

## Two Applications of a Generalization of an Asymptotic Fixed Point Theorem

Gerd Herzog<sup>1</sup> · Peer Chr. Kunstmann<sup>1</sup>

Received: 28 April 2016 / Accepted: 16 July 2016 / Published online: 1 August 2016 © Springer Science+Business Media Dordrecht 2016

**Abstract** We present a variant of an asymptotic version of the Abian-Brown Fixed Point Theorem, and applications to recursively defined sequences and Hammerstein integral equations.

Keywords Partially ordered sets · Fixed points · Monotone increasing functions

## **1** Asymptotic Fixed Point Theorems

Let  $(\Omega, \leq)$  be a nonempty partially ordered set and for  $a \in \Omega$ ,  $M \subseteq \Omega$  let  $M_a := \{x \in M \mid x \geq a\}$ . A *chain* is a nonempty totally ordered subset of  $\Omega$ , and  $f : \Omega \to \Omega$  is called *increasing* if  $x, y \in \Omega, x \leq y \Rightarrow f(x) \leq f(y)$ . For  $f : \Omega \to \Omega$  let  $Fix(f) := \{x \in \Omega \mid f(x) = x\}$ . In particular  $Fix(f)_a = \{x \in \Omega \mid a \leq x, f(x) = x\}$ .

In [4, Corollary 2.1] Heikkilä proved the following asymptotic variant of the Abian-Brown Fixed Point Theorem [1], see also [3] and [6].

**Theorem 1** Let  $f : \Omega \to \Omega$  be increasing, let  $a \leq f(a)$  for some  $a \in \Omega$ , and for some  $n \in \mathbb{N}$  let each chain in  $f^{(n)}(\Omega_a)$  have a supremum in  $\Omega$ . Then  $\min(\operatorname{Fix}(f)_a)$  exists, i.e. f has a unique smallest fixed point above a.

Related fixed point theorems were found by Lemmert [5] (for the case n = 1) and Baranyai [2] (for the case that  $f^{(n)}(\Omega)$  is contained in a complete lattice).

Peer Chr. Kunstmann
Peer.Kunstmann@kit.edu
Gerd Herzog
Gerd.Herzog2@kit.edu

<sup>&</sup>lt;sup>1</sup> Institute for Analysis, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany

In view of applications one would like to make a further generalization. Consider for example the following problem. Let  $\mathbb{R}^d$  be partially ordered by the coordinatewise ordering, let  $f : \mathbb{R}^d \to \mathbb{R}^d$  be increasing and let  $f^{(n)}(\mathbb{R}^d)$  be bounded in norm for some  $n \in \mathbb{N}$ . Does f has a fixed point? Theorem 1 can be applied if there is some  $a \in \mathbb{R}^d$  such that  $a \leq f(a)$ . This is not obvious in case  $n \geq 2$ . But it is obvious that  $a \leq f^{(n)}(a)$  for some  $a \in \mathbb{R}^d$ . However replacing " $a \leq f(a)$ " by " $a \leq f^{(n)}(a)$ " in Theorem 1 does not work. Simply consider the ordered set  $(\Omega, \leq) = (\{0, 1\}, =)$  and  $f : \Omega \to \Omega$  defined by f(0) = 1, f(1) = 0, and set n = 2. On the other hand we will prove:

**Theorem 2** Let  $f : \Omega \to \Omega$  be increasing, and let  $n \in \mathbb{N}$  and  $a \in \Omega$  be so that  $a \leq f^{(n)}(a)$ , and so that each chain in  $f^{(n)}(\Omega_a)$  has a supremum in  $\Omega$ . Moreover let each finite nonempty subset of Fix $(f^{(n)})$  have a supremum in  $\Omega$ . Then min $(Fix(f)_a)$  exists.

Thus the answer to the question above is yes (see also Theorem 3 below).

*Proof* We first apply Theorem 1 to the function  $f^{(n)} : \Omega \to \Omega$  and 1 (instead of f and n) and obtain  $z_0 := \min(\operatorname{Fix}(f^{(n)})_a)$ . Now we set

$$Q := \{z_0, f(z_0), \dots, f^{(n-1)}(z_0)\} \subseteq \operatorname{Fix}(f^{(n)}).$$

By assumption  $b := \sup(Q)$  exists in  $\Omega$ . From  $a \le z_0$  we get  $a \le b$ . Moreover f(Q) = Qand  $f^{(k)}(z_0) \le f(b)$  (k = 1, ..., n), and therefore  $b \le f(b)$ . Again, by Theorem 1, we obtain  $z_1 := \min(\operatorname{Fix}(f)_b)$ . Now let  $z \in \operatorname{Fix}(f)_a$ . Then  $z \in \operatorname{Fix}(f^{(n)})_a$ , thus  $z_0 \le z$ . Hence  $f^{(k)}(z_0) \le f^{(k)}(z) = z$  (k = 1, ..., n), and therefore  $b \le z$ . Thus  $\operatorname{Fix}(f)_a \subseteq \operatorname{Fix}(f)_b$ . Since  $a \le b$  we also have  $\operatorname{Fix}(f)_b \subseteq \operatorname{Fix}(f)_a$ . This proves  $z_1 = \min(\operatorname{Fix}(f)_a)$ .

## 2 Two Applications

Let *T* be any nonempty set, and let  $\Omega = \mathbb{R}^T$  be the lattice of all functions  $x : T \to \mathbb{R}$  ordered by  $x \le y : \Leftrightarrow x(t) \le y(t)$  ( $t \in T$ ). It is obvious that each nonempty set in  $\mathbb{R}^T$  which is pointwise bounded has a supremum and an infimum: if *M* is such a set, then the function  $t \mapsto s(t) := \sup_{x \in M} x(t)$  is the supremum of *M*. As a consequence of Theorem 2 we have the following fixed point theorem.

**Theorem 3** Let the function  $f : \mathbb{R}^T \to \mathbb{R}^T$  be increasing and let  $f^{(n)}(\mathbb{R}^T)$  be pointwise bounded for some  $n \in \mathbb{N}$ . Then  $\operatorname{Fix}(f) \neq \emptyset$ .

*Proof of Theorem 3* Let  $a := \inf(f^{(n)}(\mathbb{R}^T))$  and apply Theorem 2.

Note that Theorem 3 also can be proved by Baranyai's Fixed Point Theorem [2], since  $f^{(n)}(\mathbb{R}^T)$  is contained in the order interval  $\{x \in \mathbb{R}^T \mid \inf(f^{(n)}(\mathbb{R}^T)) \leq x \leq \sup(f^{(n)}(\mathbb{R}^T))\}$ , which is a complete lattice.

Theorem 3 can be applied to recursively defined sequences on  $T = \mathbb{N}$ . Let  $r = (r_k)_{k=1}^{\infty}$  be a sequence in  $(0, \infty)$ . We claim that there exists  $x_1 \in \mathbb{R}$  such that the recursion

$$x_{k+1} = \frac{(-1)^{k+1}}{r_k} \log((-1)^{k+1} x_k) \quad (k \in \mathbb{N})$$
(1)

defines a bounded sequence of real numbers. Indeed, consider  $f : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$  defined by

$$f(x) = (\exp(r_1 x_2), -\exp(-r_2 x_3), \exp(r_3 x_4), -\exp(-r_4 x_5), \dots).$$

Deringer

The function f is increasing and

 $f^{(2)}(\mathbb{R}^{\mathbb{N}}) \subseteq [0,1] \times [-1,0] \times [0,1] \times [-1,0] \times \dots$ 

In particular  $f^{(2)}(\mathbb{R}^{\mathbb{N}})$  is pointwise bounded. According to Theorem 3 f has a fixed point, which is easily checked to be a solution of (1).

As a second application consider a compact interval  $I \subseteq \mathbb{R}$  of length |I|,  $\Omega = C(I, \mathbb{R}^d)$ the Banach lattice of all continuous functions  $x : I \to \mathbb{R}^d$  endowed with the maximum norm  $||x||_{\infty} = \max_{t \in I} ||x(t)||$  (where  $|| \cdot ||$  is the maximum norm on  $\mathbb{R}^d$ ) and ordered by  $x \leq y :\Leftrightarrow x_k(t) \leq y_k(t)$  ( $t \in I, k = 1, ..., d$ ). It is easy to check that each nonempty, relatively compact set in  $C(I, \mathbb{R}^d)$  has a supremum (and an infimum). In particular, each nonempty and finite set has a supremum. As a consequence of Theorem 2 we have the following fixed point theorem.

**Theorem 4** Let the function  $f : C(I, \mathbb{R}^d) \to C(I, \mathbb{R}^d)$  be increasing and let  $f^{(n)}(C(I, \mathbb{R}^d))$  be relatively compact for some  $n \in \mathbb{N}$ . Then  $Fix(f) \neq \emptyset$ .

Proof of Theorem 4 Let  $a := \inf(f^{(n)}(C(I, \mathbb{R}^d)))$  and apply Theorem 2.

For an application of Theorem 4 let the functions  $g_k : \mathbb{R} \to \mathbb{R}$  (k = 1, ..., d) be increasing, and assume that there exist  $k_1, k_2 \in \{1, ..., d\}$  such that  $g_{k_1}$  is bounded below and  $g_{k_2}$  is bounded above. Let  $K : I^2 \to [0, \infty)$  be continuous and consider  $f : C(I, \mathbb{R}^d) \to C(I, \mathbb{R}^d)$  defined by

$$f(x)(t) = \int_{I} K(t,s)(g_1(x_2(s)), g_2(x_3(s)), \dots, g_{d-1}(x_d(s)), g_d(x_1(s)))ds.$$

Note that the integral is understood in the sense of Lebesgue, since the conjunction of a monotone and a continuous function is not Riemann-integrable, in general.

Clearly f is increasing. From the boundedness assumptions on  $g_{k_1}, g_{k_2}$  we get that  $f^{(d)}(x)(t)$  is of the form  $\int_I K(t, s)h(x)(s)ds$  with  $h(x) : I \to \mathbb{R}^d$  measurable and uniformly bounded in x and s, i.e.  $||h(x)(s)|| \le c$  ( $x \in C(I, \mathbb{R}^d), s \in I$ ) for some c > 0. Thus  $f^{(d)}(C(I, \mathbb{R}^d))$  is bounded. If  $\varepsilon > 0$  we find some  $\delta > 0$  such that  $|K(t_1, s) - K(t_2, s)| \le \varepsilon/(c|I|)$  if  $|t_1 - t_2| \le \delta$  and  $s \in I$ . For each  $y \in f^{(d)}(C(I, \mathbb{R}^d))$  we get  $||y(t_1) - y(t_2)|| \le \varepsilon$  if  $|t_1 - t_2| \le \delta$ . Thus  $f^{(d)}(C(I, \mathbb{R}^d))$  is equicontinuous. According to Arzelà-Ascoli's Theorem  $f^{(d)}(C(I, \mathbb{R}^d))$  is relatively compact.

Application of Theorem 4 with n = d proves  $Fix(f) \neq \emptyset$ , and each  $x = (x_1, \dots, x_d) \in Fix(f)$  is a continuous solution of the Hammerstein integral equation

$$x(t) = \int_{I} K(t,s)(g_1(x_2(s)), g_2(x_3(s)), \dots, g_{d-1}(x_d(s)), g_d(x_1(s)))ds \quad (t \in I).$$

## References

- 1. Abian, S., Brown, A.B.: A theorem on partially ordered sets, with applications to fixed point theorems. Can. J. Math. **13**, 78–82 (1961)
- Baranyai, T.: Asymptotical variants of some fixed point theorems in ordered sets. Studia Univ. Babeş-Bolyai Math. 48, 9–11 (2003)
- Granas, A., Dugundji, J.: Fixed Point Theory. Springer Monographs in Mathematics. Springer, New York (2003)
- Heikkilä, S.: On fixed points through a generalized iteration method with applications to differential and integral equations involving discontinuities. Nonlinear Anal. Theory Methods Appl. 14, 413–426 (1990)

- Lemmert, R.: Existenzsätze für gewöhnliche Differentialgleichungen in geordneten Banachräumen. Funkc. Ekvacioj, Ser. Int. 32, 243–249 (1989)
- 6. Schröder, B.S.W.: Ordered Sets. Birkhäuser Boston, Inc., Boston (2003)