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Abstract We prove that finite partial orders with a linear extension form a Ramsey class.
Our proof is based on the fact that the class of acyclic graphs has the Ramsey property and
uses the partite construction.
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1 Introduction

Let C be a class of objects endowed with an isomorphism and a subobject relation. Given
two objects P and Q from C we write

(
Q
P

)
for the set of all subobjects of Q isomorphic to P .

Also for P ′ ∈ (
Q
P

)
we will refer to an isomorphism f : P → P ′ as an embedding of P to Q.

For three objects P , Q, R ∈ C and a positive integer r the partition symbol

R → (Q)Pr
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means that no matter how
(
R
P

)
gets colored by r colors there is some Q̃ ∈ (

R
Q

)
for which

(
Q̃
P

)

is monochromatic.
The class C is said to have the P -Ramsey property if for every Q ∈ C and every posi-

tive integer r there exists some R ∈ C with R → (Q)Pr . Notice that this is equivalent to
demanding that for every Q ∈ C there is some R ∈ C with R → (Q)P2 . Therefore, we will
from now on only discuss the case r = 2.

Finally, C is a Ramsey class if it has the P -Ramsey property for every P ∈ C.
Ramsey classes form a fertile area of study. The original combinatorial motivation

was complemented by the relationship to model theory, topological dynamics and ergodic
theory.

Among the first combinatorial structures whose Ramsey properties were studied is the
class P of partially ordered sets considered in [6] and in [9], where all partially ordered
sets P for which P posseses the P -Ramsey property were characterised. These are precisely
the partial orders P with the property that for any two linear extensions P1 = (P,≤1) and
P2 = (P,≤2) of P there is an isomorphism between P1 and P2 which preserves both the
partial and the linear order.

Thus it is natural to consider partial orders with linear extensions. An ordered (finite)
poset P is a poset (X,R) together with a linear extension ≤. We will write P = (X,R,≤)

and also X = X(P ), R = R(P ), ≤=≤P .
An embedding of an ordered poset P into an ordered poset P ′ is an injective map

f : X(P ) → X(P ′) which satisfies

(x, y) ∈ R(P ) ⇐⇒ (f (x), f (y)) ∈ R(P ′)
and x ≤P y ⇐⇒ f (x) ≤P ′ f (y) .

As a consequence of the main result of this article, Theorem 1.8, we derive the following.

Theorem 1.1 The class P of all ordered posets is a Ramsey class.

This theorem was mentioned in the survey paper [3] without proof referring to [1] and [4]
from which this result can be deduced (see also [6]). In this paper we carry out the details
of such a proof. We mention that similar results were proved in [9] and [2] and the theorem
was explicitly stated and proved in [10] (see also [11] and [12]). The method used in those
four papers is different from the one we are using here.

In the proof we shall make use of the following notions:
• An ordered acyclic graph is an oriented graph (X,R) together with a linear order ≤

on X satisfying (x, y) ∈ R =⇒ x < y.
• By ACYC we denote the class of all ordered acyclic graphs with monotone embed-

dings.
As a special case of the result of [1] and [4] (see also [5]), ACYC is a Ramsey class. For

the purposes of this article, it is actually more convenient to utilise a slight strengthening of
this fact speaking about ordered structures with two graph relations rather than one. More
precisely, these structures are defined as follows:

Definition 1.2 An RN graph (X,R, N,≤) consists of a linear order ≤ on X and two
acyclic relations R,N ⊆ X × X which are

(i) disjoint (i.e., R ∩ N = ∅) and
(ii) compatible with ≤ (i.e., both R ⊆ ≤ and N ⊆ ≤).



Order (2018) 35:293–300 295

For an RN graph A = (X,R,N,≤) we will write X = X(A), R = R(A), N = N(A),
and ≤ = ≤A. Observe that the definition of RN graphs does not require

<A= {
(x, y); x ≤A y and x �= y

}

to be the union of R(A) and N(A). We call an ordered RN graph A complete if
<A =R(A) ∪ N(A) holds. Observe that any ordered poset P = (X,R,≤) can be expanded
to a complete RN graph (X,R,N,≤) with N = < −R. This construction will allow us to
regard ordered posets as complete RN graphs in Theorem 1.8 below.

Embeddings between RN graphs are defined in the expected way:

Definition 1.3 For two RN graphs A and B an embedding from A to B is an injective map
f : X(A) → X(B) such that

• (x, y) ∈ R(A) ⇐⇒ (
f (x), f (y)

) ∈ R(B),
• (x, y) ∈ N(A) ⇐⇒ (

f (x), f (y)
) ∈ N(B),

• and x ≤A y ⇐⇒ f (x) ≤B f (y).

The following result is still a special case of the main theorems from [1] and [4], and its
proof is not much harder than just showing that ACYC is a Ramsey class.

Theorem 1.4 The class ACYCRN of all RN graphs is a Ramsey class.

The proof of Theorem 1.1 given below will utilise Theorem 1.4. It would be possible to
base a very similar proof just on the fact that ACYC is a Ramsey class, but at one place the
details would be slightly more cumbersome and from today’s perspective it does not seem
to be worth the effort.

We refine the above Theorem 1.4 by means of the following concepts:

Definition 1.5 A bad quasicycle of length j ≥ 2 in an RN graph (X,R,N,≤) consists
of j vertices x = x1, x2, . . . , xj = y with (xi, xi+1) ∈ R for i = 1, 2, . . . , j − 1 and
(x, y) ∈ N .

Definition 1.6 For an integer � ≥ 2 the RN graph (X,R,N,≤) is called an �-RN graph
if it does not contain a bad quasicycle of length j for any j ∈ [2, �].

Notice that due to condition (i) from Definition 1.2 every RN graph is also a 2-RN graph.

Definition 1.7 We will say that an RN graph is good if it contains for no � ≥ 3 a bad
quasicycle of length �.

(Consequently, any RN graph (X,R, N,≤), where (X,R, ≤) is a poset, is also good.)
In the result that follows, ordered posets are regarded as complete RN graphs in the way
that was explained after Definition 1.2.

Theorem 1.8 Let A and B be two ordered posets viewed as complete RN graphs. There
exists a sequence of RN graphs C2, C3, . . . such that for every � ≥ 2

(1) C� → (B)A2 ,
(2) C� is an �-RN graph,
(3) and there is a homomorphism h� : C�+1 → C�.

In particular, h∗
� = h�−1 ◦ · · · ◦ h2 is a homomorphism from C� to C2.
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We conclude this introduction by showing that Theorem 1.8 implies Theorem 1.1.
To this end, let A and B be two given ordered posets viewed as complete RN

graphs. Consider a sequence C2, C3, . . . as guaranteed by Theorem 1.8. Set |X(C2)| =
λ and consider the λ-RN graph Cλ with homomorphism h∗

λ : Cλ → C2 just
obtained.

Since Cλ contains no bad quasicycle of length � ≤ λ, while due to the existence of the
homomorphism h∗

λ : Cλ → C2 no direct path in Cλ has more than λ = |X(C2)| vertices,
we infer that the transitive closure RT of R = R(Cλ) is disjoint with N(Cλ). Consequently,
if we take the transitive closure of R(Cλ), all copies of A and B in Cλ (which are complete
RN graphs) remain intact (i.e., contain no edges added by taking the transitive closure). In
other words, the partial order C = (

X(Cλ), R
T
)

satisfies
(
C
B

) ⊇ (
Cλ

B

)
.

Consequently, C → (B)A2 and Theorem 1.1 follows.

2 Proof of Theorem 1.8

Throughout this section we fix two ordered posets A and B, for which we want to prove
Theorem 1.8.

The desired sequences of RN graphs (C�) and homomorphisms (h�) will be constructed
recursively, beginning with the construction of C2. For this purpose we invoke Theorem 1.4,
which applied to A and B yields the desired RN graph C2 with C2 → (B)A2 .

Now suppose that for some integer � ≥ 3 we have already managed to construct an
(�− 1)-RN graph C�−1 with C�−1 → (B)A2 . To complete the recursive construction we are
to exhibit an �-RN graph C� satisfying C� → (B)A2 together with a homomorphism h�−1
from C� to C�−1.

To this end we employ the partite construction. In fact this proof is a variant of the proofs
given in [7] and [8].

An essential component of the partite construction is a partite lemma, which will be
described first.

2.1 Partite Lemma

Recalling that A is a good complete RN graph, we have a linear order ≤A on X(A) extend-
ing R(A). Let us write X(A) = {v1, v2, . . . , vp} in such a way that v1 <A v2 <A · · · <A

vp .

Definition 2.1 An ordered A-partite RN graph E is an RN graph with a distinguished
partition X(E) = X1(E) ∪· . . . ∪· Xp(E) of its vertex set satisfying

(i) (x, y) ∈ R(E) ∩ (
Xi(E) × Xj(E)

) =⇒ (vi, vj ) ∈ R(A),
(ii) (x, y) ∈ N(E) ∩ (

Xi(E) × Xj(E)
) =⇒ (vi, vj ) ∈ N(A),

(iii) and X1(E) <E X2(E) <E · · · <E Xp(E).

Note that an ordered A-partite RN graph can also be viewed as an RN graph with a distin-
guished homomorphism into A. We observe the following:

Fact 2.2 For every A-partite RN graph E the following holds:
(a) If (x, y) ∈ R(E) ∪ N(E) and (x, y) ∈ Xi(E) × Xj(E), then i < j . In particular,

(
R(E) ∪ N(E)

) ∩ (
Xi(E) × Xi(E)

) = ∅ for all i = 1, 2, . . . , p .
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(b) Any copy of A in E (i.e., any Ã ∈ (
E
A

)
) is crossing in the sense that

∣
∣X

(
Ã

) ∩ Xi(E)
∣
∣ = 1 holds for all i = 1, 2, . . . , p .

(c) E is good.

Proof Part (a) follows directly from Definition 2.1 (i) and (ii) as well as from our choice of
the enumeration {v1, v2, . . . , vp}.

In order to deduce part (b) we note that the “in particular”-part of (a) entails∣
∣V

(
Ã

) ∩ Xi(E)
∣
∣ ≤ 1 for all i ∈ [p]. Owing to |X(Ã)| = p, we must have equality in all

these estimates, so Ã is indeed crossing.
To verify (c) we assume for the sake of contradiction that {x1, x2, · · · , x�} is the vertex

set of a bad quasicycle with (xi, xi+1) ∈ R(E) for i = 1, 2, · · · , � − 1, while (x1, x�) ∈
N(E). Let ψ : X(E) −→ X(A) be the projection sending for each i ∈ [p] the set Xi(E) to
vi . Due to the conditions (i) and (ii) from Definition 2.1 we get

(
ψ(xi), ψ(xi+1)

) ∈ R(A)

for i ∈ [� − 1] while
(
ψ(x1), ψ(x�)

) ∈ N(A). In other words, {ψ(x1), . . . , ψ(x�)} is a bad
quasicycle in A. This, however, contradicts the fact that A is a good RN graph.

Definition 2.3 For two ordered A-partite RN graphs E and F an embedding of E into F is
an injection f : X(E) → X(F) which is

(i) order preserving with respect to <E and <F , and satisfies
(ii) f

(
Xi(E)

) ⊆ Xi(F ) for all i = 1, 2, . . . , p as well as
(iii) (x, y) ∈ R(E) ⇐⇒ (

f (x), f (y)
) ∈ R(F) and

(x, y) ∈ N(E) ⇐⇒ (
f (x), f (y)

) ∈ N(F).

Similarly as before the image f (E) = Ẽ of such an embedding is called a copy of E and
by

(
F
E

)
we will denote the set of all copies of E in F .

The next lemma is an important component of partite amalgamation:

Lemma 2.4 (Partite Lemma) For every ordered A-partite RN graph E there exists an
ordered A-partite RN graph F with F → (E)A2 . In other words, F has the property that

any 2-colouring of
(
F
A

)
yields a copy Ẽ ∈ (

F
E

)
such that

(
Ẽ
A

)
is monochromatic.

We derive the partite Lemma 2.4 as a direct consequence of Theorem 1.4.

Proof of Lemma 2.4 Let E be ordered A-partite RN graph with the notation as in Definition 2.1
By Theorem 1.4 there exists an RN graph F̄ with F̄ → (E)A2 .
Let F be the ordered A-partite RN graph constructed as follows:
• Its partition classes are Xi(F ) = {vi} × X(F̄ ) for i = 1, . . . , p.
• The vertex set of F is ordered by the lexicographic ordering induced by ≤A and ≤F̄ .
• Both R(F) and N(F) are obtained by taking the usual direct (or categorical) product of A

and F̄ , i.e.,

⎫
⎪⎬

⎪⎭

(
(a, u), (a′, u′)

) ∈ R(F) ⇐⇒ (a, a′) ∈ R(A) and (u, u′) ∈ R(F̄ )

and
(
(a, u), (a′, u′)

) ∈ N(F) ⇐⇒ (a, a′) ∈ N(A) and (u, u′) ∈ R(F̄ ) .
(�)
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We claim that F → (E)A2 .

Indeed, consider an arbitrary 2-coloring of
(
F
A

)
by red and blue. For each A′ ∈ (

F̄
A

)
, where

X(A′) = {x1 <F̄ x2 <F̄ · · · <F̄ xp} ,

the set
{
(vi, xi); i = 1, . . . , p

}
induces a unique copy of A in F . Consequently, the coloring

of
(
F
A

)
yields an auxiliary coloring of

(
F̄
A

)
by red and blue. Since F̄ → (E)A2 , there is a

monochromatic E′ ∈ (
F̄
E

)
. Due to property (iii) of Definition 2.1 we have

X1(E
′) < X2(E

′) < · · · < Xp(E′) ,

and thus the set
p⋃

i=1

{(vi, x); x ∈ Xi(E
′), i = 1, . . . , p}

induces a monochromatic A-partite copy of E in F .
Finally we note that due to (�), F is an A-partite RN graph and consequently, due to

Fact 2.2 (c), F is a good RN graph.

2.2 Partite Construction

Recall that within the proof of Theorem 1.8 we are currently in the situation that for some
� ≥ 3 an (�−1)-RN graph C�−1 with C�−1 → (B)A2 is given. We are to prove the existence
of an �-RN graph C� with C� → (B)A2 and the additional property that there exists a
homomorphism h�−1 from C� to C�−1.

To accomplish this task we will utilise the partite construction (see e.g. [7, 8]). Set D =
C�−1 and let

(
D
A

) = {A1, . . . , Aα}, (
D
B

) = {B1, . . . , Bβ}. Set |X(D)| = d and without loss
of generality assume that X(D) = {1, 2, . . . , d}.

We are going to introduce D-partite ordered RN graphs P0, P1, . . . , Pα , i.e., ordered
RN -graphs with the property that for j = 0, 1, . . . , α the mapping fj : X(Pj ) →
{1, 2, . . . , d}, which maps each x ∈ Xi(Pj ) to i is a homomorphism from Pj to D.

The RN graph P0 is formed by β vertex disjoint copies B̃1, B̃2 . . . , B̃β of B placed on
the partite sets Xi(P0), i = 1, 2, . . . , d of cardinalities |Xi(P0)| = |{h ∈ [β]; i ∈ V (Bh}|
in such a way that for each h = 1, 2, . . . , β we have

|X(B̃h) ∩ Xi(P0)| =
{

1 if i ∈ X(Bh),

0 otherwise.

Clearly the mapping f0 which for all i ∈ {1, 2, . . . d} sends all elements x ∈ Xi(P0)

to {i} is a homomorphism.
Moreover, P0 is a good RN graph, and thus, in particular, it is an �-RN graph.
Next we assume that for some j < α a D-partite RN graph Pj together with a homo-

morphism fj : Pj → D = C�−1 satisfying Xi(Pj ) = f −1
j (i) for each i ∈ X(D) has been

constructed. We are going to describe the construction of Pj+1. To this end we consider the
copy Aj+1 ∈ (

D
A

)
, let

X(Aj+1) = {v1 < v2 < · · · < vp}
and let Ej+1 be the ordered A-partite RN subgraph of Pj induced on the set

⋃p

t=1 Xvt (Pj ).
Applying the Partite Lemma to Ej+1 yields an ordered A-partite RN graph Fj+1 such

that Fj+1 → (Ej+1)
Aj+1
2 .
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Set Ej+1 = (Fj+1
Ej+1

)
and extend each copy E′ ∈ Ej+1 to a copy P ′

j = Pj (E
′) of Pj

in such a way that, for any E′, E′′ ∈ Ej+1, the vertex intersection of P ′
j = Pj (E

′) and
P ′′

j = Pj (E
′′) is the same as the vertex intersection of E′ and E′′. In other words

Xi(P
′
j ) ∩ Xi(P

′′
j ) =

{
Xi(E

′) ∩ Xi(E
′′) if i ∈ X(Aj+1)

∅ otherwise.

Finally, let Pj+1 be the D-partite graph which is the union of all such copies of Pj , i.e.,
more formally

Xi(Pj+1) =
⋃{

Xi

(
Pj (E)

) ; E ∈ Ej+1
}

for all i = 1, 2, . . . , d and

R(Pj+1) = ⋃{
R

(
Pj (E)

) ; E ∈ Ej+1
}
,

N(Pj+1) = ⋃{
N

(
Pj (E)

) ; E ∈ Ej+1
}

and let <Pj+1 be any linear order on
d⋃

i=1
Xi(Pj+1) satisfying

X1(Pj+1) <Pj+1 · · · <Pj+1 Xd(Pj+1) .

Finally, let fj+1 : X(Pj+1) → X(D) = {1, 2, . . . , d} satisfy fj+1(x) = i for all
x ∈ Xi(Pj+1) and i = 1, 2, . . . , d. Due to the construction above and the fact that
fj : X(Pj ) → X(D) is a homomorphism, the mapping fj+1 is a homomorphism as well.

The crucial part of our argument will be the verification of the following

Claim 2.5 If Pj is an �-RN graph, then so is Pj+1.

Once this is shown we will know that, in particular, Pα is an �-RN graph. Moreover, a
standard argument (see e.g. [8]) shows that Pα → (B)A2 . Indeed, any red/blue colouring

of
(
Pα

A

)
yields a copy of Pα−1 in which all copies Ã of A with fα(Ã) = Aα are the same

colour. By iterating this argument we eventually obtain a copy P̃0 of P0 such that the colour

of any crossing copy Ã ∈ (
P̃0
A

)
depends only on fα(Ã). Owing to C�−1 → (B)A2 this leads

to a monochromatic copy of B in Pα .
For these reasons, the recursion step in the proof of Theorem 1.8 can be completed with

the stipulations C� = Pα and h�−1 = fα .

Proof of Claim 2.5 Assume that (x, y) ∈ N(Pj+1) and that there is an oriented path x =
x1, . . . , x�′ = y in R(Pj+1), where �′ ≤ �. Note that since fj+1 : Pj+1 → D = C�−1
is a homomorphism into the (� − 1)-RN graph C�−1 (containing no bad quasicycle of
length ≤ � − 1) we can assume that �′ = �.

By the definition of N(Pj+1) there exists a copy E′ ∈ Ej+1 such that x, y ∈ X
(
Pj (E

′)
)
.

On the other hand, since Pj is an �-RN graph by assumption, not all edges of the path
x1, . . . , x� belong to Pj (E

′). This together with the fact that x and y are in the same copy
of Pj implies that the set

S = {
fj+1(xi) ; i = 1, . . . , �

} ∩ X(Aj+1)

satisfies |S| ≥ 2.
We further claim that for some r and s with s−r ≥ 2 both fj+1(xr ) and fj+1(xs) belong

to X(Aj+1). Otherwise for some r we would have S = {fj+1(xr ), fj+1(xr+1)}. This, how-
ever, would mean that all vertices of the quasicycle would have to belong to Pj (E

′), contrary
to the assumption that Pj is an �-RN graph.
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Now consider {fj+1(xr ), fj+1(xs)} ⊆ X(Aj+1) with s − r ≥ 2. Due to the
fact that Aj+1 is a complete RN graph either

(
fj+1(xr ), fj+1(xs)

) ∈ R(Aj+1) or(
fj+1(xr ), fj+1(xs)

) ∈ N(Aj+1).
If the former holds, then we get a contradiction, since

fj+1(x1), fj+1(x2), . . . , fj+1(xr ), fj+1(xs), . . . , fj+1(x�)

would be a quasicycle of length ≤ � − 1 in C�−1.
This argument proves that for any r, s ∈ {1, 2, . . . , �} with

s − r ≥ 2 and {fj+1(xr ), fj+1(xs)} ⊆ X(Aj+1)

we have
(
fj+1(xr ), fj+1(xs)

) ∈ N(Aj+1).
Now suppose that there is a pair (r, s) with the above properties satisfying in addition

(r, s) �= (1, �). Then fj+1(xr ), . . . , fj+1(xs) would be a bad quasicycle in C�−1 whose
length is at most � − 1, which is again a contradiction.

Thus either � = 3 and S = {fj+1(x1), fj+1(x2), fj+1(x3)} or S =
{fj+1(x1), fj+1(x�)}. The first alternative cannot happen, since A is good. If the second
possibility happens, there is a copy E′′ ∈ Ej+1 such that all the vertices x1, . . . , x� belong
to Pj (E

′′). But, since Pj (E
′′) is an induced copy of Pj in Pj+1, this means that there is a

bad quasicycle of length � in Pj (E
′′), which contradicts our assumption about Pj .

As we observed after stating Claim 2.5, the proof of Theorem 1.8 is thereby complete.
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11. Sokić, M.: Ramsey property, ultrametric spaces, finite posets, and universal minimal flows. Israel J.
Math. 194(2), 609–640 (2013). doi:10.1007/s11856-012-0101-5. MR3047085

12. Solecki, S., Zhao, M.: A Ramsey Theorem for Partial Orders with Linear Extensions. European J.
Combin. 60(1), 21–30 (2017). doi:10.1016/j.ejc.2016.08.012

http://dx.doi.org/10.2307/2273534
http://dx.doi.org/10.1016/S0012-365X(96)00236-1
http://dx.doi.org/10.1016/0097-3165(83)90055-9
http://dx.doi.org/10.1007/BF01191498
http://dx.doi.org/10.1016/0012-365X(89)90097-6
http://dx.doi.org/10.1016/S0195-6698(82)80019-X
http://dx.doi.org/10.1007/s11083-011-9195-3
http://dx.doi.org/10.1007/s11083-011-9195-3
http://dx.doi.org/10.1007/s11856-012-0101-5
http://dx.doi.org/10.1016/j.ejc.2016.08.012

	Ramsey Partial Orders from Acyclic Graphs
	Abstract
	Introduction
	Proof of Theorem 1.8
	Partite Lemma
	Partite Construction

	Acknowledgements
	References


