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Abstract We characterize ultrafilter convergence and ultrafilter compactness in linearly
ordered and generalized ordered topological spaces. In such spaces, and for every ultra-
filter D, the notions of D-compactness and of D-pseudocompactness are equivalent. Any
product of initially λ-compact generalized ordered topological spaces is still initially λ-
compact. On the other hand, preservation under products of certain compactness properties
is independent from the usual axioms for set theory.

Keywords Linearly ordered · Generalized ordered topological space · Ultrafilter
convergence · Compactness · Pseudocompactness · (pseudo-)gap · Converging
ν-sequence · (weak) [ν · ν]-compactness · (weak) initial λ-compactness · Complete
accumulation point · λ-boundedness · Decomposable · Descendingly complete ·
Regular ultrafilter

1 Introduction

It is well-known that many covering properties, which in general are distinct, turn out to
be equivalent for linearly ordered topological spaces (henceforth, LOTS, for short). For
example, a LOTS is pseudocompact if and only if it is countably compact, if and only if it is
sequentially compact. See Gulden, Fleischman and Weston [10] and Purisch [22] for these
and more general results, also involving uncountable cardinals and dealing with product
theorems, as well. Most of the above results generalize to GO spaces, short for generalized
ordered topological spaces; see [22] and [18], or below.
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Here we show that, for every ultrafilter D, D-compactness and D-pseudocompactness
are equivalent in GO spaces (Remark 3.2, or Theorem 4.1 (1) ⇔ (5)). The particular
case when D is an ultrafilter over ω is due to Sanchis and Tamariz-Mascarúa [25], whose
paper contains many other related theorems. More generally, we characterize D-converging
sequences in GO spaces (Proposition 3.1 (7)–(9)). We also show that the D-compactness
of some GO space X depends exclusively on the “decomposability spectrum” of D and on
the cardinal types of (pseudo-)gaps in X, equivalently, on the existence of non converging
strictly monotone sequences of certain cardinal order types (Theorem 4.1).

Some of the results mentioned in the first paragraph can be obtained as corollaries of
Theorem 4.1. For example, we get a proof that any product of initially λ-compact GO spaces
is still initially λ-compact (Corollary 5.2). The result is quite surprising, since noncompact
covering properties are usually not preserved by taking products. Just to state a significant
example, the square of a Lindelöf LOTS is not necessarily Lindelöf. The Sorgenfrey line is
an example which is a GO space. To get an example which is a LOTS, consider R× ω with
the lexicographic order. Also, it is well-known that the product of two countably compact
topological spaces is not necessarily countably compact, and many similar counterexamples
are known for initial κ-compactness, when κ is regular. See, e. g., Stephenson [26], Vaughan
[28], Nyikos and Vaughan [21] and more references there. Hence, for κ regular, preserva-
tion of initial κ-compactness under products is really a special property of GO spaces. In
passing, let us mention that, on the other hand, when κ is a singular strong limit cardinal,
every product of initially κ-compact topological spaces is still initially κ-compact, by the
celebrated Stephenson and Vaughan Theorem 1.1 in [27].

In the particular case of LOTS, preservation of initial κ-compactness under products
had originally been proved in [10], for every infinite cardinal κ . Not aware of Gulden,
Fleischman and Weston’s result, we originally have found a proof which holds for GO
spaces, too, and which uses ultrafilter convergence [18]. Later we realized that the the-
orem can also be proved by arguments which bear some resemblance with [10] (see the
second proof of Corollary 5.1 here), hence the use of ultrafilters becomes unnecessary.
However, luckily for scholars fond of ultrafilters, there are indeed compactness properties
whose preservation under products (in GO spaces) involves ultrafilters in an essential way.
For example, this is the case when considering simultaneously countable compactness and
[λ, λ]-compactness. Considering preservation of such properties leads to statements inde-
pendent from the usual axioms of set theory, statements which involve the existence of
ultrafilters with an “unusual” descending completeness spectrum (equivalently, decompos-
ability spectrum). See Corollary 6.1 for the general statement, and Corollary 6.4 for an
explicit example.

Now a few words about the fate of [18]. Since all the results proved there are subsumed
by the present paper, we are not going to submit [18] elsewhere. However, we shall keep it
available in archived form, since it might be useful for those looking for a direct proof of
Corollaries 5.1 and 5.2 here, which essentially were the main theorems of [18].

2 Preliminaries

We now recall the relevant definitions. A LOTS is a linearly ordered set endowed with the
open interval topology. A GO space is a linearly ordered set with a T2 topology having a
base of order-convex sets. GO spaces are exactly spaces which can be obtained as subspaces
of LOTS; the notion is more general, since if X is a LOTS, and Y ⊆ X, then the subset
topology on Y induced by the topology on X might be finer than the order topology on
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Y relative to the restriction of the order on X. See, e. g., [5] for more informations and
references about LOTS and GO spaces.

If D is an ultrafilter over some set I , then a topological space X is said to be D-compact if
every I -indexed sequence (xi)i∈I of elements of X D-converges to some x ∈ X, that is, {i ∈
I | xi ∈ U} ∈ D, for every open neighborhood U of x. The notion of ultrafilter convergence
has proved particularly useful in the study of compactness properties of topological spaces,
in particular with respect to preservation under products. Classical papers on the subject are
Bernstein [4], Ginsburg and Saks [11], and Saks [24]. Excellent surveys of results proved
until the mid ’80’s are Vaughan [28] and Stephenson [26]. Further results can be found in
Caicedo [6] and [19], together with additional references.

Ginsburg and Saks [11] made also a very effective use of the notion of a D-limit
point of a sequence of subsets of a topological space, and introduced the notion of D-
pseudocompactness. See also [9]. If (Yi)i∈I is a sequence of subsets of X, a point x ∈ X is
said to be a D-limit point of (Yi)i∈I if {i ∈ I | U ∩Yi �= ∅} ∈ D, for every neighborhood U

of x (thus when each Yi is a singleton we get back the notion of D-convergence). A topo-
logical space X is D-pseudocompact if every sequence (Oi)i∈I of nonempty open sets of X

has a D-limit point. Clearly, we can equivalently relax the assumption that all the Oi’s are
nonempty to the assumption that {i ∈ I | Oi �= ∅} ∈ D, since we can change those Oi’s in
a set not in D without affecting D-limit points of the sequence (since D is a filter).

Consider the following statement.
(*) A and B are open subsets of a GO space X, A ∪ B = X, and a < b, for every a ∈ A

and b ∈ B.
An ordered pair (A,B) satisfying (*) is called a gap of X in case that neither A has a

maximum, nor B has a minimum. Here we are including end gaps in the definition of a gap,
that is, we allow either A or B to be empty. An ordered pair (A,B) satisfying (*) is called
a pseudo-gap in case that both A and B are nonempty, and either A has a maximum and B

has no minimum, or A has no maximum and B has a minimum. Clearly pseudo-gaps can
occur only in GO spaces which are not LOTS, since we are asking that A and B are open.

For a property P , the expression “X has no (pseudo-)gap satisfying P” shall be used as
an abbreviation for “X has neither a gap nor a pseudo-gap satisfying P”.

3 D-Convergence of a Given Sequence

To every sequence (xi)i∈I of elements in a topological space X and every ultrafilter D over
I there are canonically associated two subsets A and B of X. In the next proposition (clause
(9)) we show that the sequence (xi)i∈I D-converges in X if and only if (A,B) is not a
(pseudo-)gap of X.

Proposition 3.1 Suppose that X is a linearly ordered set, D is an ultrafilter over some set
I , and (xi)i∈I is a sequence of elements of X. Set A = {x ∈ X | {i ∈ I | x < xi} ∈ D}, and
B = {x ∈ X | {i ∈ I | xi < x} ∈ D}. Then the following statements hold.

(1) x ∈ X \ (A ∪ B) if and only if {i ∈ I | xi = x} ∈ D.
(2) |X \ (A ∪ B)| ≤ 1.
(3) If x ∈ X \ (A ∪ B), then a < x, for every a ∈ A, and x < b, for every b ∈ B.
(4) If a ∈ A and b ∈ B, then {i ∈ I | xi ∈ (a, b)} belongs to D, hence it is not empty.
(5) If a ∈ A and b ∈ B, then a < b.
(6) If X = A ∪ B, then either A has no maximum or B has no minimum.
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(7) If X is a GO space, then (xi)i∈I D-converges to x ∈ X if and only if one of the
following (mutually exclusive) conditions holds.

(a) {i ∈ I | xi = x} ∈ D, or
(b) x is the maximum of A and x ∈ B, or
(c) x is the minimum of B and x ∈ A.

(8) If X is a LOTS, then (xi)i∈I D-converges to x ∈ X if and only if either

(a) {i ∈ I | xi = x} ∈ D, or
(b) x is the maximum of A and A ∪ B = X, or
(c) x is the minimum of B and A ∪ B = X.

(9) If X is a GO space, then (xi)i∈I D-converges to some x ∈ X if and only if (A,B) is
neither a gap, nor a pseudo-gap of X.

In particular, if X is a LOTS, then (xi)i∈I D-converges in X if and only if (A,B)

is not a gap.
(10) Suppose that X is a GO space and that X = A ∪ B. For i ∈ I , put

Oi =
{ ⋃

a∈A(xi, a) if xi ∈ A,⋃
b∈B(b, xi) if xi ∈ B.

Then (xi)i∈I D-converges to x if and only if x is a D-limit point of (Oi)i∈I .

Proof (1) Since D is an ultrafilter, it follows that, for each x ∈ X, one and exactly one of
the following sets: {i ∈ I | x < xi}, {i ∈ I | xi < x}, {i ∈ I | xi = x} belongs to D, since
they are disjoint and their union is I . Hence, by the definitions, x �∈ A∪B if and only if the
last eventuality occurs.

(2) If x, y �∈ A ∪ B, then, by (1), both X = {i ∈ I | xi = x} and Y = {i ∈ I | xi = y}
are in D. Since D is a filter, X ∩ Y ∈ D, and, since D is proper, X ∩ Y �= ∅. If i ∈ X ∩ Y ,
then x = xi = y.

(3) If a ∈ A and x �∈ A ∪ B, then both {i ∈ I | a < xi} and {i ∈ I | xi = x} belong
to D, by (1). As above, their intersection is not empty, and this implies a < x. In the same
way, we get that x < b, for every b ∈ B.

(4) If a ∈ A and b ∈ B, then {i ∈ I | a < xi} and {i ∈ I | xi < b} belong to D. The
intersection of the above two sets is {i ∈ I | xi ∈ (a, b)}, therefore this set belongs to D,
hence is nonempty.

(5) is immediate from (4).
(6) By contradiction, if a is the maximum of A and b is the minimum of B, then, by (5)

and since X = A ∪ B, b is the immediate successor of a. This contradicts (4).
(7) Suppose that (xi)i∈I D-converges to x ∈ X. By (1), (2) and the uniqueness of D-

limits in Hausdorff spaces, either x �∈ A ∪ B and (a) holds, or X = A ∪ B. In this latter
case, either x ∈ A or x ∈ B.

Suppose that x ∈ A. If x is not the maximum of A, there is x′ ∈ A such that x < x′.
Then (−∞, x′) is a neighborhood of x, and {i ∈ I | x′ < xi} ∈ D, since x′ ∈ A. But then
{i ∈ I | xi ∈ (−∞, x′)} �∈ D, contradicting D-convergence. Hence x is the maximum of
A. If x �∈ B, then, by (5) and since A ∪ B = X, (−∞, x] is a neighborhood of x, hence, by
D-convergence, {i ∈ I | xi ≤ x} ∈ D, and this contradicts again x ∈ A. Hence x ∈ B.

Symmetrically, if x ∈ B, then x is the minimum of B and x ∈ A. Hence one among the
conditions (a)–(c) holds.

Conversely, if (a) holds, then trivially (xi)i∈I D-converges to x.
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Suppose that (b) holds. Since x ∈ A, then, by (4), {i ∈ I | x < xi < b} ∈ D, for
every b ∈ B. Since x ∈ B, then, for every neighborhood U of x, there is some b ∈ B such
that U ⊇ [x, b), but then {i ∈ I | xi ∈ U} ⊇ {i ∈ I | x < xi < b} ∈ D, thus (xi)i∈I

D-converges to x.
Case (c) is proved in a symmetrical way.
Notice that (b) and (c) are mutually exclusive, since A and B are disjoint, by (5).

Conditions (b) and (c) are also both mutually exclusive with (a) by (1).
(8) Since every LOTS is, in particular, a GO space, then Condition (7) applies. Hence,

by (1), it is enough to prove that, say, in every LOTS (8)(b) implies (7)(b). Indeed, if (8)(b)
holds, then, since A∪B = X, by (4) and (6), x is an infimum of B, but in a LOTS this implies
x ∈ B, thus (7)(b) holds (notice that, by the very definition of A, if A has a maximum, then
X \ A = B is not empty).

(9) We use the characterization given in (7). If one of (a), (b) or (c) in (7) holds, then
trivially (A,B) is neither a gap nor a pseudo-gap.

Conversely, suppose that (A,B) is not a (pseudo-)gap. If A ∪ B �= X, then (7)(a) holds,
for some x ∈ X, by (1). Otherwise, A ∪ B = X. Since we are including end gaps in our
definition of a gap, both A and B are nonempty. By (5), and since A ∪ B = X, if neither
A has a maximum, nor B has a minimum, then both A and B are open, contradicting the
assumption that (A,B) is not a gap. Assume that, say, A has a maximum x. By (6), B has
no minimum. If x �∈ B, then B would be clopen, and (A,B) would be a pseudo-gap. Thus
x ∈ B and 7(b) holds.

(10) Suppose that (xi)i∈I D-converges to x. By (1), we are either in case (7)(b) or (7)(c).
Suppose, say, that we are in case (7)(b). Since x ∈ B, then every neighborhood U of x

contains an interval [x, b′], for some b′ ∈ B. For every i ∈ I such that xi ∈ B, there is
b ∈ B such that b < sup{b′, xi}, by (6). Thus b′ ∈ [x, b′] ∩ (b, xi) ⊆ U ∩ Oi , hence
U ∩ Oi �= ∅, for every i ∈ I such that xi ∈ B. Since x is the maximum of A, then, by (5),
{i ∈ I | xi ∈ B} = {i ∈ I | x < xi} ∈ D, thus x is a D-limit point of (Oi)i∈I .

Conversely, suppose that X = A ∪ B, and that x is a D-limit point of (Oi)i∈I . Since
X = A ∪ B, then either {i ∈ I | xi ∈ A} ∈ D or {i ∈ I | xi ∈ B} ∈ D. Suppose that,
say, the latter eventuality occurs. We first show that x �∈ B. Indeed, if x ∈ B, then {i ∈ I |
xi < x} ∈ D and, since {i ∈ I | xi ∈ B} ∈ D, then {i ∈ I | xi ∈ B ∩ (−∞, x)} ∈ D. In
particular, the above set is not empty, hence there is x′ < x such that x′ ∈ B. Arguing in
the same way, {i ∈ I | xi ∈ B ∩ (−∞, x′)} ∈ D. But then, letting U = (x′,∞), we have
that U is a neighborhood of x such that {i ∈ I | U ∩ Oi = ∅} ∈ D, since Oi ⊆ (−∞, x′),
whenever xi ∈ B ∩ (−∞, x′). This contradicts the assumption that x is a D-limit point of
(Oi)i∈I , hence x �∈ B. Thus x ∈ A. Moreover, x is the maximum of A. If not, there is some
x′ ∈ A such that x < x′. Then U = (−∞, x′) is a neighborhood of x such that U ∩Oi = ∅,
for a set of indices in D, namely, for {i ∈ I | xi ∈ B}, by (5), again contradicting the
assumption that x is a D-limit point of (Oi)i∈I . In view of (7)(b), in order to finish the proof,
it is enough to show that x ∈ B. If not, U = (−∞, x] is a neighborhood of x, and we can
get a contradiction arguing as before, since by (5) A and B are disjoint, A = U = (−∞, x],
and Oi ⊆ B, whenever xi ∈ B.

Remark 3.2 From Proposition 3.1(10) it follows easily that, for every ultrafilter D and every
GO space X, D-compactness of X is equivalent to D-pseudocompactness of X. The only-if
part is trivial. For the converse, suppose that X is D-pseudocompact, and that (xi)i∈I is a
sequence of elements of X. If X �= A ∪ B, then (xi)i∈I D-converges, by 3.1(1). Otherwise,
define (Oi)i∈I as in (10). It is enough to show that {i ∈ I | Oi �= ∅} ∈ D, since then we
can apply D-pseudocompactness to (Oi)i∈I and use (10). Since X = A ∪ B, then either
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{i ∈ I | xi ∈ A} ∈ D, or {i ∈ I | xi ∈ B} ∈ D. Say the latter case occurs, then,
by the definition, B has no minimum, hence, for every i ∈ I such that xi ∈ B, we have
Oi ⊇ B ∩ (−∞, xi) �= ∅. Hence the Oi’s are nonempty for a set of indices in D, namely, a
set containing {i ∈ I | xi ∈ B}.

Much more can be said about the connections among D-compactness, D-
pseudocompactness and other properties of a GO space X. This is the main theme of the
next section.

4 D-Compactness, D-Pseudocompactness, Gaps, Products

To state the results of the present section in their full generality, we need some more
definitions.

An ultrafilter D over some set I is λ-descendingly complete if every ⊆-decreasing
sequence (Zα)α∈λ of sets in D has intersection still in D. The ultrafilter D is λ-
decomposable if there is a function f : I → λ such that f −1(X) �∈ D, for every X ⊆ λ

such that |X| < λ. Clearly, if λ is an infinite cardinal, a λ-decomposable ultrafilter is not λ-
descendingly complete: just consider Zα = f −1([α, λ)). If λ is regular, the converse holds.
Indeed, if λ is regular and D is not λ-descendingly complete, as witnessed by (Zα)α∈λ,
the following function f witnesses that D is λ-decomposable. Define f by letting f (i) be
the smallest α such that i �∈ Zα , if such an α < λ exists; f (i) is unimportant and can be
arbitrary if i ∈ ⋂

α∈λ Zα , since we are assuming that
⋂

α∈λ Zα �∈ D. Thus, for infinite
regular cardinals, λ-decomposability is equivalent to the negation of λ-descending com-
pleteness. Let us also mention that there is another notion equivalent to λ-decomposability
for λ an infinite regular cardinal, that is, (λ, λ)-regularity. We shall make only a limited use
of (λ, λ)-regularity here (see Sections 5 and 6), but we should warn the reader that theorems
about λ-descending (in)completeness or λ-decomposability are frequently stated in equiva-
lent forms in terms of regularity, or vice versa. A full discussion is given in [14]; see Section
1 there and, in particular, Properties 1.1(xi) and Consequence 1.2.

For an ultrafilter D, let KD = {ν ≥ ω | D is ν-decomposable}. Many problems are
still open about the possible values KD can assume, and solutions to such problems are
heavily dependent on the universe of set theory one is working in. For example, in cer-
tain models of set theory, KD is always an interval of cardinals, with bottom element ω;
on the other hand, there are models in which KD is a rather sparse set of cardinals. We
refer to the comments after Problem 6.8 in [14] for further information and details, or
to the remarks before Corollary 6.4 here, where we show that such set theoretical prob-
lems affect the behavior under products of certain compactness properties of GO spaces.
In particular, certain statements turn out to be independent from the usual axioms for
set theory. In this paper we shall be mainly concerned with regular cardinals in KD ,
hence we shall establish the special notation K

Reg
D for the set of such cardinals. Namely,

K
Reg
D = {ν ≥ ω | ν is regular and D is ν-decomposable}.
A topological space is [ν, λ]-compact if every open cover of cardinality ≤ λ has a sub-

cover of cardinality < ν. It is a classical result by Alexandroff and Urysohn [2] that if ν is
an infinite regular cardinal, then [ν, ν]-compactness of a topological space X is equivalent
to CAPν , which is the property asserting that every subset of X of cardinality ν has a com-
plete accumulation point. Initial λ-compactness is [ω, λ]-compactness, and, again by [2], it
is equivalent to [ν, ν]-compactness, for every cardinal ν ≤ λ, equivalently, for every regular
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cardinal ν ≤ λ. As usual, by [ν, λ] we shall also denote the interval of all cardinals μ such
that ν ≤ μ ≤ λ. We hope that the partially overlapping notation will cause no confusion.

A topological space is weakly [ν, λ]-compact if every open cover of cardinality ≤ λ

has a subfamily of cardinality < ν with dense union. Weak initial λ-compactness is weak
[ω, λ]-compactness. The above notions are frequently named using very disparate termi-
nology. Weak [ν, λ]-compactness has sometimes been called weak λ-ν compactness, and
we used still different terminology in [17], where we called it O-[ν, λ]-compactness. When
ν is a regular cardinal, weak [ν, ν]-compactness is equivalent to a notion called pseudo-
(κ, κ)-compactness. Weak initial ω-compactness is equivalent to faint compactness, and,
in the class of Tychonoff spaces, it is equivalent to pseudocompactness. Weak initial λ-
compactness has been called almost λ-compactness, or weak-λ-ℵ0-compactness by some
authors. See [16, Remark 3] for further details and references.

If λ is an infinite cardinal, a sequence (xγ )γ<λ of elements of a topological space con-
verges to some point x if, for every neighborhood U of x, there is γ < λ such that xγ ′ ∈ U ,
for every γ ′ > γ .

If (A,B) is a gap of some GO space, we say that λ is a type of (A, B) if either A has
cofinality λ, or B has coinitiality λ (thus a gap has at most two types). If (A,B) is a pseudo-
gap, say, B having a minimum, the type of (A,B) is the cofinality of A, and, symmetrically,
the coinitiality of B, if A has a maximum.

The above notions are related as follows. If (xγ )γ<λ is a non converging strictly
increasing sequence of elements of a GO space X, then, letting A = {x ∈ X | x <

xγ for some γ < λ}, and B = X \ A, we have that (A,B) is a (pseudo-)gap having type
λ. A symmetrical statement holds for strictly decreasing sequences. Conversely, given a
(pseudo-)gap (A,B) having type λ, we obtain a strictly monotone non converging sequence
(xγ )γ<λ, by considering either a cofinal subset of A or a coinitial subset of B.

Theorem 4.1 Suppose that D is an ultrafilter over some set I , and recall that K
Reg
D is the

set of those infinite regular cardinals ν such that D is ν-decomposable. For every GO space
X, the following conditions are equivalent.

(1) X is D-compact.
(2) X is [ν, ν]-compact, for every cardinal ν ∈ K

Reg
D .

(3) For every cardinal ν ∈ K
Reg
D , and every strictly increasing (resp., strictly decreasing)

ν-indexed sequence of elements ofX, the sequence has a supremum (resp., an infimum)
to which it converges.

(4) X has no (pseudo-)gap of type belonging to K
Reg
D .

(5) X is D-pseudocompact.
(6) X is weakly [ν, ν]-compact, for every cardinal ν ∈ K

Reg
D .

(7) For every cardinal ν ∈ K
Reg
D and every sequence (Oγ )γ<ν of nonempty open sets of

X, there is x ∈ X such that |{γ < ν | Oγ ∩ U �= ∅}| = ν, for every neighborhood U

of x.
In the above condition we can equivalently require either that theOγ ’s are pairwise

disjoint, or that Oγ ⊂ Oγ ′ , for γ > γ ′.
(8) X is D′-compact, for every ultrafilter D′ such that KReg

D′ ⊆ K
Reg
D .

(9) X is D′-pseudocompact, for every ultrafilter D′ such that KReg

D′ ⊆ K
Reg
D .

Proof (1) ⇒ (2) It is enough to show that if ν is regular and D is ν-decomposable, then
every D-compact topological space is [ν, ν]-compact. This is essentially a classical result
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(which holds for every topological space), due to [11] in the case ν = ω, and to [24] in
the general case. See also [6] and [17] for other versions and generalizations. Briefly, and
using the equivalent reformulation of [ν, ν]-compactness in terms of complete accumulation
points, if Y ⊆ X and |Y | = ν, enumerate Y as {yγ | γ ∈ ν}. If f : I → ν witnesses the ν-
decomposability of D, then, by D-compactness, the sequence (yf (i))i∈I has some D-limit
point, which is easily seen to be also a complete accumulation point of Y .

(2) ⇒ (3) is almost immediate. Indeed, if, by contradiction, (xγ )γ<ν is, say, strictly
increasing and non converging, then O = X \ ⋃

γ<ν(−∞, xγ ) is open. Then the family
containing O and (−∞, xγ ), for γ < ν, is an open cover by ν sets, but no subfamily by
< ν sets is a cover, since ν is regular.

The equivalence of (3) and (4) should be clear from the remarks shortly before the
statement of the theorem.

The proof of (4) ⇒ (1) is the key argument in the proof of the theorem, and uses in an
essential way the assumption that we are in a GO space. Suppose by contradiction that (1)
fails and let (xi)i∈I be a sequence which does not D-converge. Let A and B be defined as in
the statement of Proposition 3.1. By condition (9) in the same proposition, (A,B) is either
a gap or a pseudo-gap of X, in particular, A ∪ B = X. Hence either {i ∈ I | xi ∈ A} ∈ D,
or {i ∈ I | xi ∈ B} ∈ D. Suppose, say, that the latter case occurs. Then by the assumption
that {i ∈ I | xi ∈ B} ∈ D, by the definition of B, and since D is a filter, we get that, for
every b ∈ B, Xb = {i ∈ I | xi ∈ (−∞, b) ∩ B} ∈ D. Notice that it follows that B has
no minimum, since each Xb is nonempty. Choose a strictly decreasing coinitial sequence
(bγ )γ∈ν in B. Then ν is a type of the (pseudo-)gap (A,B), and (Xbγ )γ∈ν witnesses that D

is not ν-descendingly complete, since
⋂

γ∈ν Xbγ = {i ∈ I | xi �∈ B} �∈ D. Thus ν ∈ K
Reg
D ,

by the equivalence mentioned after the definition of decomposability, and since ν is regular,
being the coinitiality of B. Thus (A,B) has type ν ∈ K

Reg
D , contradicting (4).

So far, we have proved the equivalence of (1)–(4).
(1) ⇒ (5) is trivial.
(5) ⇒ (6) is similar to (1) ⇒ (2), by considering a sequence of nonempty open sets of X,

rather than a sequence of elements of X. Full details can be found in [17, Fact 6.1, Corollary
4.6 and condition (d) in Theorem 4.4], by taking F = O there.

The equivalence of (6) with the first statement in (7) is true in every topological space,
and is similar to the equivalence of [ν, ν]-compactness with CAPν (recall that we are assum-
ing that ν is regular). Details can be found again in [17], by taking F = O in Theorem
4.4(a) ⇔ (c) there.

For GO spaces, (7) ⇒ (3) is a standard argument. Say, (xγ )γ∈ν is strictly increasing. Put
Oγ = ⋃

η>γ (xγ , xη). Then if x is such that |{γ < ν | Oγ ∩ U �= ∅}| = ν, for every
neighborhood U of x, then necessarily (xγ )γ∈ν converges to x. Here the Oγ ’s are strictly
decreasing with respect to inclusion.

If we want the Oγ ’s to be pairwise disjoint, then, for γ = α + n with α = 0 or α limit,
take Oγ = (xα+2n, xα+2n+2).

Hence (1)–(7) are all equivalent, for every ultrafilter D and every GO space X.
(2) ⇒ (8) Suppose that D′ is such that K

Reg

D′ ⊆ K
Reg
D . If (2) holds, then, since K

Reg

D′ ⊆
K

Reg
D , X is [ν, ν]-compact, for every cardinal ν ∈ K

Reg

D′ . Applying the equivalence of (1)
and (2) in the case of the ultrafilter D′, we get that X is D′-compact.

(8) ⇒ (1) follows trivially by taking D = D′.
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The equivalence of (9) with, say, (6) and (5) is similar.

Given a family (Xj )j∈J of GO spaces, the product
∏

j∈J Xj is not necessarily a GO
space; however, it is a topological space, when endowed with the (Tychonoff) product topol-
ogy.

∏
j∈J Xj can also be given the structure of a partially ordered set, by letting the relation

x ≤ y hold in
∏

j∈J Xj if and only if it holds componentwise. The next corollary deals
with the above structures on

∏
j∈J Xj . It shows that if each Xj is a GO space, then many

properties of
∏

j∈J Xj are determined by the corresponding properties of the Xj ’s.
To avoid trivial exceptions, we shall always assume that all factors in a product are

nonempty.

Corollary 4.2 Suppose that D is an ultrafilter over some set I . For every family (Xj )j∈J

of GO spaces, the following conditions are equivalent.

(a) For every j ∈ J , the GO space Xj satisfies one (and hence all) of the conditions in
Theorem 4.1.

(b) The topological space
∏

j∈J Xj satisfies all of the conditions (1)–(2),(5)–(9) in
Theorem 4.1.

(c) The topological space
∏

j∈J Xj satisfies one of the conditions (1)–(2),(5)–(9) in
Theorem 4.1.

(d) For every ν ∈ K
Reg
D , every monotone ν-indexed sequence in

∏
j∈J Xj converges.

Proof (a) ⇒ (b) If each Xj satisfies any one of the conditions in Theorem 4.1, then, by the
very same theorem, Xj is D-compact. By an easy and classical property of D-compactness
[4, 24], every product of D-compact spaces is still D-compact, hence

∏
j∈J Xj is still D-

compact. Now notice that the proof that (1) implies any one of the conditions (1)–(2),(5)–(7)
in Theorem 4.1 holds for an arbitrary topological space, not only for GO spaces. Moreover,
if each Xj is D-compact, then, by Theorem 4.1 (1) ⇒ (8), each Xj is D′-compact, for every

ultrafilter D′ such that K
Reg

D′ ⊆ K
Reg
D . Again since D′-compactness is preserved under

products,
∏

j∈J Xj is D′-compact, thus condition 4.1 (8) holds for
∏

j∈J Xj . The proof that
(9) holds for

∏
j∈J Xj is similar, since D′-pseudocompactness is preserved under products,

too, [11].
(b) ⇒ (c) is trivial.
(c) ⇒ (a) If

∏
j∈J Xj satisfies any one of the conditions (1)–(2),(5)–(9), then trivially

each Xj satisfies the same condition, hence (a) holds.
(a) ⇒ (d) By Theorem 4.1, if (a) holds, then condition (3) in Theorem 4.1 holds, for

every j ∈ J . Suppose that (xγ )γ∈ν is a monotone, say, increasing, sequence in
∏

j∈J Xj .
Since ν is a regular cardinal, for every j ∈ J , the projection (xj,γ )γ∈ν of (xγ )γ∈ν into Xj is
either eventually constant, or has a strictly increasing subsequence of order type ν. In both
cases, (xj,γ )γ∈ν converges in Xj . This is trivial in the former case; in the latter case, the
strictly increasing subsequence converges, by condition (3) in Theorem 4.1, and then also
(xj,γ )γ∈ν converges (to the same point), since it is increasing. Now it is trivial to see that
a sequence in a product converges if and only if each projection converges, hence (xγ )γ∈ν

converges in
∏

j∈J Xj .
(d) ⇒ (a) If (d) holds, then trivially each Xj satisfies condition (3) in Theorem 4.1, thus

(a) holds.
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5 The Particular Case of Initial Compactness

For LOTS, the equivalence of conditions (2), (4) and (10) in the next corollary has first been
proved, under different terminology and with further equivalences, in [10, Theorem 3]. For
GO spaces the corollary appears in [18].

Recall that an ultrafilter D over λ is regular if there is a family (Zα)α∈λ of members of
D such that the intersection of any infinite subfamily is empty (this is also called (ω, λ)-
regularity). It is a standard application of the Axiom of Choice, or just the Prime Ideal
Theorem, to show that, for every infinite cardinal λ, there exists a regular ultrafilter D over
λ. See, e. g., Chang and Keisler [7, Proposition 4.3.5]. For such an ultrafilter, it is easy to
show that ν ∈ KD , for every regular ν ≤ λ: see [14, Properties 1.1(xii)] (in fact, one actually
has that KD = [ω, λ], by [14, Properties 1.1(1) and the last paragraph in Remark 1.5(b)],
but we shall not need this here). It follows that K

Reg

D′ ⊆ K
Reg
D , for every regular ultrafilter

over λ, and every ultrafilter D′ over any set of cardinality ≤ λ.

Corollary 5.1 For every infinite cardinal λ, and every GO space X, the following
conditions are equivalent.

(1) X is D-compact, for some regular ultrafilter over λ.
(2) X is initially λ-compact.
(3) For every infinite regular cardinal ν ≤ λ, and every strictly increasing (resp., strictly

decreasing) ν-indexed sequence of elements of X, the sequence has a supremum
(resp., an infimum) to which it converges.

(4) X has no (pseudo-)gap having type ≤ λ.
(5) X is D-pseudocompact, for some regular ultrafilter over λ.
(6) X is weakly initially λ-compact.
(7) For every infinite (equivalently, every infinite regular) cardinal ν ≤ λ, and every

sequence (Oγ )γ<ν of open nonempty sets of X, there is x ∈ X such that |{γ < ν |
Oγ ∩ U �= ∅}| = ν, for every neighborhood U of x.

In the above condition we can equivalently require either that the Oγ ’s are
pairwise disjoint, or that Oγ ⊂ Oγ ′ , for γ > γ ′.

(8) X is D-compact, for every ultrafilter D over any set of cardinality ≤ λ.
(9) X is D-pseudocompact, for every ultrafilter D over any set of cardinality ≤ λ.

(10) X is λ-bounded, that is, every subset of cardinality ≤ λ has compact closure.

Proof We are first giving the proof as a consequence of Theorem 4.1. As we mentioned in
the introduction, a more direct proof (which nevertheless uses essentially the same ideas)
can be found in [18]. We then sketch an alternative proof which goes along with some
arguments in [10].

Most of the equivalences in the corollary are the particular cases of Theorem 4.1 applied
when D is a regular ultrafilter over λ. This is the case for conditions (1), (3)–(5), (7)reg, (8)
and (9), by the remarks before the statement of the corollary, and where by (7)reg we denote
condition (7) restricted to regular ν’s.

As far as (2) is concerned, it is standard and already proved in [2] that initial λ-
compactness is equivalent to [ν, ν]-compactness for every regular ν ≤ λ, so we get the
equivalence with condition (2) in Theorem 4.1, in the case when D is regular over λ. Alter-
natively, (1) ⇒ (2) in the present corollary follows immediately from [6, Theorem 3.4 ii) ⇒
i)]. Notice that [6], following standard use in the model theoretical setting, uses a notation
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in which the order of the cardinals is reversed, both in the definition of [μ, ν]-compactness
and of (ω, ν)-regularity.

In contrast with (2), it is not always necessarily the case that (for topological spaces
in general) weak [ν, ν]-compactness for every regular ν ≤ λ implies weak initial λ-
compactness. This is Remark 30 in [16], relying on an example by Garcı́a-Ferreira [9],
which in turn builds on a construction by Kanamori [12]. However, (5) implies (6) by
[16, Corollary 15], (6) implies (7) by [15, Theorem 1] and Retta [23, Theorem 3(d)], and (7)
implies (7)reg trivially, hence, for GO spaces, they are all equivalent, since we have already
proved that for GO spaces (5) and (7)reg are equivalent.

Finally, the equivalence of (8) and (10) holds for every Hausdorff regular space, [24,
Theorems 5.3 and 5.4] (recall that it can be proved that every GO space is regular). Our first
proof of the corollary is thus complete.

An alternative proof of (4) implies (10) goes as follows. Suppose that ∅ �= Y ⊆ X, and
|Y | ≤ λ. The closure Y of Y has no (pseudo-)gap of type ≤ λ, since otherwise it would
extend to a (pseudo-)gap of X having the same type. Moreover, Y has no subset of order
type or reversed order type > λ, since then one could construct a subset of Y having the
same order type, but this is impossible, since |Y | ≤ λ. In conclusion, Y has no (pseudo-)gap
at all, but this implies that it is compact, by a well-known result, e. g., Nagata [20, Theorem
VIII.2].

Then an alternative proof of the corollary is obtained by the following chains of implica-
tions (4) ⇒ (10) ⇒ (8) ⇒ (1) ⇒ (2) ⇒ (3) ⇒ (4) and (4) ⇒ (10) ⇒ (8) ⇒ (9) ⇒ (5) ⇒
(6) ⇒ (7) ⇒ (4), which are either trivial, or proved before.

Corollary 5.2 Suppose that X is a product of topological spaces and that all factors but at
most one are GO spaces. Then the following hold.

(1) X is initially λ-compact if and only if each factor is initially λ-compact.
(2) X is weakly initially λ-compact if and only if each factor is weakly initially λ-compact.

Proof (1) An implication is trivial. For the other direction, by the equivalence of (2) and
(10) in Corollary 5.1, all but at most one factor are λ-bounded. A product of regular λ-
bounded spaces is still λ-bounded [10, Lemma 4], or [26, Theorem 5.7 and implications (1),
(1′) in Diagram 3.6], and a product of a λ-bounded space with an initially λ-compact space
is initially λ-compact [26, Theorem 5.2 and implications (1), (2) in Diagram 3.6]. Hence
(1) follows by first grouping together the GO spaces, and then, in case, multiplying their
product with the possibly non GO factor. Alternatively, one can use an argument parallel to
the one we are going to give for (2).

(2) Again, an implication is trivial. For the other direction, by the equivalence of (6) and
(9) in Corollary 5.1, all but at most one factor are D-pseudocompact, for every ultrafilter
D over any set of cardinality λ. Since D-pseudocompactness is preserved under products
[11], we have that all but at most one factor are D-pseudocompact, for every ultrafilter D

over any set of cardinality λ. Since the (possible) remaining factor is weakly initially λ-
compact, by assumption, (2) follows from the next lemma (which, in some form or another,
is probably folklore).

Lemma 5.3 If the topological space X is D-pseudocompact, for every ultrafilter D over λ,
and the topological space Y is weakly initially λ-compact, then X × Y is weakly initially
λ-compact.
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Proof Let Sω(λ) denote the set of all finite subsets of λ. By [16, Theorem 10], a topological
space is weakly initially λ-compact if and only if, for every sequence {OZ | Z ∈ Sω(λ)} of
nonempty open sets, there exists an ultrafilter D over Sω(λ) such that both {Z ∈ Sω(λ)|α ∈
Z} ∈ D, for every α ∈ λ, and {OZ | Z ∈ Sω(λ)} has a D-limit point.

So let {OZ | Z ∈ Sω(λ)} be a sequence of nonempty open sets in X × Y : it is enough
to find some D as above. Without loss of generality, we can suppose that OZ = UZ × VZ ,
for every Z ∈ Sω(λ). Since Y is weakly initially λ-compact, by the quoted theorem, there
exists an ultrafilter D as above such that {VZ | Z ∈ Sω(λ)} has a D-limit point y. Since
|Sω(λ)| = λ, then X is D-pseudocompact, hence also {UZ | Z ∈ Sω(λ)} has a D-limit point
x. But then (x, y) is a D-limit point of {OZ | Z ∈ Sω(λ)}.

See [10, Corollary on p. 203] for other results related to Corollary 5.2. See [25] for
further results in the particular case of countable compactness, that is, λ = ω.

6 The Impact of Set Theory

In view of Theorem 4.1 (2) ⇔ (4), one would be tempted to conjecture that, for every infinite
regular cardinal ν, a GO space X is [ν, ν]-compact if and only if X has no (pseudo-)gap
of type ν. However this is false: just consider R with the usual order, and with the discrete
topology. The counterexample can be easily turned into a LOTS: let X be the product R×Z,
with the lexicographic order. The induced topology on X is the discrete one and, since
|X| = 2ω, then X is not [ν, ν]-compact, for every ν ≤ 2ω. On the other hand, X has
only gaps of type ω, thus, taking ν = ω1 (or any ν with ω < ν ≤ 2ω—of course, this
is significant only if the Continuum Hypothesis fails), we get that having no gap of type
ν does not necessarily imply [ν, ν]-compactness. Indeed, the equivalence holds only for a
very special class of cardinals. It can be shown that a regular cardinal ν > ω is weakly
compact if and only if, for every GO space (equivalently, LOTS) X, [ν, ν]-compactness of
X is equivalent to X having no (pseudo-)gap of type ν.

Put in another way, in general, an equivalence like (2) ⇔ (4) in Theorem 4.1 can hold
only if considered simultaneously for all ν in some appropriate class H of regular cardinals.
Theorem 4.1 shows that the equivalence holds in case H can be realized as K

Reg
D , for some

ultrafilter D. In this sense, the existence of a regular ultrafilter over λ can be seen as a
fact “responsible behind the scene” for the equivalence of initial λ-compactness with the
nonexistence of (pseudo-)gaps of type ≤ λ. As we mentioned, if H = {ν} is a singleton,
then the equivalence 4.1 (2) ⇔ (4) (with H in place of K

Reg
D there) holds if and only if

either ν = ω, or ν is weakly compact (see Corollary 7.3 (1) below).
The above considerations suggest the following definition. If H is a class of infinite

cardinals, let us say that a topological space is H -compact if it is [ν, ν]-compact, for every
ν ∈ H . Thus the equivalence (2) ⇔ (4) in Theorem 4.1 asserts that if H = K

Reg
D , for some

ultrafilter D, then a GO space X is H -compact if and only if X has no (pseudo-)gap of type
in H . If we strengthen the above conditions by asking forms of preservation under products,
we get that the corresponding equivalence holds exactly for those classes H which can be
expressed as unions of classes of the form K

Reg
D . This is the content of the next corollary,

which also shows that in many cases, say, when H is finite, the equivalence holds if and
only if H = K

Reg
D , for some ultrafilter D. The proof of this last statement is relatively

involved; let us point out that, for most applications, the equivalences of (1)–(4) in the next
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corollary are enough. The reader, at first, might skip the next definitions, go through 6.1(1)–
(4) below with the proof of the equivalences, and then go directly to the comments before
Corollary 6.4. This is enough to show that, for GO spaces, preservation of H -compactness
under products is highly dependent on set theory.

Recall that an ultrafilter D is (λ, μ)-regular if there is a set of μ members of D such that
the intersection of any λ of them is empty. We refer again to [14] for more information about
regularity of ultrafilters. Here (λ, μ)-regularity shall be used in connection with results
from [6], asserting that, roughly, (λ, μ)-regular ultrafilters are standard witnesses for [λ, μ]-
compactness of products of topological spaces.

Let Reg denote the class of all infinite regular cardinals. An interval of regular cardi-
nals is a set of the form Reg ∩ [λ, μ], for certain cardinals λ and μ. Notice that we allow
μ to be singular. If H is a set of cardinals, and F is a finite union of intervals of regular
cardinals, we say that H includes the cofinalities of the extremes of F if F can be repre-
sented as F = Reg ∩ ⋃

p∈P [λp, μp], with P finite, and in such a way that cf μp ∈ H ,
for every p ∈ P (of course, in case H = F this is relevant only when some μp is
singular).

Corollary 6.1 Suppose that H is a class of infinite regular cardinals. Then the following
statements are equivalent.

(1) Every product of a family of H -compact GO spaces is still H -compact.
(2) Same as (1), restricted to spaces which are regular cardinals with the order topology.
(3) For every ν ∈ H there is an ultrafilter Dν such that ν ∈ KDν and K

Reg
Dν

⊆ H .

(3′) There is a class D of ultrafilters such that H = ⋃
D∈D K

Reg
D .

(4) Every product of GO spaces without (pseudo-)gaps of type in H is H -compact.
(5) More generally, if Y is a product of GO spaces, and each factor of Y satisfies at least

one of conditions (2)–(4), (6)–(7) in Theorem 4.1, with K
Reg
D there replaced by H ,

then Y is H -compact.
(5′) If Y is a product of GO spaces, and each factor of Y satisfies all the conditions (2)–(4),

(6)–(7) in Theorem 4.1, with K
Reg
D there replaced by H , then Y is H -compact.

(6) For every finite F ⊆ H , there is an ultrafilter DF such that F ⊆ K
Reg
DF

⊆ H .
(7) More generally, for every set F ⊆ H such that F is a finite union of intervals of

regular cardinals, and H includes the cofinalities of the extremes of F , there is an
ultrafilter DF such that F ⊆ K

Reg
DF

⊆ H .

Suppose in addition that H is finite, or, more generally, that H is a finite union of intervals
of regular cardinals and H includes the cofinalities of its extremes. Then the preceding
conditions are also equivalent to the following one.

(8) There is an ultrafilter D such that KReg
D = H .

Proof (1) ⇒ (2) is trivial.
(2) ⇒ (3) Let T be the class of the regular cardinals which are not in H . Notice that

every member of T is [ν, ν]-compact, for every ν ∈ H . By (2), every product of members
of T , too, is [ν, ν]-compact, for every ν ∈ H . For every ν ∈ H , by [24] or [6, Theorem 3.4],
there exists a ν-decomposable (equivalently, (ν, ν)-regular, since ν is regular) ultrafilter Dν

such that every member of T is Dν-compact. It is easy to see that if κ is a regular cardinal,
D is an ultrafilter, and the space κ is D-compact, then D is κ-descendingly complete (see
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the proof of [13, Proposition 1], though the result is stated with different terminology),
equivalently, D is not κ-decomposable. In the case at hand, this shows that if κ is regular
and does not belong to H , then κ �∈ KDν . This means exactly that K

Reg
Dν

⊆ H . Since Dν is
ν-decomposable, then ν ∈ KDν , hence Dν witnesses (3).

(3′) is a restatement of (3).
(3) ⇒ (4) We have to show that every product Y as in (4) is [ν, ν]-compact, for every

ν ∈ H . So let ν ∈ H , and let Dν be given by (3). Since K
Reg
Dν

⊆ H , then no factor of

Y has a (pseudo-)gap in K
Reg
Dν

. By Theorem 4.1 (4) ⇒ (1) applied to Dν , each factor of Y

is Dν-compact, hence also Y is Dν-compact. Hence Y is [ν, ν]-compact, since ν ∈ K
Reg
Dν

and, as we mentioned, 4.1 (1) ⇒ (2) holds for every topological space. (Of course, we are
repeating here some arguments from the proof of Corollary 4,2, and the implication can be
also obtained as a consequence of 4.2).

(4) ⇒ (1) is trivial, since if a GO space is [ν, ν]-compact, then it has no (pseudo-)gap of
type ν. Cf. the proof of 4.1 (2) ⇒ (3).

Hence (1)–(4) are all equivalent.
(3) ⇒ (5) is similar to (3) ⇒ (4).
(5) ⇒ (5′) is trivial.
(5′) ⇒ (1), again, is trivial, since if a GO space is [ν, ν]-compact, then it satisfies all the

conditions (2)–(4), (6)–(7) in 4.1, for that given ν.
Hence (1)–(5′) are all equivalent.
The equivalence of (3) and (6) is purely set-theoretical. (6) ⇒ (3) is trivial since H

consists only of regular cardinals. For the converse, suppose that F = {ν1, . . . , νn}, and
let Dν1 , . . . , Dνn be the corresponding ultrafilters given by (3). We are going to show that
DF = Dν1 × · · · × Dνn works in (6). Recall that, for D, D′ ultrafilters, say, over I , I ′,
their product D × D′ is the ultrafilter over I × I ′ defined by Z ∈ D × D′ if and only
if {i ∈ I | {i′ ∈ I ′ | (i, i′) ∈ Z} ∈ D′} ∈ D. It follows from the last statement in
[14, Proposition 7.1] that, for every regular cardinal ν, the following holds: ν ∈ KD×D′ if
and only if either ν ∈ KD , or ν ∈ KD′ (the result in [14, Proposition 7.1] is stated in terms
of (ν, ν)-regularity, but, when ν is regular, this is equivalent to ν-decomposability). In other
words,

(*) K
Reg

D×D′ = K
Reg
D ∪ K

Reg

D′ , for every pair of ultrafilters D and D′.
In particular, if DF is defined as above, then K

Reg
DF

= ⋃
ν=ν1,...,νn

K
Reg
Dν

. By (3) we

have that K
Reg
Dν

⊆ H , for ν = ν1, . . . , νn, hence K
Reg
DF

⊆ H . Moreover, ν ∈ KDν , for

ν = ν1, . . . , νn, hence F ⊆ K
Reg
DF

. We have proved (3) ⇒ (6).
The equivalence of (3) and (7), too, can be proved in a set-theoretical way, by a small

variation on [14, Proposition 7.6 (a) ⇔ (b)], considering the case χ = ω there, since every
ultrafilter is ω-complete. Notice that the proof of [14, Proposition 7.6] uses (ν, ν)-regularity
even for ν singular, hence a proof along those lines needs the assumption that H includes
the cofinalities of the extremes of F . In fact, the assumption is necessary, as we shall show
in Remark 6.3. Notice that the equivalence of (3), (7) and (8) in Corollary 6.1 is purely
ultrafilter-theoretical and might be of independent interest.

We shall give here a proof of (3) ⇒ (7) with a stronger topological flavor, and which
relies heavily on [6].

As above, (7) ⇒ (3) is trivial. To get the converse, we shall prove (1) ⇒ (7). First, we
need a lemma, an easy extension of [6, Corollary 1.8(iii)].



Order (2016) 33:269–287 283

Lemma 6.2 Suppose that T is a class of topological spaces, and λ, μ are infinite cardinals.
If every product of members of T is both [cfμ, cfμ]-compact, and [ν, ν]-compact for every
regular ν with λ ≤ ν ≤ μ, then every product of members of T is [λ, μ]-compact.

Proof The particular case cf μ ≥ λ is [6, Corollary 1.8(iii)], and the lemma can be proved
in a similar way. Otherwise, in case cf μ < λ, we can apply [6, Corollary 1.8(iii)] for
every regular μ′ < μ, getting that every product of members of T is [λ, μ′]-compact, for
every regular μ′ < μ, and this, together with [cf μ, cf μ]-compactness immediately implies
[λ, μ]-compactness.

Proof of 6.1 (continued) We have promised a proof of (1) ⇒ (7). So, let F = Reg ∩⋃
p∈P [λp, μp], with P finite, and cf μp ∈ H , for every p ∈ P . We have from (1) that every

product of H -compact GO spaces is still H -compact. Applying Lemma 6.2 to the family T
of all H -compact GO spaces, since F is assumed to be a subset of H and since H includes
the cofinalities of the extremes of F , we get that, for every p ∈ P , every product of H -
compact GO spaces is [λp, μp]-compact. By [6, Theorem 3.4], for every p ∈ P , there is a
(λp, μp)-regular ultrafilter Dp such that every H -compact GO space is Dp-compact. As in
the proof of (2) ⇒ (3), for every regular cardinal κ �∈ H , the space κ with the order topology
is H -compact, hence Dp-compact, and then, using again [13, Proposition 1], we get that

Dp is not κ-decomposable, thus κ �∈ K
Reg
Dp

. Since this holds for every regular κ �∈ H , then

K
Reg
Dp

⊆ H . Enumerating P as {p1, . . . , pn}, and putting DF = Dp1 × · · · × Dpn , we get

K
Reg
DF

⊆ H , by using (*) above. Moreover, a (λ, μ)-regular ultrafilter is ν-decomposable,
for every regular ν such that λ ≤ ν ≤ μ (see, e. g., [14, Property 1.1(xii)]), thus [λp, μp] ∩
Reg ⊆ KDp , for every p ∈ P . Applying again (*), we get that F ⊆ KDF

. In conclusion,
DF witnesses (7).

To complete the proof of Corollary 6.1, it remains to prove (7) ⇔ (8) under the additional
assumption, but this is trivial, by taking F = H (of course, in case H is finite, it is easier to
use (6)).

Remark 6.3 In general, the additional assumption before Condition (8) in Corollary 6.1 is
necessary in order to prove the equivalence of (8) with the other conditions.

First, we are going to show that (3) does not necessarily imply (8), when H is infinite.
Suppose that there are infinitely many measurable cardinals μ0 < μ1 < . . . , and let H =
{μn | n ∈ ω}. If μ is a measurable cardinal, there is a μ-complete uniform ultrafilter Dμ

over μ, thus KDμ = μ = K
Reg
Dμ

. This implies that condition (3) in 6.1 holds for the above
H .

However, if we further assume GCH, there is no ultrafilter D such that K
Reg
D = H .

Indeed, the last paragraph in [14, Section 7] shows that if D is such an ultrafilter, then D is
(κ, κ)-regular, for κ = supn∈ω μn. But then [14, Corollary 5.8] implies that D is either cf κ-

decomposable, or κ+-decomposable, thus K
Reg
D strictly contains H , a contradiction (notice

that cf κ = ω).
There is also a similar counterexample in which H is an interval, but H does not include

the cofinality of its upper extreme. Suppose that κ is κ+n-compact, for every n ∈ ω. Here
κ+n is κ+···+ with n occurrences of “+”. Let κ+ω = supn∈ω κ+n and H = [κ, κ+ω) =
Reg ∩ [κ, κ+ω]. By κ+n-compactness, there is some κ-complete (κ, κ+n)-regular ultrafil-
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ter Dn, thus KDn = K
Reg
Dn

= [κ, κ+n]. Hence H satisfies condition (3) in 6.1. However,

there is no ultrafilter D such that K
Reg
D = H . Indeed, by [14, Theorem 5.7 and Corol-

lary 5.8], such a D would be either κ+ω+1-decomposable, or cf κ+ω-decomposable, that is,
ω-decomposable; but both the above assertions contradict K

Reg
D = H . Thus (8) fails.

Notice that this last counterexample also shows that the assumption that H includes the
cofinalities of the extremes of F is necessary in (7): just take F = H to make (7) fail.

Corollary 6.1 shows that certain properties of products of GO spaces depend heavily on
the set theoretical universe in which we work. If there is no inner model with a measurable
cardinal, then, for every ultrafilter D, KD is always an interval of cardinals with minimum
ω, by results from Donder [8], which extends and generalizes former results by M. Benda,
C. C. Chang, R. B. Jensen, J. Ketonen, K. Prikry, J. H. Silver, among many others. See [14]
for details. On the other hand, modulo some large cardinal consistency assumptions, it is
possible to have an ultrafilter D for which K

Reg
D = {ω, ωω+1}, Ben-David and Magidor

[3], Apter and Henle [1]. This is just an example concerning relatively small cardinals;
many results are known, and nevertheless deep problems are still open about the possible
values that the set KD can assume. See Problem 6.8 in [14], and the comments below it. By
Corollary 6.1 (e. g., (1) ⇔ (3)), all these problems affect the behavior of GO spaces with
respect to products, thus the use of ultrafilters in the results of the present section proves to
be irreplaceable. We shall explicitly state just the example dealing with the smallest possible
cardinals.

Corollary 6.4 (Assuming the consistency of a strongly compact cardinal) If H =
{ω, ωω+1}, then the preservation of H -compactness under products in the class of GO
spaces is both relatively consistent and independent from the axioms of ZFC.

Proof Immediate from Corollary 6.1(1) ⇔ (3), and the just mentioned results by Donder,
Ben-David and Magidor, and Apter and Henle.

Remark 6.5 Notice that H = {ω, ωω+1} is the “lowest” set for which independence can
occur. Indeed, [6, Corollary 1.8(ii)] proves that if every product of members of a family
T is [λ+, λ+]-compact, then every product of members of T is [λ, λ]-compact. Iterating,
we get that if all products of members of T (whether T consists of GO spaces or not)
are [ωn, ωn]-compact, then all such products are [ωi, ωi]-compact, for all i ≤ n, hence
also initially ωn-compact. Moreover, if there is some infinite cardinal λ such that every
product of members of some family T is [λ, λ]-compact, then the smallest such λ is either
ω, or a measurable cardinal (hence it cannot be ωω+1). This is a slight generalization (with
essentially the same proof) of [6, Corollary 1.8(i)].

7 Relationships Between H -Compactness and Omission of Gaps in H

The results in the present paper suggest that it is interesting to study the following property,
depending on a class H of infinite regular cardinals.

(**)H For every GO space X, X is H -compact if and only if X has no (pseudo-)gap of
type in H .

In general, (**)H is false; for example, as we mentioned, take H = {λ} with ω < λ ≤ c;
then R × Z with the lexicographic order furnishes a counterexample to (**)H .
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However, (**)H holds in many interesting cases. The simplest affirmative case is given
already by Gulden, Fleischman and Weston result in the case of LOTS, or Corollary 5.1 (2)
⇔ (4) here for general GO spaces. In this sense, the corollary states that (**)H holds in case
H = Reg ∩ [ω, λ]. Another example is given by Corollary 6.1, which implies that (**)H
holds in case H = K

Reg
D , for some ultrafilter D.

Notice that, for λ regular, if a GO space is [λ, λ]-compact, then, trivially, it has no
(pseudo-)gap of type λ; hence, in order to prove an instance of (**)H , it is enough to prove
the non trivial implication.

Notice also that if (**)H holds, then Conditions (2)–(4) and (6)–(7) in Theorem 4.1 are
equivalent, when K

Reg
D there is replaced by H .

In order to give some results about (**)H we need some further definitions.
Suppose that λ is an infinite cardinal, X is a linearly ordered set, and Y ⊆ X. If Y has

no maximum, we say that Y is λ-full (in X) on the right if, for every y ∈ Y ,
⋃

y′∈Y (y, y′)X
has cardinality ≥ λ. The subscript X in (y, y′)X is intended to mean that the interval is
evaluated in X, that is, (y, y′)X = {x ∈ X | y < x < y′}. When X is clear from the context,
we shall omit it. Symmetrically, if Y has no minimum, Y is λ-full (in X) on the left if, for
every y ∈ Y ,

⋃
y′∈Y (y′, y)X has cardinality ≥ λ. In case there is no risk of ambiguity, for

example when Y has the order type or reversed order type of some limit ordinal, we shall
simply say “λ-full”. For sake of brevity, if α is an ordinal, we say that a linear order Y

is α±ordered in case Y is order-isomorphic either to α, or to α ,̆ i.e., α with the reversed
order.

The next lemma shows that λ-full subsets always exist, for linear orders of cardinality
≥ λ.

Lemma 7.1 Suppose that λ is an infinite regular cardinal. Then every linearly ordered
set X of cardinality λ either has a λ±ordered subset, or a λ-full subset of order
type ω.

Proof Suppose that there is Y ⊆ X such that |Y | = λ and, for every y ∈ Y , either
(−∞, y)Y or (y,∞)Y has cardinality < λ. Then an easy induction of length λ, using the
regularity of λ, shows that Y (and hence X) has a λ±ordered subset. Otherwise, for every
Y ⊆ X of cardinality λ, there is y ∈ Y such that both (−∞, y)Y and (y,∞)Y have car-
dinality λ. Then an induction of length ω produces a strictly increasing sequence (yn)n∈ω

such that {yn | n ∈ ω} is λ-full in X.

Proposition 7.2 Suppose that ν ≤ λ are regular cardinals. Then the following conditions
are equivalent.

(1) Every linearly ordered set of cardinality λ has either a λ±ordered subset, or a
ν±ordered λ-full subset.

(2) For every GO space X, if X has no (pseudo-)gap of type ν or λ, then X is [λ, λ]-
compact.

(3) For every LOTS X, if X has no gap of type ν or λ, then X is [λ, λ]-compact.
In Conditions (2) and (3) we can equivalently restrict ourselves to those X’s such that

|X| ≤ λν .

Proof (Sketch) Recall that if λ is regular, then [λ, λ]-compactness is equivalent to CAPλ.
We shall use this equivalent condition throughout the proof.
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(1) ⇒ (2) Let X be a GO space, Z ⊆ X, and |Z| = λ. Apply (1) to Z, say, Z has subset
Y of order type ν and λ-full in Z. Since X has no gap of type ν, there is in X a supremum
y of Y , and y belongs to the closure of Y . Then every neighborhood of y contains λ-many
elements from Z, since Y is λ-full in Z; in particular, λ-many elements from X, since
X ⊇ Z.

The other cases are treated in a similar way.
(2) ⇒ (3) is trivial.
(3) ⇒ (1) We shall sketch a proof of the contrapositive. So, suppose that (1) fails,

thus there exists a linear order L of cardinality λ without λ±ordered subsets and without
ν±ordered λ-full subsets. By Lemma 7.1, necessarily ν > ω. Extend L to another linearly
ordered set X in the following way. Fill each gap having both left and right type ν by adding
an element in the middle of the gap. If a gap has left type ν but a different right type, “fill”
the gap by adding a copy of ω. In the symmetric situation, add a copy of ω .̆ This procedure
destroys all gaps of type ν. We also want to “forbid” the existence (in X) of complete accu-
mulation points of L. A candidate for such an accumulation point is some 
 ∈ L such that,
say, (
, ∞)L is λ-full in L on the left. Then replace 
 with a copy of ω or, according to the
situation, with a copy of Z. In the symmetric situation, it might be necessary to replace 


with a copy of ω ,̆ instead.
Formally, X can be considered as a subset of L+ × Z with the lexicographical order,

where L+ is the completion of L. It can be checked that the above constructions intro-
duce no new gap of type ν or λ (L has no gap of type λ from the beginning), and that no
point of X is a complete accumulation point of L (here we need the assumption that L has
no ν±ordered λ-full subset otherwise the above “fillings” of gaps could introduce some
complete accumulation point). Since |L| = λ, then (3) fails.

In order to prove the last statement it is enough to check that the X constructed in the last
part of the proof has cardinality ≤ λν .

Corollary 7.3 If H is a set of regular cardinals, then the following holds.

(1) If H = {λ} is a singleton, then (**)H holds if and only if λ is either ω, or a weakly
compact cardinal.

(2) If (**)H holds, then inf H is either ω or a weakly compact cardinal.
(3) If inf H = ω, then (**)H holds.

Proof (1) is the particular case ν = λ of Proposition 7.2 (2) ⇔ (1), since if λ is regular, then
every λ±ordered subset is necessarily λ-full. Recall that, by a well-known characterization,
an uncountable cardinal λ is weakly compact if and only if every linear order of cardinality
λ has a λ±ordered subset. Notice that ω, too, satisfies the above property.

(2) Let λ = inf H . If λ = ω, we are done. Otherwise, suppose by contradiction that λ

is not weakly compact, thus there is a linear order L of cardinality λ without a λ±ordered
subset. Consider the LOTS X = L ×Z, with the lexicographic order. Then X has no gap of
type λ, since λ > ω ; moreover, it has no gap of type ν ∈ H \ {λ}, since |X| = λ = inf H <

ν. By (**)H , X is [λ, λ]-compact, a contradiction, since X has cardinality λ and the discrete
topology.

(3) Suppose that a GO space X has no (pseudo-)gap of type in H . By Lemma 7.1, for
every λ ∈ H , condition (1) in Proposition 7.2 is satisfied, when ν = ω. By Proposition 7.2
(1) ⇒ (2), X is [λ, λ]-compact. This happens for every λ ∈ H , hence X is H -compact.
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