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Abstract Let κ = 2ω, and assume f : R → P(R) satisfies the intersection properties
C(ω, κ) and C(κ, ω). We prove that if r < cf(κ) then there exists a dense free set for f .
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1 Introduction

The basic notion of this paper is the following:

Definition 1.1 Free sets.
Let f be a function from θ into P(θ).
A set A ⊆ θ is free (for f ) iff x /∈ f (y) whenever {x, y} ⊆ A.

Free sets are quite useful in many branches of combinatorial set theory, and the basic
problems are the existence of large free sets. Two simple examples of functions show that
one must make some assumptions on f in order to get an infinite free set. The following
definition and the examples below are phrased in [9]:

Definition 1.2 The intersection property C(λ, μ).
Let f be a function from S into P(S).
We say that f satisfies the property C(λ, μ) iff |⋂{f (x) : x ∈ T }| < μ for every subset T

of S of size λ.
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Let κ be an infinite cardinal. The initial-segment coloring f (α) = {β : β < α} satisfies
C(ω, κ) but not C(κ, ω). Clearly, it has no infinite free set (actually, not even two-element
free set). The end-segment coloring f (α) = {β : β > α} satisfies C(κ, ω) but not C(ω, κ).
This function fails similarly to have an infinite free set. Consequently, one has to assume
the properties C(κ, ω) and C(ω, κ) in order to exclude trivial cases:

Definition 1.3 Reasonable set mappings.
A function f : κ → P(κ) is called κ-reasonable iff f satisfies both C(κ, ω) and C(ω, κ).

However, the above trivial restriction on f is not enough. Recently, Muthuvel proved
in [9], Theorem 3, that under the continuum hypothesis there exists an ω1-reasonable set
mapping on ω1 with no infinite free set. He also proved that if the splitting number s is
above ℵ1 (in which case, the continuum hypothesis fails) then for every ω1-reasonable set
mapping on ω1 there is an infinite free set ([9], Theorem 1).

Muthuvel proved also that if f : R → P(R) satisfies C(ω, ω) then there exists a dense
free set for f (in the usual topology), see [9], Corollary 1. This result is remarkable, but
the proof required a very strong assumption. Unlike the assumptions C(κ, ω) and C(ω, κ)

which are obligatory, the property C(ω, ω) means that the range of the function is closed
to be a collection of disjoint sets. The main objective of the current paper is to drop this
assumption.

We need, however, to assume that the continuum hypothesis fails. We shall use the

assumption that
(
κ
ω

) → (
κ
ω

)1,1
2 , when κ = 2ω. It holds, e.g. if the reaping number r is below

the cofinality of the continuum. Under this assumption we will be able to show that every
κ-reasonable function on the reals has an infinite dense free set. In some sense, this theorem
is the dual to the theorem of Muthuvel on ω1, since the reaping number r is the dual of the
splitting number s. Let us recall the definition of these cardinal characteristics:

Definition 1.4 The reaping and splitting numbers.

(ℵ) Suppose B ∈ [ω]ω and S ⊆ ω. S splits B if |S ∩ B| = |(ω \ S) ∩ B| = ℵ0.
(�) {Tα : α < κ} is an unreaped family if there is no S ∈ [ω]ω so that S splits Tα for

every α < κ . Likewise, {Sα : α < κ} is a splitting family iff for every B ∈ [ω]ω there
exists an ordinal α < κ so that Sα splits B.

(ג) The reaping number r is the minimal cardinality of an unreaped family, and the
splitting number s is the minimal cardinality of a splitting family.

An important tool in the proof of the main theorem below (as well as the proofs of
Muthuvel) is the polarized partition realtion. It can be phrased in the language of colorings,
or in the language of partitions (we shall use both):

Definition 1.5 The strong polarized relation.

We say that the strong polarized relation
(
λ
κ

) → (
λ
κ

)1,1

2 holds iff for every coloring c :
λ × κ → 2 there are A ⊆ λ and B ⊆ κ such that |A| = λ, |B| = κ and c � (A × B) is
constant.

We try to use standard notation. We denote cardinals by θ, κ, λ, μ and ordinals by
α, β, γ, δ. By [A]θ we denote the collection of all subsets of A of cardinality θ . We men-
tion the Erdös-Dushnik-Miller theorem which says that λ → (λ, ω)2 for every infinite
cardinal λ. A proof of this theorem appears in [3]. For a general background about cardinal
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characteristics we refer to [2]. For the above combinatorial theorems and related results we
suggest [3] and [10]. For basic account of forcing and Martin’s axiom we advert to [8].

I thank the referee for the careful reading, mathematical corrections and comments which
improved the readability of this paper.

2 Dense Free Subsets of the Reals

We commence with the combinatorial theorem:

Theorem 2.1 Infinite free subsets.

Suppose that κ > ℵ0,
(
κ
ω

) → (
κ
ω

)1,1
2 and f is a κ-reasonable set mapping from κ into P(κ).

Then there exists an infinite free subset for f .

Proof We define a coloring c : [κ]2 → 2 as follows. c({α, β}) = 1 iff α /∈ f (β) ∧ β /∈
f (α). We employ the Erdös-Dushnik-Miller theorem to get either H0 ∈ [κ]κ such that
c � [H0]2 = {0} or H1 ∈ [ω]ω such that c � [H1]2 = {1}. If there exists such H1 then we
are done, since it would be a free set for f by the definition of the coloring c, so assume
towards contradiction that there is no H1 as above.

We choose A ∈ [H0]ω, B ∈ [H0]κ so that A ∩ B = ∅. We decompose the cartesian
product A × B into two disjoint collections:

A × B = {〈a, b〉 : a ∈ f (b)}
⋃

{〈a, b〉 : a /∈ f (b)}.

By the assumption
(
κ
ω

) → (
κ
ω

)1,1
2 we choose A0 ∈ [A]ω, B0 ∈ [B]κ such that either

A0 ×B0 ⊆ {〈a, b〉 : a ∈ f (b)} or A0 ×B0 ⊆ {〈a, b〉 : a /∈ f (b)} (here we use the language
of partitions with respect to the polarized relation).

If A0 × B0 ⊆ {〈a, b〉 : a ∈ f (b)} then A0 ⊆ ⋂{f (b) : b ∈ B0}, contradicting the
assumption that f is C(κ, ω). Similarly, if A0 × B0 ⊆ {〈a, b〉 : a /∈ f (b)} then b ∈ f (a)

for every a ∈ A0, b ∈ B0 (since a /∈ f (b) and all the members are taken from H0), so
B0 ⊆ ⋂{f (a) : a ∈ A0}, contradicting the assumption that f is C(ω, κ).

Corollary 2.2 Assume r < cf(κ) ≤ κ = 2ω.
For every κ-reasonable function f : R → P(R) there exists an infinite free subset.

Proof By the assumption on the reaping number r, the relation
(
κ
ω

) → (
κ
ω

)1,1
2 holds, as

proved in [6], Claim 1.4. Hence the above theorem applies, and there exists an infinite free
subset as desired.

Remark 2.3 (α) If one wishes to assume stronger intersection properties for f , then the

polarized partition relation can be weakened. Generally, the relation
(
κ
ω

) → (
θ0 θ1
ω ω

)1,1

2
provides an infinite free subset for f whenever f is C(ω, θ0) and C(θ1, ω). The proof
is just the same.

(β) Nevertheless, it is consistent that
(
μ
ω

)
�

(
ω1
ω

)1,1
2 for every μ ∈ (ω, 2ω], by adding

λ-many Cohen reals, see [4], Claim 2.4.
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(γ ) The strong polarized relation cannot be weakend here. Even if we assume, e.g. that
(
ω1
ω

) → (
ω1 α
ω ω

)1,1
2 for every α < ω1, and f is reasonable for ω1, we may fail to get an

infinite free set. Indeed, this relation holds under the continuum hypothesis (see [7]).
(δ) It is tempting to try to generalize the above theorems upon replacing ℵ0 by some

larger cardinal. We can take a supercompat cardinal λ in lieu of ℵ0, and force for
μ > λ that

(
μ
λ

) → (
μ
λ

)1,1
2 as shown in [5]. However, we need also the equivalent to the

Erdös-Dushnik-Miller theorem, and this would give a monochromatic set only of size
(arbitrarily large) less than λ.

(ε) The assumption r < cf(2ω) gives an infinite free set for reasonable functions f : θ →
P(θ) not only for the continuum but for every θ ≥ cf(θ) > r. Similarly, Theorem 1
of [9] applies to every ℵ1 ≤ θ < s so that cf(θ) > ℵ0. It follows that one can prove
the consistency of free sets for each θ ∈ [ℵ1, 2ℵ0 ] simultaneously, see [6].

We turn now to the topological density of the free set. We focus on a set mapping defined
on the reals, and we are looking for a free set which is also dense. The existence problem of
such sets appears in [1]. Our proof is just as in [9], but we can replace the property C(ω, ω1)

of the function F (defined below) by the weaker demand C(ω, κ).

Theorem 2.4 Dense free set of the reals.
Let κ be 2ω, and assume f : R → P(R) is κ-reasonable (i.e., satisfies C(κ, ω) and
C(ω, κ)).
If

(
κ
ω

) → (
κ
ω

)1,1
2 then there exists an everywhere dense free set for f .

Proof Firstly, we define a derived function F : R → P(R) as follows:

F(x) = {y : y ∈ f (x) ∨ x ∈ f (y)}.
We claim that F is C(ω, κ). For proving this fact, assume towards contradiction that there

exists a subset A ⊆ R, |A| = ℵ0 such that D = ⋂{F(x) : x ∈ A} is of size κ . By removing
a countable subset from D we may assume without loss of generality that A ∩ D = ∅. We
write:

A × D = {〈a, b〉 : a ∈ f (b)} ∪ {〈a, b〉 : a /∈ f (b)}.
Following the proof of Theorem 2.1, one can easily see that F is C(ω, κ). Having proved

that F is C(ω, κ) we can build a dense free set S = {xm : m ∈ ω} by induction on m ∈ ω.
Let {In : n ∈ ω} enumerate all the finite open intervals of the reals with endpoints from Q.
We choose a subset E0 ⊆ R of size κ such that |E0 ∩ In| = κ for every n ∈ ω. Along the
induction, we keep the fact that Em ∩ In is of size κ , for every m, n ∈ ω. We describe the
choice of the first member x0 of the set S. Define the set C0

n for every n ∈ ω as follows:

C0
n = {x ∈ E0 ∩ I0 : |(E0 \ F(x)) ∩ In| < κ}.

We wish to prove that C0
n is finite (for every n ∈ ω), so fix a natural number n and

assume to the contrary that C0
n is infinite. We choose an infinite countable subset C ⊆ C0

n ,
and we get the bound | ⋃{(E0 \ F(�)) ∩ In : � ∈ C}| < κ , being a coubtable union of sets
of size less than κ (notice that cf(κ) > ℵ0). However, F is C(ω, κ), so the cardinality of⋂{F(�) : � ∈ C} is less than κ . Since the cardinality of E0 ∩ In equals κ , we have:

|(E0 ∩ In) \
⋂

{F(�) : � ∈ C}| = κ.
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This fact leads to a contradiction. Indeed, (E0 ∩In)\⋂{F(�) : � ∈ C} = (E0 \⋂{F(�) :
� ∈ C}) ∩ In = ⋃{E0 \ F(�) : � ∈ C} ∩ In = ⋃{(E0 \ F(�)) ∩ In : � ∈ C}, and the latter
is of size less than κ as we have seen before.

Concluding that C0
n is finite we infer that the size of

⋃{C0
n : n ∈ ω} is countable, so

we can choose x0 ∈ (E0 ∩ I0) such that x0 /∈ ⋃{C0
n : n ∈ ω}. This is the first step of the

induction.
Suppose xm is at hand, and the sets Cm

n = {x ∈ Em ∩ Im : |(Em \ F(x)) ∩ In| < κ

were defined similarly to C0
n and satisfy |Cm

n | < ℵ0 for every n ∈ ω. We need to choose
xm+1. Let Em+1 be Em \ F(xm). Notice that |Em+1| = κ , moreover |Em+1 ∩ In| = κ for
every n ∈ ω, by the properties of Cm

n . Hence we can pick up xm+1 ∈ Em+1 ∩ Im+1 so that
xm+1 /∈ {xj : j < m + 1}.

Finally, let S = {xm : m ∈ ω}. Clearly, S is a dense set in the usual topology of the reals,
as S intersects every open interval. Likewise, S is a free set for f . Indeed, if i < j < ω then
xj /∈ F(xi) by the construction, hence xj /∈ f (xi) and xi /∈ f (xj ) by the definition of F ,
so we are done.

It may help to notice that there are κ-many countable dense free subsets for every f with
the assumed properties, since at each stage one can choose xm from a set of size κ .

Our last theorem generalizes Theorem 2 of [9], where he proves that under Martin’s
axiom one can get uncountable free sets for reasonable functions on ω1. We shall see that,
under MA + ¬CH, for a regular uncountable cardinal κ < 2ℵ0 , one can get free sets of size
κ for every f : κ → P(κ) which satisfies C(ω, ω1) and C(ω1, ω). Since we are confined
to ccc forcing notions, we cannot weaken the assumption on f into C(ω, κ) and C(κ, ω).
However, we introduce the forcing notion which gives a free set for a specific f under
the weak assumption. The problem is to iterate such forcings in order to cover all possible
functions.

Definition 2.5 The forcing notions Pf and P
fin
f .

Assume ω1 ≤ κ = cf(κ) ≤ 2ω and f : κ → P(κ).

(ℵ) p ∈ Pf iff p ⊆ κ, |p| < κ and p is free for f .
(�) p ∈ P

fin
f iff p ⊆ κ, |p| < ℵ0 and p is free for f .

(ג) The order (in both notions) is p ≤ q iff p ⊆ q.

The generic object of both forcing notions gives a free set of size κ for the function f . The
following claim shows that the above forcing notions preserve cardinals and cofinalities.
The advantage of Pfin

f is the ccc, but the price is the assumption that f is ω1-reasonable
rather than κ-reasonable.

Claim 2.6 Assume ω1 ≤ κ = cf(κ) < 2ω, f : κ → P(κ) and p = 2ω.

(a) If f is κ-reasonable then Pf is κ-complete and κ+-cc.
(b) If f is ω1-reasonable then P

fin
f is ccc.

Proof The completeness assertion in (a) follows by the fact that κ is a regular cardinal. For
the chain condition the proof of (a) and (b) is essentialy the same, so we focus on the ccc

of part (b), and we indicate that for (a) one needs to replace ω1 by κ+.
Assume towards contradiction that A = {pα : α < ω1} ⊆ P

fin
f is an antichain. It means

that for every α < β < ω1 there are x ∈ pα, y ∈ pβ so that x ∈ f (y) ∨ y ∈ f (x). By the
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Delta-system lemma we can shrink A into a set of size ω1 for which every pair of members
has the same intersection r . Since the members of r are free with all the members of the
conditions in A, we assume without loss of generality that r = ∅. Moreover, we assume
without loss of generality that |pα| = n for every pα ∈ A, and we write pα = {xα

i : i < n}.
We choose a nonprincipal ultrafilter U on ω.

Since p = 2ω, s = 2ω as well and hence
(
κ
ω

) → (
κ
ω

)1,1
2 for every κ ∈ (ω, 2ω) with

uncountable cofinality, including ω1. In order to use the assumed polarized relation, we
decompose A into two disjoint sets {p� : � ∈ ω} ∪ {pα : ω ≤ α < ω1}. Fix an ordinal
ω ≤ α < ω1. By the assumption towards contradiction, for every � ∈ ω there is a member
of p� which is not free with a member of pα , and hence:

⋃

i,j<n

{� ∈ ω : x�
i ∈ f (xα

j ) ∨ xα
j ∈ f (x�

i )} = ω ∈ U.

The above is a finite union, so for some i, j < n we have A
ij
α = {� ∈ ω : x�

i ∈
f (xα

j ) ∨ xα
j ∈ f (x�

i )} ∈ U . Notice that i, j depend on α, and {Aij
α : ω ≤ α < ω1} ⊆ U .

Since p = 2ω we can find A ∈ [ω]ω, B ∈ [ω1]ω1 so that A ⊆ A
ij
α for every α ∈ B. Without

loss of generality, the ordinals i, j are the same for every α ∈ B, by shrinking B again if
needed.

The cartesian product A×B is expressible now as {(�, α) : x�
i ∈ f (xα

j )}∪ {(�, α) : x�
i /∈

f (xα
j )}. Since

(
ω1
ω

) → (
ω1
ω

)1,1
2 we can find A0 ∈ [A]ω, B0 ∈ [B]ω1 such that A0 × B0 ⊆

{(�, α) : x�
i ∈ f (xα

j )} or A0 × B0 ⊆ {(�, α) : x�
i /∈ f (xα

j )}. But this contradicts either that
f is C(ω, ω1) or that f is C(ω, ω1), so we are done.

Having established the chain condition, we can iterate in order to create a free set for
every f . Notice that Pf preserves cardinals but the iteration is more involved, so we iterate

P
f in
f . We employ Martin’s axiom, although one needs only the combinatorial assumptions

of the above claim.

Theorem 2.7 Martin’s axiom and κ-free sets.
Assume Martin’s axiom and 2ℵ0 > ℵ1.
Then for every ℵ0 < κ = cf(κ) < 2ℵ0 , and every f : κ → P(κ) which is ω1-reasonable,
there exists a free set of size κ .

Proof Under Martin’s axiom we have p = 2ω. Given any such function f , we know that
P

fin
f is ccc. By Martin’s axiom we can choose a generic set G ⊆ P

fin
f . We define T = ⋃

G.
The natural dense subsets show that T is unbounded in κ , hence |T | = κ by the regularity
of κ . Since G is directed we infer that T is a free set.

We conclude with several open problems raised by the above theorems. First, one may

wonder if
(
κ
ω

) → (
κ
ω

)1,1
2 is the correct assumption for large free sets to exist:

Question 2.8 Negative partition relation and free sets.

Assume
(
κ
ω

)
�

(
κ
ω

)1,1
2 . Can we find a κ-reasonable function on κ with no free set of size κ

(or even without an infinite free set)?

Question 2.9 Cohen reals and free sets.
Suppose f is a reasonable function on the reals, in the universe forced by adding λ-many
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Cohen reals. Is it true that f has an infinite free set? Under the same assumption, is it true
that f has a dense free set?

Second, we can ask about stronger assertions to be forced:

Question 2.10 Free sets of size 2ω.
suppose κ = 2ω. Is it consistent that every κ-reasonable f from κ into P(κ) has a free set
of size κ?

Question 2.11 Weaker intersection properties.
Can we replace the assumption that f is ω1-reasonable by the weaker assumption that f is
κ-reasonable in Theorem 2.7?

For the last questions it seems that Martin’s axiom is not sufficent.
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