

Two Applications of a Generalization of an Asymptotic Fixed Point Theorem

Gerd Herzog1 · Peer Chr. Kunstmann¹

Received: 28 April 2016 / Accepted: 16 July 2016 / Published online: 1 August 2016© Springer Science+Business Media Dordrecht 2016

Abstract We present a variant of an asymptotic version of the Abian-Brown Fixed Point Theorem, and applications to recursively defined sequences and Hammerstein integral equations.

Keywords Partially ordered sets · Fixed points · Monotone increasing functions

1 Asymptotic Fixed Point Theorems

Let (Ω, \leq) be a nonempty partially ordered set and for $a \in \Omega$, $M \subseteq \Omega$ let $M_a := \{x \in$ $M \mid x \ge a$. A chain is a nonempty totally ordered subset of Ω , and $f : \Omega \to \Omega$ is called increasing if $x, y \in \Omega$, $x \le y \Rightarrow f(x) \le f(y)$. For $f : \Omega \to \Omega$ let $Fix(f) := \{x \in \Omega \mid$ *f*(*x*) = *x*}. In particular Fix(*f*)_{*a*} = { $x \in \Omega \mid a \le x$, $f(x) = x$ }.

In [\[4,](#page-2-0) Corollary 2.1] Heikkilä proved the following asymptotic variant of the Abian-Brown Fixed Point Theorem [\[1\]](#page-2-1), see also [\[3\]](#page-2-2) and [\[6\]](#page-3-0).

Theorem 1 Let $f : \Omega \to \Omega$ be increasing, let $a \leq f(a)$ for some $a \in \Omega$, and for some *n* ∈ N *let each chain in* $f^{(n)}(\Omega_a)$ *have a supremum in* Ω *. Then* min(Fix(*f*)_{*a*}) *exists, i.e. f has a unique smallest fixed point above a.*

Related fixed point theorems were found by Lemmert $[5]$ (for the case $n = 1$) and Baranyai [\[2\]](#page-2-3) (for the case that $f^{(n)}(\Omega)$ is contained in a complete lattice).

 \boxtimes Peer Chr. Kunstmann Peer.Kunstmann@kit.edu Gerd Herzog Gerd.Herzog2@kit.edu

¹ Institute for Analysis, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany

In view of applications one would like to make a further generalization. Consider for example the following problem. Let \mathbb{R}^d be partially ordered by the coordinatewise ordering, let $f : \mathbb{R}^d \to \mathbb{R}^d$ be increasing and let $f^{(n)}(\mathbb{R}^d)$ be bounded in norm for some $n \in \mathbb{N}$. Does *f* has a fixed point? Theorem 1 can be applied if there is some $a \in \mathbb{R}^d$ such that $a \leq f(a)$. This is not obvious in case $n \geq 2$. But it *is* obvious that $a \leq f^{(n)}(a)$ for some $a \in \mathbb{R}^d$. However replacing " $a \leq f(a)$ " by " $a \leq f^{(n)}(a)$ " in Theorem 1 does not work. Simply consider the ordered set $(\Omega, \leq) = (\{0, 1\}, =)$ and $f : \Omega \to \Omega$ defined by $f(0) = 1$, $f(1) = 0$, and set $n = 2$. On the other hand we will prove:

Theorem 2 Let $f : \Omega \to \Omega$ be increasing, and let $n \in \mathbb{N}$ and $a \in \Omega$ be so that $a \leq f^{(n)}(a)$ *,* and so that each chain in $f^{(n)}(\Omega_a)$ has a supremum in Ω . Moreover let each finite nonempty $subset of Fix(f^{(n)})$ *have a supremum in* Ω *. Then* $min(Fix(f)_a)$ *exists.*

Thus the answer to the question above is yes (see also Theorem 3 below).

Proof We first apply Theorem 1 to the function $f^{(n)}$: $\Omega \to \Omega$ and 1 (instead of *f* and *n*) and obtain $z_0 := \min(\text{Fix}(f^{(n)})_a)$. Now we set

$$
Q := \{z_0, f(z_0), \ldots, f^{(n-1)}(z_0)\} \subseteq \text{Fix}(f^{(n)}).
$$

By assumption $b := \sup(Q)$ exists in Ω . From $a \le z_0$ we get $a \le b$. Moreover $f(Q) = Q$ and $f^{(k)}(z_0) \leq f(b)$ $(k = 1, ..., n)$, and therefore $b \leq f(b)$. Again, by Theorem 1, we obtain $z_1 := \min(\text{Fix}(f)_b)$. Now let $z \in \text{Fix}(f)_a$. Then $z \in \text{Fix}(f^{(n)})_a$, thus $z_0 \leq z$. Hence $f^{(k)}(z_0) \le f^{(k)}(z) = z$ ($k = 1, ..., n$), and therefore $b \le z$. Thus Fix $(f)_a \subseteq$ Fix $(f)_b$.
Since $a \le b$ we also have Fix $(f)_b \subseteq$ Fix $(f)_a$. This proves $z_1 = \min(\text{Fix}(f)_a)$. Since $a \leq b$ we also have $Fix(f)_b \subseteq Fix(f)_a$. This proves $z_1 = min(Fix(f)_a)$.

2 Two Applications

Let *T* be any nonempty set, and let $\Omega = \mathbb{R}^T$ be the lattice of all functions $x : T \to \mathbb{R}$ ordered by $x \leq y$: $\Leftrightarrow x(t) \leq y(t)$ ($t \in T$). It is obvious that each nonempty set in \mathbb{R}^T which is pointwise bounded has a supremum and an infimum: if *M* is such a set, then the function $t \mapsto s(t) := \sup_{x \in M} x(t)$ is the supremum of *M*. As a consequence of Theorem 2 we have the following fixed point theorem.

Theorem 3 Let the function $f : \mathbb{R}^T \to \mathbb{R}^T$ be increasing and let $f^{(n)}(\mathbb{R}^T)$ be pointwise *bounded for some* $n \in \mathbb{N}$ *. Then* $Fix(f) \neq \emptyset$ *.*

Proof of Theorem 3 Let $a := \inf(f^{(n)}(\mathbb{R}^T))$ and apply Theorem 2. \Box

Note that Theorem 3 also can be proved by Baranyai's Fixed Point Theorem [\[2\]](#page-2-3), since $f^{(n)}(\mathbb{R}^T)$ is contained in the order interval $\{x \in \mathbb{R}^T \mid \inf(f^{(n)}(\mathbb{R}^T)) \leq x$ $\sup(f^{(n)}(\mathbb{R}^T))$, which is a complete lattice.

Theorem 3 can be applied to recursively defined sequences on $T = \mathbb{N}$. Let $r = (r_k)_{k=1}^{\infty}$ be a sequence in $(0, \infty)$. We claim that there exists $x_1 \in \mathbb{R}$ such that the recursion

$$
x_{k+1} = \frac{(-1)^{k+1}}{r_k} \log((-1)^{k+1} x_k) \quad (k \in \mathbb{N})
$$
 (1)

defines a bounded sequence of real numbers. Indeed, consider $f : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ defined by

$$
f(x) = (exp(r_1x_2), -exp(-r_2x_3), exp(r_3x_4), -exp(-r_4x_5), \dots).
$$

 \mathcal{D} Springer

The function *f* is increasing and

 $f^{(2)}(\mathbb{R}^{\mathbb{N}}) \subseteq [0, 1] \times [-1, 0] \times [0, 1] \times [-1, 0] \times \dots$

In particular $f^{(2)}(\mathbb{R}^N)$ is pointwise bounded. According to Theorem 3 *f* has a fixed point, which is easily checked to be a solution of (1).

As a second application consider a compact interval $I \subseteq \mathbb{R}$ of length $|I|, \Omega = C(I, \mathbb{R}^d)$ the Banach lattice of all continuous functions $x : I \to \mathbb{R}^d$ endowed with the maximum norm $||x||_{\infty} = \max_{t \in I} ||x(t)||$ (where $|| \cdot ||$ is the maximum norm on \mathbb{R}^d) and ordered by $x \leq y$: $\Leftrightarrow x_k(t) \leq y_k(t)$ ($t \in I, k = 1, \ldots, d$). It is easy to check that each nonempty, relatively compact set in $C(I, \mathbb{R}^d)$ has a supremum (and an infimum). In particular, each nonempty and finite set has a supremum. As a consequence of Theorem 2 we have the following fixed point theorem.

Theorem 4 *Let the function* $f: C(I, \mathbb{R}^d) \to C(I, \mathbb{R}^d)$ *be increasing and let* $f^{(n)}(C(I, \mathbb{R}^d))$ (\mathbb{R}^d)) *be relatively compact for some* $n \in \mathbb{N}$ *. Then* $\text{Fix}(f) \neq \emptyset$ *.*

Proof of Theorem 4 Let $a := \inf(f^{(n)}(C(I, \mathbb{R}^d)))$ and apply Theorem 2.

For an application of Theorem 4 let the functions $g_k : \mathbb{R} \to \mathbb{R}$ ($k = 1, ..., d$) be increasing, and assume that there exist $k_1, k_2 \in \{1, ..., d\}$ such that g_{k_1} is bounded below and g_k is bounded above. Let $K : I^2 \to [0, \infty)$ be continuous and consider $f: C(I, \mathbb{R}^d) \to C(I, \mathbb{R}^d)$ defined by

$$
f(x)(t) = \int_I K(t,s)(g_1(x_2(s)), g_2(x_3(s)), \ldots, g_{d-1}(x_d(s)), g_d(x_1(s)))ds.
$$

Note that the integral is understood in the sense of Lebesgue, since the conjunction of a monotone and a continuous function is not Riemann-integrable, in general.

Clearly *f* is increasing. From the boundedness assumptions on g_{k_1}, g_{k_2} we get that $f^{(d)}(x)(t)$ is of the form $\int_I K(t, s)h(x)(s)ds$ with $h(x): I \to \mathbb{R}^d$ measurable and uniformly bounded in *x* and *s*, i.e. $||h(x)(s)|| \leq c$ ($x \in C(I, \mathbb{R}^d)$, $s \in I$) for some $c > 0$. Thus $f^{(d)}(C(I, \mathbb{R}^d))$ is bounded. If $\varepsilon > 0$ we find some $\delta > 0$ such that $|K(t_1, s) - K(t_2, s)|$ $\varepsilon/(c|I|)$ if $|t_1 - t_2| \le \delta$ and $s \in I$. For each $y \in f^{(d)}(C(I, \mathbb{R}^d))$ we get $||y(t_1) - y(t_2)|| \le \varepsilon$ if $|t_1 - t_2| \leq \delta$. Thus $f^{(d)}(C(I, \mathbb{R}^d))$ is equicontinuous. According to Arzelà-Ascoli's Theorem $f^{(d)}(C(I, \mathbb{R}^d))$ is relatively compact.

Application of Theorem 4 with $n = d$ proves Fix $(f) \neq \emptyset$, and each $x = (x_1, \ldots, x_d) \in$ Fix (f) is a continuous solution of the Hammerstein integral equation

$$
x(t) = \int_I K(t,s)(g_1(x_2(s)), g_2(x_3(s)), \dots, g_{d-1}(x_d(s)), g_d(x_1(s)))ds \quad (t \in I).
$$

References

- 1. Abian, S., Brown, A.B.: A theorem on partially ordered sets, with applications to fixed point theorems. Can. J. Math. **13**, 78–82 (1961)
- 2. Baranyai, T.: Asymptotical variants of some fixed point theorems in ordered sets. Studia Univ. Babes-Bolyai Math. **48**, 9–11 (2003)
- 3. Granas, A., Dugundji, J.: Fixed Point Theory. Springer Monographs in Mathematics. Springer, New York (2003)
- 4. Heikkilä, S.: On fixed points through a generalized iteration method with applications to differential and integral equations involving discontinuities. Nonlinear Anal. Theory Methods Appl. **14**, 413–426 (1990)

 \Box

- 5. Lemmert, R.: Existenzsätze für gewöhnliche Differentialgleichungen in geordneten Banachräumen. Funkc. Ekvacioj, Ser. Int. **32**, 243–249 (1989)
- 6. Schröder, B.S.W.: Ordered Sets. Birkhäuser Boston, Inc., Boston (2003)