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Two Applications of a Generalization of an Asymptotic
Fixed Point Theorem
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Abstract We present a variant of an asymptotic version of the Abian-Brown Fixed Point
Theorem, and applications to recursively defined sequences and Hammerstein integral
equations.
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1 Asymptotic Fixed Point Theorems

Let (�,≤) be a nonempty partially ordered set and for a ∈ �, M ⊆ � let Ma := {x ∈
M | x ≥ a}. A chain is a nonempty totally ordered subset of �, and f : � → � is called
increasing if x, y ∈ �, x ≤ y ⇒ f (x) ≤ f (y). For f : � → � let Fix(f ) := {x ∈ � |
f (x) = x}. In particular Fix(f )a = {x ∈ � | a ≤ x, f (x) = x}.

In [4, Corollary 2.1] Heikkilä proved the following asymptotic variant of the Abian-
Brown Fixed Point Theorem [1], see also [3] and [6].

Theorem 1 Let f : � → � be increasing, let a ≤ f (a) for some a ∈ �, and for some
n ∈ N let each chain in f (n)(�a) have a supremum in �. Then min(Fix(f )a) exists, i.e. f
has a unique smallest fixed point above a.

Related fixed point theorems were found by Lemmert [5] (for the case n = 1) and
Baranyai [2] (for the case that f (n)(�) is contained in a complete lattice).
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In view of applications one would like to make a further generalization. Consider for
example the following problem. LetRd be partially ordered by the coordinatewise ordering,
let f : Rd → R

d be increasing and let f (n)(Rd) be bounded in norm for some n ∈ N. Does
f has a fixed point? Theorem 1 can be applied if there is some a ∈ R

d such that a ≤ f (a).
This is not obvious in case n ≥ 2. But it is obvious that a ≤ f (n)(a) for some a ∈ R

d .
However replacing “a ≤ f (a)” by “a ≤ f (n)(a)” in Theorem 1 does not work. Simply
consider the ordered set (�,≤) = ({0, 1}, =) and f : � → � defined by f (0) = 1,
f (1) = 0, and set n = 2. On the other hand we will prove:

Theorem 2 Let f : � → � be increasing, and let n ∈ N and a ∈ � be so that a ≤ f (n)(a),
and so that each chain in f (n)(�a) has a supremum in �. Moreover let each finite nonempty
subset of Fix(f (n)) have a supremum in �. Then min(Fix(f )a) exists.

Thus the answer to the question above is yes (see also Theorem 3 below).

Proof We first apply Theorem 1 to the function f (n) : � → � and 1 (instead of f and n)
and obtain z0 := min(Fix(f (n))a). Now we set

Q := {z0, f (z0), . . . , f
(n−1)(z0)} ⊆ Fix(f (n)).

By assumption b := sup(Q) exists in �. From a ≤ z0 we get a ≤ b. Moreover f (Q) = Q

and f (k)(z0) ≤ f (b) (k = 1, . . . , n), and therefore b ≤ f (b). Again, by Theorem 1, we
obtain z1 := min(Fix(f )b). Now let z ∈ Fix(f )a . Then z ∈ Fix(f (n))a , thus z0 ≤ z. Hence
f (k)(z0) ≤ f (k)(z) = z (k = 1, . . . , n), and therefore b ≤ z. Thus Fix(f )a ⊆ Fix(f )b.
Since a ≤ b we also have Fix(f )b ⊆ Fix(f )a . This proves z1 = min(Fix(f )a).

2 Two Applications

Let T be any nonempty set, and let � = R
T be the lattice of all functions x : T → R

ordered by x ≤ y :⇔ x(t) ≤ y(t) (t ∈ T ). It is obvious that each nonempty set in RT which
is pointwise bounded has a supremum and an infimum: if M is such a set, then the function
t 	→ s(t) := supx∈M x(t) is the supremum of M . As a consequence of Theorem 2 we have
the following fixed point theorem.

Theorem 3 Let the function f : RT → R
T be increasing and let f (n)(RT ) be pointwise

bounded for some n ∈ N. Then Fix(f ) 
= ∅.
Proof of Theorem 3 Let a := inf(f (n)(RT )) and apply Theorem 2.

Note that Theorem 3 also can be proved by Baranyai’s Fixed Point Theorem [2],
since f (n)(RT ) is contained in the order interval {x ∈ R

T | inf(f (n)(RT )) ≤ x ≤
sup(f (n)(RT ))}, which is a complete lattice.

Theorem 3 can be applied to recursively defined sequences on T = N. Let r = (rk)
∞
k=1

be a sequence in (0, ∞). We claim that there exists x1 ∈ R such that the recursion

xk+1 = (−1)k+1

rk
log((−1)k+1xk) (k ∈ N) (1)

defines a bounded sequence of real numbers. Indeed, consider f : RN → R
N defined by

f (x) = (exp(r1x2), − exp(−r2x3), exp(r3x4), − exp(−r4x5), . . . ).
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The function f is increasing and

f (2)(RN) ⊆ [0, 1] × [−1, 0] × [0, 1] × [−1, 0] × . . . .

In particular f (2)(RN) is pointwise bounded. According to Theorem 3 f has a fixed point,
which is easily checked to be a solution of (1).

As a second application consider a compact interval I ⊆ R of length |I |, � = C(I,Rd)

the Banach lattice of all continuous functions x : I → R
d endowed with the maximum

norm ‖x‖∞ = maxt∈I ‖x(t)‖ (where ‖ · ‖ is the maximum norm on R
d ) and ordered by

x ≤ y :⇔ xk(t) ≤ yk(t) (t ∈ I, k = 1, . . . , d). It is easy to check that each nonempty,
relatively compact set in C(I,Rd) has a supremum (and an infimum). In particular, each
nonempty and finite set has a supremum. As a consequence of Theorem 2 we have the
following fixed point theorem.

Theorem 4 Let the function f : C(I,Rd) → C(I,Rd) be increasing and let f (n)(C(I ,
R

d)) be relatively compact for some n ∈ N. Then Fix(f ) 
= ∅.

Proof of Theorem 4 Let a := inf(f (n)(C(I,Rd))) and apply Theorem 2.

For an application of Theorem 4 let the functions gk : R → R (k = 1, . . . , d)

be increasing, and assume that there exist k1, k2 ∈ {1, . . . , d} such that gk1 is bounded
below and gk2 is bounded above. Let K : I 2 → [0, ∞) be continuous and consider
f : C(I,Rd) → C(I,Rd) defined by

f (x)(t) =
∫

I

K(t, s)(g1(x2(s)), g2(x3(s)), . . . , gd−1(xd(s)), gd(x1(s)))ds.

Note that the integral is understood in the sense of Lebesgue, since the conjunction of a
monotone and a continuous function is not Riemann-integrable, in general.

Clearly f is increasing. From the boundedness assumptions on gk1 , gk2 we get that
f (d)(x)(t) is of the form

∫
I
K(t, s)h(x)(s)ds with h(x) : I → R

d measurable and uni-
formly bounded in x and s, i.e. ‖h(x)(s)‖ ≤ c (x ∈ C(I,Rd), s ∈ I ) for some c > 0. Thus
f (d)(C(I,Rd)) is bounded. If ε > 0 we find some δ > 0 such that |K(t1, s) − K(t2, s)| ≤
ε/(c|I |) if |t1 − t2| ≤ δ and s ∈ I . For each y ∈ f (d)(C(I,Rd)) we get ‖y(t1)− y(t2)‖ ≤ ε

if |t1 − t2| ≤ δ. Thus f (d)(C(I,Rd)) is equicontinuous. According to Arzelà-Ascoli’s
Theorem f (d)(C(I,Rd)) is relatively compact.

Application of Theorem 4 with n = d proves Fix(f ) 
= ∅, and each x = (x1, . . . , xd) ∈
Fix(f ) is a continuous solution of the Hammerstein integral equation

x(t) =
∫

I

K(t, s)(g1(x2(s)), g2(x3(s)), . . . , gd−1(xd(s)), gd(x1(s)))ds (t ∈ I ).
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Bolyai Math. 48, 9–11 (2003)

3. Granas, A., Dugundji, J.: Fixed Point Theory. Springer Monographs in Mathematics. Springer, New York
(2003)
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2 Order (2017) 34: 2 – 23 6 3 3 3 6


	Two Applications of a Generalization of an Asymptotic Fixed Point Theorem
	Abstract
	Asymptotic Fixed Point Theorems
	Two Applications
	References


