ≥ n), then we have

c (ξ ∧ ϑ) = fξ∧ϑ (a0, a1, a2, . . . , a�) = fξ∧ϑ (a1, a1, a2, . . . , a�) = c (ξ) ,

thus (1) holds. This proves that α �1 β, as claimed.
For the “if” part, assume that α �1 β. We may suppose (without loss of general-

ity) that α = {V1, . . . , Vk}, β = {V1 ∪ V2, V3, . . . , Vk} and the partition ϑ justifying
α �1 β according to Definition 11 is ϑ = {V1, V2 ∪ · · · ∪ Vk}. Let a ∈ Aα and
let ξ = ker (a ◦ natα). Then we have fα (a1, . . . , ak) = c (ξ) and fβ (a2, . . . , ak) =
fα(a2, a2, . . . , ak) = c(ker((a2, a2, . . . , ak) ◦ natα)). Since

ker((a2, a2, . . . , ak) ◦ natα) = (ker((a1, a2, . . . , ak) ◦ natα) ∧ ϑ) ∨ β = (ξ ∧ ϑ) ∨ β,

we see that fβ (a2, . . . , ak) = c ((ξ ∧ ϑ) ∨ β).
From α �1 β it follows that c (ξ) = c (ξ ∧ ϑ) (using condition (ii) of Proposition 10)

and c (ξ ∧ ϑ) = c ((ξ ∧ ϑ) ∨ β) (using condition (i) of Proposition 10 with ξ ∧ ϑ in place
of ξ and β in place of γ ). We can conclude that

fα (a1, a2, . . . , ak) = c (ξ) = c ((ξ ∧ ϑ) ∨ β) = fβ (a2, . . . , ak)

for all a1, a2, . . . , ak ∈ A. This means that the first variable of fα is inessential, and fβ is
obtained by identifying this inessential variable with the second variable.

With the help of the previous two lemmas we can now prove that every admissible
coloring of �n can be realized by minors of an n-variable function.

Theorem 17 Let c : �n → C be an admissible coloring, and let the function f : An → C

be defined by f (a) = c (ker a) for all a ∈ An, where A is a finite set with at least n

elements. Then for every α, β ∈ �n, we have fα ≡ fβ if and only if c (α) = c (β).

Proof Suppose first that fα ≡ fβ . Let α = {V1, . . . , Vk} ∈ �n and assume that
V1, . . . , V� are inessential variables and V�+1, . . . , Vk are essential variables in fα . If
α′ = {V1 ∪ · · · ∪ V� ∪ V�+1, V�+2, . . . , Vk}, then fα′ depends on all of its variables, and fα′
can be obtained from fα by repeatedly identifying an inessential variable with an essential
one. Similarly, let fβ ′ be the “essential minor” of fβ . Clearly, fα ≡ fβ implies that fα′ and
fβ ′ can be obtained from each other by a permutation of variables. Now Lemma 15 and
Lemma 16 yield α � α′ ∼ β ′ �β, and then c (α) = c (β) follows (see Remark 12).
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Conversely, if c (α) = c (β), then, by the admissibility of the coloring c, there exist
α′, β ′ ∈ �n such that α � α′ ∼ β ′ �β. Lemma 16 shows that fα ≡ fα′ and fβ ≡ fβ ′ ,
and Lemma 15 shows that fα′ ≡ fβ ′ . Therefore, we can conclude that fα and fβ are
equivalent.

Proposition 13 and Theorem 17 together yield the following characterization of minor
posets.

Corollary 18 A poset P belongs to M (i.e., isomorphic to the poset of all minors of some
function f ) if and only if there is an admissible coloring c : �n → C for some natural
number n and for some nonempty set C such that P d ∼= �n/ ker c.

4 Constructions and Examples

In this section we give some (families) of examples of minor posets, and we also present
some constructions which allow us to build new minor posets from known ones. We denote
the poset of integer partitions of n by Pn (see Birkhoff [2] for the definition of this poset).

Theorem 19 The following are minor posets for all natural numbers m and n:

(i) the dual of the partition lattice �n;
(ii) the dual of the poset Pn of integer partitions of n;

(iii) the n-element chain n;
(iv) the lattice m ⊕ Mn;
(v) the n-dimensional cube (Boolean lattice) 2n.

Proof In each case we give an admissible coloring of a partition lattice such that the cor-
responding quotient is dually isomorphic to the desired poset. Except for (v), we leave it to
the reader to verify that these colorings are indeed admissible and that they yield the desired
quotient.

(i) If c : �n → �n is the identity map, then clearly �n/ ker c is dually isomorphic to �d
n .

(ii) For α = {V1, . . . , Vk} ∈ �n, let c (α) be the integer partition n = |V1| + · · · + |Vk|
given by the sizes of the blocks of α. Then c : �n → Pn is an admissible coloring
and �n/ ker c is isomorphic to Pn.

(iii) For the coloring c : �n → [n] , α �→ |α|, the quotient �n/ ker c is (the dual of) an
n-element chain.

(iv) Choose a natural number k such that k ≥ m + 3 and
(
k
2

) ≥ n. Let c1, . . . , cn and
d1, . . . , dm be pairwise distinct colors, all distinct from white and black, and let us
color �k as follows. The bottom element of �k is white. The atoms receive colors
c1, . . . , cn in an arbitrary way so that all these n colors are used. For i = 1, . . . , m,
the partitions with exactly k − i − 1 blocks receive color di . All remaining partitions,
i.e., the ones with at most k − m − 2 blocks are black (see Fig. 5 with m = 1,
n = 3, k = 4). Then �k/ ker c is isomorphic to Mn ⊕ m, hence dually isomorphic to
m ⊕ Mn.

(v) Let c be the coloring that assigns to every partition α = {V1, . . . , Vk} ∈ �n+1 the set
of minimal elements of the blocks of α (under the natural ordering 1 < · · · < n + 1),
that is, c (α) := {min V1, . . . , min Vk}. Since |c (α)| = |α|, only partitions on the
same level of �n+1 can receive the same color. Therefore, in order to prove that c is
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Fig. 5 A coloring of �4 with quotient M3 ⊕ 1

admissible, it suffices to show that [α, �] and [β, �] are isomorphic as colored posets
whenever c (α) = c (β). Let us consider the natural isomorphisms ϕ : [α, �] → �α

and ψ : [β, �] → �β . If c (α) = c (β), then for each block V of α, there exists a
unique block π (V ) of β such that min V = min π (V ), and this defines a bijection
π : α → β. Now the composition ψ−1 ◦ π̃ ◦ϕ is a color-preserving isomorphism from
[α, �] to [β, �].

To determine the quotient poset, observe that the image of c consists of those sub-
sets of [n + 1] that contain the element 1, and we have α > β =⇒ c (α) ⊂ c (β).
Moreover, if 1 ∈ M ⊂ N ⊆ [n + 1], then one can find partitions α, β ∈ �n+1
with α > β and c (α) = M, c (β) = N . This implies that �n+1/ ker c is
isomorphic to the lattice of subsets of [n + 1] containing 1, which is (dually) iso-
morphic to 2n. Figure 6 illustrates the coloring and the corresponding quotient for
n = 3.

Remark 20 For the first three items of Theorem 19, it is easy to find functions that realize
the given posets. If f is an injective n-variable function, then no two minors of f are equiv-
alent, hence the poset of minors of f is isomorphic to the dual of the partition lattice �n.
For the second item, let us consider the function f (x1, . . . , xn) = x1 + · · · + xn over the

Fig. 6 A coloring of �4 with quotient 23
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real numbers. If α ∈ �n has blocks of sizes m1, . . . , mk (hence m1 + · · · + mk = n), then
fα is equivalent to the function m1x1 + · · · + mkxk . This shows that the poset of minors of
f is isomorphic to the dual of the lattice of integer partitions of n. Finally, let us consider
the function f (x1, . . . , xn) = x1 ∨ · · · ∨ xn, where ∨ is a semilattice operation. If α ∈ �n

has k blocks, then fα is equivalent to the function x1 ∨ · · · ∨ xk . This implies that the poset
of minors of f is an n-element chain.

Proposition 21 The classM is closed under taking principal ideals: if P ∈ M and a ∈ P ,
then the principal ideal [⊥P , a] is also a member ofM.

Proof If f is a function such that ↓f is isomorphic to P , and a ∈ P , then f has a minor
fα corresponding to a, and ↓fα is isomorphic to the principal ideal [⊥P , a].

Remark 22 A natural idea to prove an analogous statement for principal filters would be
the following. Take an admissible coloring c of �n such that �n/ ker c ∼= P d , and let α

correspond to a under this isomorphism. Change all colors outside of ↓α to the color of
α; then the resulting quotient poset of �n will be dually isomorphic to the principal filter
[a,�P ] of P . However, unfortunately, this modified coloring will not be admissible in
general (a counterexample is provided in Online Resources 1 and 2). Nevertheless, it might
be still true that M is closed under taking principal filters, but a different argument would
be needed to prove this.

In the following theorem we prove that one can always add a new top element to a minor
poset. Recalling that the ordinal sum of posets is denoted by ⊕, the poset obtained by adding
a new top element to P can be written as P ⊕ 1.

Theorem 23 If P ∈ M, then P ⊕ 1 ∈ M.

Proof By Corollary 18, there is an admissible coloring c : �n−1 → C for some nat-
ural number n and for some nonempty set C such that �n−1/ ker c ∼= P d . For any
ξ ∈ �n, let us simply write ξ − n for the partition that is obtained from ξ by delet-
ing the element n. More precisely, if ξ = {V1, . . . , Vk}, and, say, n ∈ Vk , then let
ξ − n = {V1, . . . , Vk \ {n}} ∈ �n−1, discarding the block Vk \ {n} if it is empty. Define
c∗ : �n → C by c∗ (ξ) = c (ξ − n). Later we will modify this coloring to obtain the
poset P ⊕ 1, but first let us check that c∗ is admissible. We shall need the following two
observations.

1. If α ∈ �n and {n} /∈ α (i.e., n does not form a singleton block in α), then the intervals
[α, �] ⊆ �n and [α − n,�] ⊆ �n−1 are isomorphic as colored posets under the map
ξ �→ ξ − n.

2. For every α ∈ �n there exists α′ ∈ �n such that α � α′ and {n} /∈ α′. If {n} /∈ α,
then we may choose α′ = α. Otherwise α is of the form α = {V1, . . . , Vk, {n}}. In this
case let α′ = {V1, . . . , Vk ∪ {n}} and ϑ = {{1, . . . , n − 1} , {n}}. Then condition (ii)
of Proposition 10 is satisfied, since ξ − n = (ξ ∧ ϑ) − n holds for all ξ ∈ [α, �] (in
fact, for all ξ ∈ �n), and therefore

c∗ (ξ) = c (ξ − n) = c ((ξ ∧ ϑ) − n) = c∗ (ξ ∧ ϑ) .

This shows that α �1 α′.

Now we are ready to verify the admissibility of c∗. Assume that α, β ∈ �n and c∗ (α) =
c∗ (β). By our second observation above, there exist α′, β ′ ∈ �n such that α � α′, β � β ′



36 Order (2019) 36:23–41

and {n} /∈ α′, β ′. From Remark 12 we see that c∗ (

α′) = c∗ (α) = c∗ (β) = c∗ (

β ′),
and this implies c

(

α′ − n
) = c

(

β ′ − n
)

. Since c is an admissible coloring of �n−1, there
exist γ, δ ∈ �n−1 with α′ − n � γ ∼ δ �β ′ − n. The partition α′ − n is obtained
from α′ by removing n from the block that contains n, and γ is a coarsening of α′ − n.
Let us add the element n to the block of γ that contains the block of α′ from which n was
removed. This way we get a partition γ ′ ∈ �n with the properties γ ′ ≥ α′ and γ ′ − n = γ .
According to our first observation, the colored intervals

[

α′,�] ⊆ �n and
[

α′ − n, �] ⊆
�n−1 are isomorphic, thus α′ − n � γ implies α′ � γ ′, and then α � γ ′ follows, as
α � α′. In a similar way we can construct a partition δ′ ∈ �n such that δ′ − n = δ and
β � δ′. Using our first observation again, and taking into account that γ ∼ δ, we find the
isomorphisms

[

γ ′,�] ∼= [γ, �] ∼= [δ, �] ∼= [

δ′, �]

(all of the underlying isomorphisms
are color preserving). This means that α � γ ′ ∼ δ′ �β, hence (2) holds, and therefore c∗
is indeed admissible.

The quotient poset �n/ ker c∗ is isomorphic to P d . To see this, note that c∗ uses the
same colors as c; moreover, for any two colors c1, c2 ∈ C the following two conditions are
equivalent:

(a) ∃ξ1, ξ2∈ �d
n : ξ1 ≤ ξ2 and c∗ (ξ1) = c1, c∗ (ξ2) = c2;

(b) ∃η1, η2 ∈ �d
n−1 : η1 ≤ η2 and c (η1) = c1, c (η2) = c2.

Indeed, for (a) =⇒ (b) set ηi = ξi − n, and for (b) =⇒ (a) set ξi = ηi ∪ {{n}}.
Now let us introduce a new color ∗ /∈ C and modify the coloring c∗ by changing the

color of ⊥ to ∗ (the colors of the other elements remain the same). Clearly, this new coloring
is also admissible, and the corresponding quotient of �n is isomorphic to 1 ⊕ P d (note
that the “old” color c∗ (⊥) does still appear, for instance as c∗ ({{1}, {2}, . . . , {n − 1, n}}).
Therefore, P ⊕ 1 (the dual of 1 ⊕ P d ) belongs to M by Corollary 18.

Remark 24 It is a natural question whether P ∈ M implies 1 ⊕ P ∈ M. A simple proof
could be obtained by changing the color of � to a new color ∗ at the end of the previ-
ous proof. Unfortunately, this new coloring is not necessarily admissible. (As an example,
let us consider the coloring c of �2 that colors the bottom element white and the top ele-
ment black. The corresponding coloring c∗ assigns the color black to {{1, 2}, {3}} and to
{{1, 2, 3}}, and it assigns the color white to the remaining three elements of �3. Now if we
change the color of the top element from black to a new color ∗, then the resulting coloring
is no longer admissible.) Thus it remains an open problem whether adding a new bottom
element to a minor poset yields a minor poset or not.

Next we describe a construction of “gluing” two posets together, and we show that M
is closed under this construction. For finite bounded posets P1 and P2, let P1 ∗ P2 denote
the poset obtained from the disjoint union (parallel sum) of P1 and P2 by identifying the top
elements as well as the bottom elements (see Fig. 7). Formally, we have

P1 ∗ P2 = (

P1 \ {⊥P1 , �P1

}) ·∪ (

P2 \ {⊥P2 , �P2

}) ·∪ {⊥P1∗P2 ,�P1∗P2

}

,

where the ordering on Pi \ {⊥Pi
,�Pi

}

is inherited from Pi and there are no comparabilities
between P1 \ {⊥P1 ,�P1

}

and P2 \ {⊥P2 , �P2

}

; furthermore, ⊥P1∗P2 and �P1∗P2 are the
least and greatest elements of P1 ∗ P2.

Theorem 25 If P1, P2 ∈ M, then P1 ∗ P2 ∈ M.
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Fig. 7 The poset P1 ∗ P2

Proof Suppose that P1, P2 ∈ M, and let ci : �Wi
→ Ci be admissible colorings such that

�Wi
/ ker ci

∼= P d
i for i = 1, 2. We assume that the sets W1 and W2 are disjoint, and also

that c1 (⊥1) = c2 (⊥2) = ♠, c1 (�1) = c2 (�2) = ♥ but apart from these two colors,
there is no common color used in c1 and c2. (Here ⊥i and �i denote the bottom and top
elements of �Wi

.) By Remark 14, we may also suppose that the color ♠ appears only at the
bottom in c1 as well as in c2. We shall construct an admissible coloring c : �W → C with
W = W1 ∪ W2 and C = C1 ∪ C2 such that �W / ker c ∼= (P1 ∗ P2)

d .
For i = 1, 2, let ωi ∈ �W be the partition of W whose only non-singleton block is

Wi , and let ιi : �Wi
→ �W be the natural embedding that maps �Wi

isomorphically onto
[⊥, ωi]. We define the desired coloring c by

c (ξ) =
{

ci

(

ι−1
i (ξ)

)

, if ξ ∈ [⊥, ωi] for some i ∈ {1, 2};
♥, if ξ /∈ [⊥, ω1] ∪ [⊥, ω2].

Note that c is well defined, as the intervals [⊥, ω1] and [⊥, ω2] intersect only at the bottom,
and c1 (⊥1) = c2 (⊥2). It is clear that �W / ker c ∼= (P1 ∗ P2)

d ; we only need to verify that
c is admissible.

Let α, β ∈ �W such that c (α) = c (β). If c (α) = c (β) = ♥ then (2) is clear, since
c−1 (♥) is an upset in �W . If this is not the case, then either both α and β lie in [⊥, ω1]
or both are in [⊥, ω2], as there is no common color in C1 and C2 except for ♥ and ♠.
In the following we will assume that i = 1; the other case is essentially the same. Thus

c1

(

ι−1
1 (α)

)

= c1

(

ι−1
1 (β)

)

, and then we have

ι−1
1 (α) � α′ ∼ β ′ �ι−1

1 (β) (4)

for some α′, β ′ ∈ �W1 , by the admissibility of c1. Now we need to “pull back” (4) from
�W1 to �W , and for this it suffices to prove that γ ∼ δ =⇒ ι1 (γ ) ∼ ι1 (δ) and γ �1
δ =⇒ ι1 (γ ) �1 ι1 (δ) for all γ, δ ∈ �W1 . The intuitive reason behind both implications
is the same: the interval [ι1 (γ ) ,�] ⊆ �W differs from [γ, �1] ⊆ �W1 only in some
monochromatic part around the top (all colors are ♥ there), and similarly for δ. We shall
check the details formally below.

First assume that γ ∼ δ, i.e., there exists a color-preserving isomorphism ϕ : [γ, �1] →
[δ,�1]. Since �|γ | ∼= [γ, �1] ∼= [δ,�1] ∼= �|δ|, we must have |γ | = |δ|; moreover, by
Ore’s theorem (Theorem 2), ϕ = π̃ for some bijection π : γ → δ. Let us extend π to a
bijection τ : ι1 (γ ) → ι1 (δ) as follows:

τ (U) =
{

π (U) , if U ∈ γ (i.e., U ⊆ W1);
U, otherwise (i.e., if U = {w} for some w ∈ W2).

We claim that τ̃ is a color-preserving isomorphism between the intervals [ι1 (γ ) ,�] and
[ι1 (δ) , �]. Indeed, if ι1 (γ ) ≤ ξ ≤ ω1, then τ̃ (ξ) = ι1 (π̃ (η)), where η = ι−1

1 (ξ),
and thus c (̃τ (ξ)) = c1 (π̃ (η)) = c1 (η) = c (ξ), by the definition of c, and by the
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color-preserving property of π̃ . Now let ξ ∈ [ι1 (γ ) ,�] but ξ � ω1. Then τ̃ (ξ) � ω1,
hence c (̃τ (ξ)) = ♥ = c (ξ). Therefore, τ̃ indeed preserves colors, and this proves that
ι1 (γ ) ∼ ι1 (δ).

Next assume that γ �1 δ, i.e., there exists ϑ ∈ �W1 such that γ ≤ ϑ ≺ �1,
γ ≺ δ � ϑ , and c1 (η) = c1 (η ∧ ϑ) for all η ∈ [γ, �1]. Suppose (without loss of
generality) that γ = {V1, . . . , Vk}, ϑ = {V1, V2 ∪ · · · ∪ Vk} = {V1,W1 \ V1}, and let
� = {V1,W \ V1}. Clearly, we have ι1 (γ ) ≤ � ≺ � and ι1 (γ ) ≺ ι1 (δ) � �. We
need to verify that c (ξ ∧ �) = c (ξ) for every ξ ∈ [ι1 (γ ) ,�]. If ι1 (γ ) ≤ ξ ≤ ω1, then
c (ξ ∧ �) = c (ξ ∧ ω1 ∧ �) = c (ξ ∧ ι1 (ϑ)), since ι1 (ϑ) = ω1 ∧ �. Setting η = ι−1

1 (ξ),
we can conclude

c (ξ ∧ �) = c (ι1 (η) ∧ ι1 (ϑ)) = c (ι1 (η ∧ ϑ)) = c1 (η ∧ ϑ) = c1 (η) = c (ξ) .

If ξ ∈ [ι1 (γ ) , �] but ξ � ω1, then ξ ∧ � � ω1, hence c (ξ ∧ �) = ♥ = c (ξ). Therefore,
ι1 (γ ) �1 ι1 (δ), as claimed.

Starting from the examples of Theorem 19, one can build many minor posets using the
constructions of Theorems 23 and 25. For example, the poset of Fig. 1 can be constructed
as 3 ∗ (M2 ⊕ 1). In our last theorem we prove that all bounded posets on up to 6 elements
are minor posets.

Fig. 8 Bounded posets on up to six points
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Theorem 26 All bounded posets with at most 6 elements are minor posets.

Proof We have enumerated the bounded posets on up to six points in Fig. 8. The list is
exhaustive; the reader may compare the list with the numbers given by Brinkmann and
McKay [3]. As can be seen from Fig. 8, the posets with at most 6 elements can be built
using the constructions of Theorems 19, 23 and 25, with the exception of the following:
2 × 3, 1 ⊕ 2 ⊕ 2 ⊕ 1 and 1 ⊕ N5. Therefore, in order to prove the result, we must provide,
for each one of these three exceptional posets, an admissible coloring c of a partition lattice
�n such that the quotient �n/ ker c is dually isomorphic to the desired poset.

For 2 × 3, we color �4 as follows (see Fig. 9). The bottom element of �4 is white. The
partitions 1/23/4 and 14/2/3 are yellow; the other partitions with three blocks are green.
The partition 14/23 is blue; the other partitions with two blocks are red. The top element is
black. Then �4/ ker c is (dually) isomorphic to 2 × 3.

For 1 ⊕ 2 ⊕ 2 ⊕ 1, we color �4 as follows (see Fig. 10):

1/2/3/4 �→ white,

1/23/4, 14/2/3, 1/24/3 �→ yellow,

13/2/4, 12/3/4, 1/2/34 �→ green,

14/23, 13/24, 12/34 �→ blue,

1/234, 134/2, 124/3, 123/4 �→ red,

1234 �→ black.

Then �4/ker c is (dually) isomorphic to 1 ⊕ 2 ⊕ 2 ⊕ 1.
For 1⊕ N5, we color �5 according to the number and sizes of blocks and the size of the

block containing 5 as follows:

•/•/•/•/5 �→ white,

••/•/•/5 �→ yellow,

•/•/•/•5 �→ green,

•••/•/5 �→ blue,

•/•/••5, •/••/•5, •/•••5, •••/•5 �→ red,

••/••/5, ••••/5, ••/••5, ••••5 �→ black.

Fig. 9 A coloring of �4 with quotient 2 × 3
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Fig. 10 A coloring of �4 with quotient 1 ⊕ 2 ⊕ 2 ⊕ 1

Figure 11 shows a schematic diagram of �5 with this coloring. Each edge of the diagram
has a label indicating the number of upper covers of a partition belonging to a given group.
For example, if α is a partition of type •/•/••5, then α has 2 upper covers of type •/•••5
and 1 upper cover of type ••/••5. This information is sufficient to verify that the coloring
is admissible, and it is clear that �5/ ker c is isomorphic to N5 ⊕1, hence dually isomorphic
to 1 ⊕ N5.

•/•/•/•5

•/•/•/•/5

••/•/•/5

•/••/•5 •/•/••5 •••/•/5 ••/••/5

•••/•5 •/•••5 ••/••5 ••••/5

••••5

2

64

3

1

1 1 1 1

1

1
1

1

1

1

1

1

1

2

2

2

3

Fig. 11 A coloring of �5 with quotient N5 ⊕ 1
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5 Conclusion

We presented an abstract characterization of minor posets in terms of admissible colorings
of partition lattices, and we provided many examples of minor posets. These results suggest
some natural questions worth further investigations:

– Can we add a new bottom element to a minor poset, i.e., is it true that P ∈ M implies
1 ⊕ P ∈ M? In particular, is 2 ⊕ N5 a minor poset?

– Is the set of minor posets closed under direct products? In particular, is 3 × 3 a minor
poset?

– For a given natural number n, what is the smallest k such that every minor poset of size
n can be realized by a coloring of �k?

– Is it decidable whether a given finite bounded poset is a minor poset?
– After all, is every finite bounded poset a minor poset?
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