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Abstract We pursue the idea of generalizing Hindman’s Theorem to uncountable cardinal-
ities, by analogy with the way in which Ramsey’s Theorem can be generalized to weakly
compact cardinals. But unlike Ramsey’s Theorem, the outcome of this paper is that the natural gen-
eralizations of Hindman’s Theorem proposed here tend to fail at all uncountable cardinals.

Keywords Ramsey-type theorem · Hindman’s theorem · Uncountable cardinals ·
�-system lemma · Semigroups · Abelian groups

1 Introduction

Hindman’s theorem is one of the most famous and interesting examples of a so-called
Ramsey-type theorem, a theorem about partitions.

Theorem 1 (Hindman [7]) For every partition N = A0 ∪ A1 of the set of natural numbers
into two cells, there exists an infinite X ⊆ N such that for some i ∈ 2, FS(X) ⊆ Ai (where
FS(X) denotes the set {∑

x∈F

x

∣∣∣∣F ⊆ X is finite and nonempty

}

of all finite sums of elements of X).
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Hindman’s original proof of Theorem 1 is long and involved, but a much simpler proof,
due to Baumgartner, can be found in [1]. Both proofs make extensive use of the fact that the
statement of Theorem 1 is equivalent to the following statement.

Theorem 2 For every partition [N]<ℵ0 = A0 ∪A1 of the collection [N]<ℵ0 of finite subsets
of N into two cells, there exists an infinite family X ⊆ [N]<ℵ0 of pairwise disjoint finite
subsets of N and an i ∈ 2 such that FU(X) ⊆ Ai , where FU(X) denotes the set

{ ⋃
Y∈F

Y

∣∣∣∣F ⊆ X is finite and nonempty

}

of finite unions of elements from X.

The equivalence between Theorems 1 and 2 follows from [7, Lemma 2.2] after identi-
fying natural numbers with the support of their binary expansion (the (finite) set of places
where the corresponding digit in the binary expansion of the given number is nonzero), and
this fact is explicitly pointed out in [1, p. 384]. Unlike Theorem 1, whose statement relies on
a very specific semigroup operation on the set N, the statement of Theorem 2 seems easily
adaptable to higher cardinalities. So if κ, λ are cardinal numbers with λ ≤ κ , we will denote
by HIND(κ, λ) the statement asserting that for every partition [κ]<ℵ0 = A0 ∪ A1 of the
family [κ]<ℵ0 of finite subsets of κ into two cells, there exists a family X ⊆ [κ]<ℵ0 of car-
dinality λ, consisting of pairwise disjoint (finite) subsets of κ , such that for some i ∈ 2 we
have that FU(X) ⊆ Ai . With this notation, the “finite-unions” version of Hindman’s theo-
rem simply states that HIND(ℵ0, ℵ0) (and hence also HIND(κ, ℵ0) for any infinite κ) holds.
This notation intends to provide an analogy with the arrow notation used for generalizations
of Ramsey’s theorem, where κ −→ (λ)2

2 denotes that for every partition [κ]2 = A0 ∪ A1 of
the family of unordered pairs of κ into two cells, there exists a subset X ⊆ κ of cardinal-
ity λ such that for some i ∈ 2 we have that [X]2 ⊆ Ai . Thus Ramsey’s theorem states that
ℵ0 −→ (ℵ0)

2
2, and for uncountable λ, the existence of a κ such that κ −→ (λ)2

2 follows
from the Erdős-Rado Theorem. However, the existence of an uncountable cardinal κ such
that κ −→ (κ)2

2 is not provable in ZFC (the usual axioms of mathematics), since such a κ

would be what is known as a weakly compact cardinal (which is a notion of large cardinal
and hence its existence goes beyond the ZFC axioms). Similarly, we might try to address
the question of whether we can have HIND(κ, λ) hold for some uncountable cardinals κ, λ

under certain conditions (with perhaps some large cardinal assumptions being the primary
culprits).

Although this question seems (at least to the author) to be a very natural one, there seems
to be very few earlier results along these lines. A theorem [11, Th. 9] of Milliken is eas-
ily seen to establish that HIND(κ+, κ+) fails whenever κ is an infinite cardinal such that
2κ = κ+ (in particular, the Continuum Hypothesis CH implies that HIND(ℵ1,ℵ1) fails).
And the author was recently made aware [6] of an argument of Moore that shows that for
every uncountable cardinal κ , the statement HIND(κ, κ) implies that κ −→ (κ)2

2 and there-
fore HIND(κ, κ) fails unless κ is a weakly compact cardinal (in particular, HIND(ℵ1,ℵ1)

fails even without assuming CH). The main result from this paper is that the statement
HIND(κ, λ) fails whenever ℵ0 < λ ≤ κ , thus banishing every possible attempt of generaliz-
ing Hindman’s theorem, at least in its finite-unions version, to uncountable cardinalities. We
also state other possible generalizations of Hindman’s theorem to the uncountable realm,
and show that they all fail as well.
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It is worth noting that the generalizations considered in this paper are of a quantitative
nature, meaning that they deal only with cardinality, hence the results obtained do not pre-
clude the possibility of obtaining other sorts of generalizations of Hindman’s Theorem. For
example, Tsaban [13] has shown that Hindman’s Theorem may be viewed as a colouring
theorem dealing with open covers of a certain countable topological space, and he proved
a generalization of this theorem to arbitrary Menger spaces (which can have any arbitrary
cardinality, although the objects coloured in this result are countable families of open sets).
As another example, Zheng [14] has built on Todorčević’s theory of Ramsey Spaces [12]
to obtain results where finite subsets of ω together with real numbers are coloured, and
monochromatic combinations of FU-sets and perfect subsets of R are obtained. Thus, it is
possible to improve Hindman’s theorem in terms of the richness of structure of the obtained
monochromatic structure, but not in terms of its size.

The second section of this paper contains the proof that HIND(κ, λ) fails for every
uncountable λ ≤ κ . In the third and fourth sections, we consider other possible generaliza-
tions of Hindman’s Theorem to groups and semigroups, and we explain that most of these
fail as well.1

2 The Uncountable Hindman Statement Fails

The following argument (which, quite surprisingly, is reasonably simple) establishes the
main result of this paper.

Theorem 3 Let κ be any infinite cardinal. Then there is a partition of [κ]<ω into two cells,
none of which can contain FU(X) for any uncountable pairwise disjoint family X ⊆ [κ]<ω.
Thus, for any uncountable λ and any κ ≥ λ, the statement HIND(κ, λ) fails.

Proof Partition [κ]<ω as A1 ∪ A0, where

Ai = {x ∈ [κ]<ω
∣∣
log2 |x|� ≡ i mod 2},

this is, x ∈ Ai if and only if the unique k ∈ ω such that 2k ≤ |x| < 2k+1 has the same parity
as i. Note that, if x and y are disjoint, both in the same Ai , and 
log2 |x|� = 
log2 |y|� = k,
then (since |x ∪y| = |x|+ |y|) we have that 
log2 |x ∪y|� = k +1 and hence x ∪y ∈ A1−i .
Thus if X ⊆ [κ]<ω is a pairwise disjoint family such that FU(X) ⊆ Ai , we must have that

log2 | · |� : X −→ ω is an injective function, and hence X must be countable.

An easy consequence of Theorem 3 is that many other Ramsey-theoretic results will
not have an uncountable analog either. Let us consider two of these. For instance, Gower’s
c0 theorem and Carlson’s theorem on sequences of variable words2 are extensions of
results that have Hindman’s theorem as a straightforward consequence. Thus, any reason-
able statement constituting an analog of these results to the uncountable realm should have
HIND(κ, λ) as an easy consequence, for some uncountable λ and a κ ≥ λ; and will therefore
fail because of Theorem 3.

1Further results along these lines are obtained in a recent follow-up joint paper of the author and Rinot [4].
2This result of Carlson [2], also discovered independently by Furstenberg and Katznelson [5], is sometimes
(e.g. in [12, Theorem 2.35]) referred to as the infinite Hales-Jewett theorem.
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As a final observation, I would like to anticipate that in a forthcoming joint paper between
Chodounský, Krautzberger and the author, the partition from the proof of Theorem 3 is
used (with κ = ω) to show that the core of a union ultrafilter is not a rapid filter (where
an ultrafilter u on [N]<ℵ0 is said to be a union ultrafilter if it has a base of sets of the form
FU(X) for an infinite pairwise disjoint X ⊆ [N]<ℵ0 , and the core of u is {⋃A

∣∣A ∈ u},
which is a filter on N).

3 Generalizations in terms of Abelian Groups

If one proves Hindman’s Theorem 1 via the argument of Galvin and Glazer (see e.g. [8, Th.
5.8]), one can see right away that the scope of this theorem goes way beyond the realm of
the natural numbers N. This is, that same argument yields the following much more general
statement, which is therefore commonly known as the Galvin-Glazer-Hindman Theorem.

Theorem 4 Let S be any semigroup, and suppose that we partition S = A0 ∪ A1 into two
cells. Then there exists a sequence x = 〈xn

∣∣n < ω〉 (which in most cases of interest can be
found to be injective) and an i ∈ 2 such that FP(x) ⊆ Ai , where FP(x) denotes the set{

xk0 ∗ xk1 ∗ · · · ∗ xkl

∣∣l < ω and k0 < k1 < · · · < kl < ω
}

of all finite products of elements from the sequence x.

Thus, given a semigroup S and an ordinal α, we introduce the symbol HIND(S, α) to
denote the statement that whenever we partition S = A0 ∪ A1 into two cells, there exists an
α-sequence x = 〈xξ

∣∣ξ < α〉 and an i ∈ 2 such that FP(x) ⊆ Ai (where FP(x) consists of
all finite products xξ0 ∗ xξ1 ∗ · · · ∗ xξl

such that l < ω and ξ0 < ξ1 < · · · < ξl < α). If our
semigroup S is commutative, chances are that we will be using additive notation and so we
will use the symbol FS(x) rather than FP(x) (finite sums instead of finite products). Also, in
this case the order in which the sums are taken is not important and so we will only consider
the statements HIND(S, λ) where λ is a cardinal (since in this case HIND(S, α) holds if and
only if HIND(S, |α|) holds). The main result of this section is that for every abelian group (in
fact, for every commutative cancellative semigroup) G, and for every uncountable cardinal
λ, the statement HIND(G, λ) fails.3

Theorem 5 Let G be a commutative cancellative semigroup. Then there exists a partition
G = A0 ∪ A1 of G into two cells such that for no uncountable X ⊆ G and no i ∈ 2 do we
have that FS(X) ⊆ Ai . This is, the statement HIND(G,ℵ1) (and hence also HIND(G, λ) for
every uncountable λ) fails.

Proof Since G is commutative and cancellative, it is possible to embed G into
⊕

α<κ T for
some cardinal κ , where T = R/Z is the unit circle group. Moreover, it is possible to do
this embedding in such a way that the α-th projection πα[G] is either (isomorphic to) Q or
a quasicyclic group, so in either case the projection is a countable set (this is all explained
with detail in [3, p. 123]). Thus throughout this proof, every element x ∈ G will be thought
of as a member of

⊕
α<κ T, with α-th projections denoted by πα(x) ∈ T = R/Q and finite

support supp(x) = {α < κ
∣∣πα(x) �= 0}.

3In the notation of our recent follow-up paper [4], the failure of this statement is denoted by G � [λ]FS
2 .
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In a way totally similar to what we did in the proof of Theorem 3, for i ∈ 2 we define

Ai = {
x ∈ G

∣∣
log2 | supp(x)|� ≡ i mod 2
}

and claim that G = A0 ∪ A1 is the partition that makes the theorem work. So by way
of contradiction, we start by assuming that X ⊆ G is an uncountable subset such that
FS(X) ⊆ Ai for some i ∈ 2. We first notice that for any given finite F ⊆ κ , there can only
be countably many elements x ∈ G such that supp(x) = F (because we assumed that each
πα[G] is countable) and so by thinning out X we can assume that the supports of elements
of X are pairwise distinct. Furthermore, by the �-system lemma (see e.g. [10, Th. 1.5] or
[9, Th. 16.1]), there exists an uncountable Y ⊆ X such that the supports of elements from
Y form a �-system, this is, there is a fixed finite R ⊆ κ (called the root of the �-system)
such that for every two distinct x, y ∈ Y , we have that supp(x) ∩ supp(y) = R.

Ideally, we would like to have that supp
(∑

k<l xk

) = ⋃
k<l

supp(xk) whenever

x0, x1, . . . , xl ∈ Y , but in order to ensure that we still need to process Y a bit more.

Claim 1 There exists an uncountable Z with FS(Z) ⊆ Ai such that the supports of
its elements form a �-system and moreover, whenever x0, x1, . . . , xl ∈ Z we have that
supp

(∑
k<l xk

) = ⋃
k<l

supp(xk).

Proof of Claim Let n = |R| with R = {α1, . . . , αn}. We will recursively construct a
sequence of uncountable sets Y0, Y1, . . . , Yn+1 such that Y = Y0 and each Yk+1 is a sum
subsystem of Yk (this is, for each x ∈ Yk+1 there is a finite Fx ⊆ Yk such that x = ∑

y∈Fx
y

and moreover whenever x, y ∈ Yk+1 we have that Fx ∩ Fy = ∅), and satisfying that either
αk ∈ supp(x) for all x ∈ FS(Yk), or αk /∈ supp(x) for all x ∈ FS(Yk). In the end we
will let Z = Yn+1 and r = {αk

∣∣αk ∈ supp(x) for all x ∈ FS(Y )} ⊆ R. This will ensure
that the supports of elements from Z form a �-system with root r , and moreover we will
have that Z is a sum subsystem of Y , hence FS(Z) ⊆ FS(Y ) ⊆ Ai . Finally, the fact that
r ⊆ supp(x) for every x ∈ FS(Z) will imply that supp

(∑
k<l xk

) = ⋃
k<l

supp(xk) whenever

x0, x1, . . . , xl ∈ Z.
Now for the construction, suppose that we have already constructed Yk satisfying the

imposed requirements. To simplify notation let α = αk+1. Since we assumed that πα[G]
is countable, by the pigeonhole principle there is an uncountable Y ′ ⊆ Yk such that all of
the πα(y), for y ∈ Y ′, equal some fixed t ∈ T. If this t is of infinite order, then we simply
make Yk+1 = Y ′ and notice that α ∈ supp(x) for every x ∈ FS(Yk+1). If, on the other hand,
t is of finite order (say, of order n) then we partition Y ′ = ⋃

ξ<|Y ′|
Fξ into uncountably many

cells Fξ of cardinality n, and let Yk+1 consist of the elements
∑

x∈Fξ
x for ξ < |Y ′|. Then

we will have that α /∈ supp(y) for every y ∈ Yk+1 and subsequently, α /∈ supp(x) for every
x ∈ FS(Yk+1). This finishes the construction.

We now use the Z given by the claim in order to reach a contradiction. We will argue
that the function | supp(·)| � Z : Z −→ ω is finite-to-one, which will imply that Z must
be countable, contrary to its construction. So assume that there is an infinite family {zk

∣∣k <

ω} ⊆ Z such that all of the | supp(zk)| are equal to some l, and let m < ω be such that 2m ≤
l < 2m+1 (then by assumption, i ≡ m mod 2). Also, let n be such that 2n ≤ l −|r| < 2n+1

(note that n ≤ m). We then let z = ∑
k≤2m−n zk ∈ Ai and notice that, since by the claim we
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have that supp(z) = ⋃
k≤2m−n

supp(zk) and the supp(zk) form a �-system with root r , we can

conclude that

| supp(z)| =
⎛
⎝ ∑

k≤2m−n

| supp(xk)|
⎞
⎠ − 2m−n|r| = (2m−n + 1)l − 2m−n|r|

= 2m−n(l − |r|) + l,

and since 2m ≤ 2m−n(l − |r|) < 2m+1, we conclude that 2m+1 ≤ | supp(x)| < 2m+2,
meaning that x ∈ A1−i , contrary to the assumption.

It might be argued that the statement HIND(κ, λ) as in the previous section is the “wrong”
way of generalizing the finite-union version of Hindman’s theorem, and that one should
consider partitions of [κ]<κ instead of [κ]<ω. However, if we equip [κ]<κ with the sym-
metric difference � as a group operation, we obtain an abelian group (in fact, a Boolean
group) with the peculiarity that taking a finite union of pairwise disjoint elements of [κ]<κ

coincides with taking its finite sum according to this group operation. Hence Theorem 5
implies that this purported finite-union generalization of Hindman’s theorem also fails at all
uncountable cardinals.

4 The Noncommutative Case

The next natural question is whether the previous results can be generalized to non-
commutative semigroups. This is, is it true that HIND(S, λ) fails whenever λ is uncountable
and S is any semigroup? As test cases for this question, the first two that come to mind are
the free semigroup and the free group. If we let Sκ be the free semigroup on κ generators,
and consider the partition Sκ = A0 ∪ A1 with

Ai = {x ∈ Sκ

∣∣
log2 	(x)� ≡ i mod 2}
(where 	(x) denotes the length of x), it is easy to see (arguing as in the proof of Theorem 3)
that HIND(Sκ , λ) fails for every uncountable λ. In the case of the free group, a slightly more
complicated argument is needed.

Theorem 6 Let κ be a cardinal and let Fκ be the free group on κ generators. Then for every
uncountable ordinal λ, the statement HIND(Fκ, λ) fails.

Proof Following the general theme of this paper, we will consider the partition Fκ = A0 ∪
A1, where (letting 	(x) denote the length of a reduced word x ∈ Fκ )

Ai = {x ∈ Fκ

∣∣
log2 	(x)� ≡ i mod 2},
and we will argue that no sequence x = 〈xα

∣∣α < ω1〉 of elements of a given Ai can be such
that FP(x) ⊆ Ai , so we assume by way of contradiction that we have such a sequence x
with FP(x) ⊆ Ai . Let L (with |L| = κ) be the alphabet that generates Fκ , and for a reduced
word x ∈ Lκ we define its support by

supp(x) = {a ∈ L
∣∣either a or a−1 occur in x}

Since there are only countably many reduced words having the same fixed support, it is
possible to thin out the sequence x so that the supports of its members are pairwise distinct,
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and by the �-system lemma we can also assume that said supports form a �-system, whose
root we will denote by r . Now, any member xα of the sequence x can be written as xα =
zαyαwα with supp(zα), supp(wα) ⊆ r and such that the first and last letters of yα do not
belong to r (it is possible that zα or wα are empty, but yα has to be nonempty). A couple of
applications of the pigeonhole principle will thin out the sequence x in such a way that all of
the zα equal some fixed z and all of the wα equal some fixed w. Let v be the reduced word
that results from multiplying w · z (this is, after performing all of the needed cancellations).
Thus for α < β < ω1 we have that xα · xβ = zyαvyβw, where the expression on the right
has no cancellations, and so 	(xα · xβ) = 	(xα)+ 	(xβ)− n where n = 	(w)+ 	(z)− 	(v),
and similarly

l
(
xα0 · · · xαt

) =
⎛
⎝ t∑

j=0

	(xαj
)

⎞
⎠ − tn.

Now, the pigeonhole principle implies that there is an ω1 sequence α0 < α1 < · · · < αξ <

· · · , for ξ < ω1, such that all of the lengths 	(xαj
) equal some fixed number l. However,

if we let k = 
log2(l)� and m = 
log2(l − n)� (notice that l > 	(w) + 	(z) ≥ n so it

makes sense to take the latter logarithm), then we would have that (letting x = ∏2k−m

j=0 xj =
x0 · · · x2k−m )

	(x) =
⎛
⎝2k−m∑

j=0

	(xαj
)

⎞
⎠ − 2k−mn = (2k−m + 1)l − 2k−mn = 2k−m(l − n) + l,

thus
2k+1 = 2k−m2m + 2k ≤ 	(x) < 2k−m2m+1 + 2k+1 = 2k+2;

so that k+1 = 
log2 	(x)� and hence x ∈ A1−i , contrary to the assumption that FP(x) ⊆ Ai .
Finding this contradiction finishes the proof.

It is, however, possible to find noncommutative semigroups that behave differently to the
ones considered so far.

Example 1 Let S be a linearly ordered set and turn it into a semigroup by making x ∗ y =
max{x, y} (everything we say for this example also holds if we consider x ∗y = min{x, y}).
This is a commutative semigroup with the property that for every X ⊆ S, FS(X) = X.
Thus the statement HIND(S, |S|) holds (as an easy instance of the pigeonhole principle),
regardless of whether |S| is countable or uncountable.

Example 2 For an ordinal α we let Sα be the semigroup of ordinals smaller than α with
ordinal addition as the semigroup operation (this semigroup is not commutative). The key
observation that for every infinite ordinal α there exists a β ≥ α such that |β| = |α| and
γ + δ = δ whenever δ ≥ β and γ ≤ α (which follows by just taking β = α · ω where · is
ordinal multiplication) allows us to conclude that for every infinite ordinal α, the statement
HIND(Sα, cf(|α|)) holds. For if we have a partition Sα = A0 ∪ A1 into two cells, by the
pigeonhole principle we must have that |Ai | = |α| for some i ∈ 2, and consequently we can
recursively build a sequence γ = 〈γξ

∣∣ξ < cf(|α|)〉 by picking a γξ >
(
sup{γη

∣∣η < ξ}) · ω

with γξ ∈ Ai and γξ < |α|. Thus the observation at the beginning of this example implies
that γξ1 + · · · + γξn = γξn whenever ξ1 < · · · < ξn < cf(|α|) and so FP(γ ) = {γξ

∣∣ξ <

cf(|α|)} ⊆ Ai . (If one is more careful, it is possible to construct this sequence with length
|α|, but that is not so relevant since we only wanted to show that HIND(Sα, κ) holds for
some α and uncountable κ .)
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5 Conclusions

The main result that we have proved in this paper, is that the uncountable analog of Hind-
man’s theorem in the realm of commutative cancellative semigroups fails, in the sense that
any such semigroup S can be partitioned in two cells, in such a way that for no uncountable
X ⊆ S is it possible for the set FS(X) to be contained within one single cell of the parti-
tion. An analogous result holds for the symmetric group as well (with the standard required
changes in the definition of FS(X) to account for the non-commutativity of this group).
As a consequence of this, when considering uncountable analogs of the Ramsey-theoretic
results that have Hindman’s theorem as a particular case (such as Gowers’s theorem, or the
infinitary version of the Hales-Jewett theorem), we have that these analogs fail as well.

When we drop cancellativity, we are able to obtain two examples of (non-commutative)
semigroups for which the uncountable analog of Hindman’s theorem holds. Something that
both of these examples have in common is that the semigroups S under consideration con-
tain elements x ∈ S that can “absorb” many y ∈ S in the sense that y ∗ x = x. Thus, it is
conceivable to conjecture that HIND(S, λ) fails for uncountable λ provided that we are deal-
ing with an S that does not involve the aforementioned phenomenon, which naturally leads
to the following question.

Question 1 Does there exist a weakly right cancellative (or a cancellative) semigroup S

and an uncountable ordinal α such that HIND(S, α) holds? We can also restrict our atten-
tion to groups: Does there exist a (non-abelian) group G and an uncountable α such that
HIND(G, α) holds?

A partial (negative) answer to the previous question (in the context of groups) was pro-
vided by Milliken, who showed [11, Th. 9] that HIND(G, |G|) fails whenever G is a group
satisfying that |G| = κ+ = 2κ for some infinite cardinal κ (in particular, assuming CH we
get that HIND(R, ℵ�) fails, which is [11, Cor. 11]). Theorem 6, and also the remark in the
paragraph prior to that theorem, constitute partial negative answers to this question as well.
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